José A. CañizoResearch · Publications · Teaching · Other

José A. Cañizo - Homepage


Image of Castrovalva, by M. C. Escher

José A. Cañizo

I am a researcher at the Department of Applied Mathematics of the University of Granada. I work mainly on existence theory and asymptotic behaviour of kinetic equations and related models, including coagulation and fragmentation processes and nonlocal partial differential equations.

Address

My office is number 14, third floor, Escuela Técnica Superior de Ingeniería Informática y Telecomunicación. The mailing address is:

Departamento de Matemática Aplicada
Facultad de Ciencias
Avenida de Fuentenueva S/N
18071 Granada
Spain

Email: | Phone: (+34) 958 24 08 27

Preprints & recent publications

Below you can find some recent papers. A full list can be found here.

Preprints

  1. José A. Cañizo, Amit Einav and Bertrand Lods. On the rate of convergence to equilibrium for the linear Boltzmann equation with soft potentials. 2017.

    In this work we present several quantitative results of convergence to equilibrium for the linear Boltzmann operator with soft potentials under Grad’s angular cutoff assumption. This is done by an adaptation of the famous entropy method and its variants, resulting in explicit algebraic, or even stretched exponential, rates of convergence to equilibrium under appropriate assumptions. The novelty in our approach is that it involves functional inequalities relating the entropy to its production rate, which have independent applications to equations with mixed linear and non-linear terms. We also briefly discuss some properties of the equation in the non-cutoff case and conjecture what we believe to be the right rate of convergence in that case.

  2. José A. Cañizo, Bertrand Lods and Amit Einav. Uniform moment propagation for the Becker-Döring equation. 2017.

    We show uniform-in-time propagation of algebraic and stretched exponential moments for the Becker-Döring equations. Our proof is based upon a suitable use of the maximum principle together with known rates of convergence to equilibrium.

  3. José A. Cañizo and Alexis Molino. Improved energy methods for nonlocal diffusion problems. 2016.

    We prove an energy inequality for nonlocal diffusion operators of the following type, and some of its generalisations: $Lu (x) := \int_{\mathbb{R}^N} K(x,y) (u(y) - u(x)) \, \mathrm{d}y$, where $L$ acts on a real function u defined on $\mathbb{R}^N$, and we assume that $K(x,y)$ is uniformly strictly positive in a neighbourhood of $x=y$. The inequality is a nonlocal analogue of the Nash inequality, and plays a similar role in the study of the asymptotic decay of solutions to the nonlocal diffusion equation $\partial_t u=Lu$ as the Nash inequality does for the heat equation. The inequality allows us to give a precise decay rate of the $L^p$ norms of $u$ and its derivatives. As compared to existing decay results in the literature, our proof is perhaps simpler and gives new results in some cases (particularly, and surprisingly, in dimensions $N=1,2$).

  4. José A. Cañizo and Francesco Patacchini. Discrete minimisers are close to continuum minimisers for the interaction energy. 2016.

    Under suitable technical conditions we show that minimisers of the discrete interaction energy for attractive-repulsive potentials converge to minimisers of the corresponding continuum energy as the number of particles goes to infinity. We prove that the discrete interaction energy $\Gamma$-converges in the narrow topology to the continuum interaction energy. As an important part of the proof we study support and regularity properties of discrete minimisers: we show that continuum minimisers belong to suitable Morrey spaces and we introduce the set of empirical Morrey measures as a natural discrete analogue containing all the discrete minimisers.

Some recent publications (see full list here)

  1. José A. Cañizo, Amit Einav and Bertrand Lods. Trend to Equilibrium for the Becker-Döring Equations: An Analogue of Cercignani’s Conjecture. Analysis & PDE, 2017.

    In this work we investigate the rate of convergence to equilibrium for subcritical solutions to the Becker-Döring equations with physically relevant coagulation and fragmentation coefficients and mild assumptions on the given initial data. Using a discrete version of the log-Sobolev inequality with weights we show that in the case where the coagulation coefficient grows linearly and the detailed balance coefficients are of typical form, one can obtain a linear functional inequality for the dissipation of the relative free energy. This results in showing Cercignani’s conjecture for the Becker-Döring equations and consequently in an exponential rate of convergence to equilibrium. We also show that for all other typical cases one can obtain an ’almost’ Cercignani’s conjecture that results in an algebraic rate of convergence to equilibrium. Additionally, we show that if one assumes an exponential moment condition one can recover Jabin and Niethammer’s rate of decay to equilibrium, i.e. an exponential to some fractional power of $t$.

