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9.1 Compactness

We will study now a useful generalization of some of the properties of a closed bounded
interval of R:

Definition 9.1 (Covering, open covering). Let X be a topological space. A covering of X
is a collection &7 of subsets of X such that

U A=X.
Aed

A covering 7 of X is said to be open if each of the elements of o/ is an open set.

Definition 9.2 (Compact space). A topological space X is said to be compact if every open
covering o of X contains a finite subcollection that is also a covering of X.

Accordingly, if A C X, we say that A is a compact subset of X when A is compact with
the induced topology (this is just the previous definition applied to A.) Notice that this can
be said in other words:

Definition 9.3 (Covering, open covering of a subset). Let X be a topological space and
K C X. A covering of K by subsets of X is a collection &7 of subsets of X such that

UAQK.

Aed
A covering o7 of K by open subsets of X is a covering of K by subsets of X which are open.

Lemma 9.4 (Compact subset of a space). A subset K of a topological space X is compact
if and only if every covering of K by open subsets of X contains a finite subcollection that
is also a covering of K.



Exercise 9.5. Prove Lemma 9.4.

Because of this equivalence, coverings of a subset K by open subsets of X (Def. 9.3) and
coverings of K by open subsets of K (Def. 9.1) are often used interchangeably. We will work
with the one which is most convenient for the particular setting we discuss at each point.

Lemma 9.6. A closed subset of a compact topological space is compact.

Sketch of proof. Denote the subset by C' and the space by X. If you have an open cover of
C' you can always get an open cover of X by adding X \ C to it; extracting a finite subcover
of this you get a finite subcover for C. n

Lemma 9.7. A compact subset of a Hausdorff topological space is closed.

Sketch of proof. Take any point y not in the subset, which we call C'. Since the space is
Hausdorff, any point = in C can be “separated” from y by disjoint open subsets U,, V, such
that © € U,, y € V.. Then the set of all U, is a cover of C, from which you can keep only a
finite number that still cover C'. Then the intersection of the V, corresponding to this finite
family is an open set which contains  and does not intersect C. [

Theorem 9.8. The image of a compact space under a continuous map is compact.

Sketch of proof. Let f: X — Y be continuous. If you have an open cover of f(Y'), then its
inverse image by f is an open cover of X. Extract a finite subfamily of that one, and the
corresponding sets in Y should cover f(Y). ]

Theorem 9.9. The product of a finite number of compact spaces is compact.

9.2 Compactness of subsets of R?
Theorem 9.10. The set [0, 1] with the usual topology is compact.

Proof. Take any open cover & of [0,1] by open subsets of R. We consider the number x*
defined by

B :={z € (0,1] | [0, z] can be covered by a finite number of sets in 7.}
x* = sup B.
First, note that z* is well defined, since:

1. B is bounded above by 1.

2. Bisnot empty: the point 0 € [0, 1] has to be in some open set U of o7, and the interval
[0, €] must be contained in U for ¢ small enough. Hence [0, €] can be covered by just
one set in <.

Since z* € [0, 1] there must exist U € . such that 2* € U. Then, there must be some € > 0
for which (z* —€,2* +¢€) C U. Two things can happen:
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1. If 2* < 1, take € B such that z € (z* — ¢,2*]. Then the interval [0,z* 4 €) can
be covered by a finite number of sets in &7: those that covered [0, z], plus U. This
contradicts the definition of z*.

2. If 2* = 1, then again take x € B such that x € (z* —¢,2*]. Then the interval [0, 1]
can be covered by a finite number of sets in &/: those that cover [0, z], plus U, which
finishes the proof.

]

Definition 9.11. A subset A C R? is bounded if there exists R > 0 such that A C B(0, R)
(considering the usual Euclidean distance.)

Theorem 9.12. A subset K of R? with the usual topology is compact if and only if it is
closed and bounded.

Sketch of proof. B(0, R) is compact because it is contained in [—R, R]? (due to Theorems
9.10 and 9.9, and Lemma 9.6). A closed and bounded subset of R? is a closed subset of
B(0, R) for some R, which is compact by Lemma 9.6.

A compact subset of R? must be closed due to Lemma 9.7. It is easy to see that it must
also be bounded. O

Corollary 9.13. Let f : K — R be a continuous function from a compact topological space
K to R. Then the image of f is bounded and f reaches its maximum at some point in K:
there is x € K such that f(x) > f(y) for ally € K.

Sketch of proof. Theorem 9.8 implies that the image of f must be compact, and then The-
orem 9.12 shows that f(K) is bounded. Being compact, f(K) must have a largest element,
for otherwise {(—oo,z) | = € f(K)} is an open covering of f(K) from which one cannot
extract a finite subcovering, reaching a contradiction. O

9.3 Sequential compactness

Definition 9.14. We say that a topological space X is sequentially compact when every
sequence in X has a subsequence which converges to a point in X.

Theorem 9.15. Let X be a metrizable space. Then it is compact if and only if it is sequen-
tially compact.

Proof that compactness implies sequential compactness. (We omit the proof that sequential
compactness implies compactness.) Take d a distance for the topology of X and consider a
sequence {z,},>1 in X. Reasoning by contradiction, assume that no subsequence of {z,}
converges to a point in X. Then for every point x € X there must be €, > 0 such that
B(z,€,) contains only a finite number of terms of the sequence (otherwise one can build a
subsequence that converges to z). Then {B(x,¢,) | + € X} is an open covering of X, of
which we can extract a finite subcovering. This implies that the sequence can only have a
finite number of terms, which is a contradiction. O