  2. María J. Cáceres and José A. Cañizo. Close-to-equilibrium behaviour of quadratic reaction-diffusion systems with detailed balance. Nonlinear Analysis 159:62–84, 2017.

    We study general quadratic reaction-diffusion systems with detailed balance, in space dimension $d \leq 4$. We show that close-to-equilibrium solutions (in an $L^2$ sense) are regular for all times, and that they relax to equilibrium exponentially in a strong sense. That is: all detailed balance equilibria are exponentially asymptotically stable in all $L^p$ norms, at least in dimension $d \leq 4$. The results are given in detail for the four-species reaction-diffusion system, where the involved constants can be estimated explicitly. The main novelty is the regularity result and exponential relaxation in Lp norms for p > 1, which up to our knowledge is new in dimensions 3 and 4.

  3. José A. Cañizo, José A. Carrillo, Philippe Laurençot and Jesús Rosado. The Fokker-Planck equation for bosons in 2D: well-posedness and asymptotic behaviour. Nonlinear Analysis 137:291–305, 2016.

    We show that solutions of the 2D Fokker-Planck equation for bosons are defined globally in time and converge to equilibrium, and this convergence is shown to be exponential for radially symmetric solutions. The main observation is that a variant of the Hopf-Cole transformation relates the 2D equation in radial coordinates to the usual linear Fokker-Planck equation. Hence, radially symmetric solutions can be computed analytically, and our results for general (non radially symmetric) solutions follow from comparison and entropy arguments. In order to show convergence to equilibrium we also prove a version of the Csiszár-Kullback inequality for the Bose-Einstein-Fokker-Planck entropy functional.

  4. José A. Cañizo and Bertrand Lods. Exponential trend to equilibrium for the inelastic Boltzmann equation driven by a particle bath. Nonlinearity 5(29):1687–1715, 2016.

    We consider the spatially homogeneous Boltzmann equation for inelastic hard spheres (with constant restitution coefficient $\alpha \in (0,1)$) under the thermalization induced by a host medium with a fixed Maxwellian distribution. We prove that the solution to the associated initial-value problem converges exponentially fast towards the unique equilibrium solution. The proof combines a careful spectral analysis of the linearised semigroup as well as entropy estimates. The trend towards equilibrium holds in the weakly inelastic regime in which $\alpha$ is close to $1$, and the rate of convergence is explicit and depends solely on the spectral gap of the elastic linearised collision operator.

  5. Alethea B. T. Barbaro, José A. Cañizo, José A. Carrillo and Pierre Degond. Phase transitions in a kinetic flocking model of Cucker-Smale type. Multiscale Modelling and Simulation 14(3):1063–1088, 2016.

    We consider a collective behavior model in which individuals try to imitate each others’ velocity and have a preferred speed. We show that a phase change phenomenon takes place as diffusion decreases, bringing the system from a “disordered” to an “ordered” state. This effect is related to recently noticed phenomena for the diffusive Vicsek model. We also carry out numerical simulations of the system and give further details on the phase transition.

  6. Marzia Bisi, José A. Cañizo and Bertrand Lods. Entropy dissipation estimates for the linear Boltzmann operator. Journal of Functional Analysis 269(4):1028–1069, 2015.

    We prove a linear inequality between the entropy and entropy dissipation functionals for the linear Boltzmann operator (with a Maxwellian equilibrium background). This provides a positive answer to the analogue of Cercignani’s conjecture for this linear collision operator. Our result covers the physically relevant case of hard-spheres interactions as well as Maxwellian kernels, and we always work with a cut-off assumption. For Maxwellian kernels, the proof of the inequality is surprisingly simple and relies on a general estimate of the entropy of the gain part operator due to Villani (1998) and Matthes and Toscani (2012). For more general kernels, the proof relies on a comparison principle. Finally, we also show that in the grazing collision limit our results allow to recover known logarithmic Sobolev inequalities.