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November 27, 2012

9.1 Compactness

We will study now a useful generalization of some of the properties of a closed bounded
interval of R:

Definition 9.1 (Covering, open covering). Let X be a topological space. A covering of X
is a collection A of subsets of X such that⋃

A∈A

A = X.

A covering A of X is said to be open if each of the elements of A is an open set.

Definition 9.2 (Compact space). A topological space X is said to be compact if every open
covering A of X contains a finite subcollection that is also a covering of X.

Accordingly, if A ⊆ X, we say that A is a compact subset of X when A is compact with
the induced topology (this is just the previous definition applied to A.) Notice that this can
be said in other words:

Definition 9.3 (Covering, open covering of a subset). Let X be a topological space and
K ⊆ X. A covering of K by subsets of X is a collection A of subsets of X such that⋃

A∈A

A ⊇ K.

A covering A of K by open subsets of X is a covering of K by subsets of X which are open.

Lemma 9.4 (Compact subset of a space). A subset K of a topological space X is compact
if and only if every covering of K by open subsets of X contains a finite subcollection that
is also a covering of K.
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Exercise 9.5. Prove Lemma 9.4.

Because of this equivalence, coverings of a subset K by open subsets of X (Def. 9.3) and
coverings of K by open subsets of K (Def. 9.1) are often used interchangeably. We will work
with the one which is most convenient for the particular setting we discuss at each point.

Lemma 9.6. A closed subset of a compact topological space is compact.

Sketch of proof. Denote the subset by C and the space by X. If you have an open cover of
C you can always get an open cover of X by adding X \C to it; extracting a finite subcover
of this you get a finite subcover for C.

Lemma 9.7. A compact subset of a Hausdorff topological space is closed.

Sketch of proof. Take any point y not in the subset, which we call C. Since the space is
Hausdorff, any point x in C can be “separated” from y by disjoint open subsets Ux, Vx such
that x ∈ Ux, y ∈ Vx. Then the set of all Ux is a cover of C, from which you can keep only a
finite number that still cover C. Then the intersection of the Vx corresponding to this finite
family is an open set which contains x and does not intersect C.

Theorem 9.8. The image of a compact space under a continuous map is compact.

Sketch of proof. Let f : X → Y be continuous. If you have an open cover of f(Y ), then its
inverse image by f is an open cover of X. Extract a finite subfamily of that one, and the
corresponding sets in Y should cover f(Y ).

Theorem 9.9. The product of a finite number of compact spaces is compact.

9.2 Compactness of subsets of Rd

Theorem 9.10. The set [0, 1] with the usual topology is compact.

Proof. Take any open cover A of [0, 1] by open subsets of R. We consider the number x∗

defined by

B := {x ∈ (0, 1] | [0, x] can be covered by a finite number of sets in A .}
x∗ := supB.

First, note that x∗ is well defined, since:

1. B is bounded above by 1.

2. B is not empty: the point 0 ∈ [0, 1] has to be in some open set U of A , and the interval
[0, ε] must be contained in U for ε small enough. Hence [0, ε] can be covered by just
one set in A .

Since x∗ ∈ [0, 1] there must exist U ∈ A such that x∗ ∈ U . Then, there must be some ε > 0
for which (x∗ − ε, x∗ + ε) ⊆ U . Two things can happen:
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1. If x∗ < 1, take x ∈ B such that x ∈ (x∗ − ε, x∗]. Then the interval [0, x∗ + ε) can
be covered by a finite number of sets in A : those that covered [0, x], plus U . This
contradicts the definition of x∗.

2. If x∗ = 1, then again take x ∈ B such that x ∈ (x∗ − ε, x∗]. Then the interval [0, 1]
can be covered by a finite number of sets in A : those that cover [0, x], plus U , which
finishes the proof.

Definition 9.11. A subset A ⊆ Rd is bounded if there exists R > 0 such that A ⊆ B(0, R)
(considering the usual Euclidean distance.)

Theorem 9.12. A subset K of Rd with the usual topology is compact if and only if it is
closed and bounded.

Sketch of proof. B(0, R) is compact because it is contained in [−R,R]d (due to Theorems
9.10 and 9.9, and Lemma 9.6). A closed and bounded subset of Rd is a closed subset of
B(0, R) for some R, which is compact by Lemma 9.6.

A compact subset of Rd must be closed due to Lemma 9.7. It is easy to see that it must
also be bounded.

Corollary 9.13. Let f : K → R be a continuous function from a compact topological space
K to R. Then the image of f is bounded and f reaches its maximum at some point in K:
there is x ∈ K such that f(x) ≥ f(y) for all y ∈ K.

Sketch of proof. Theorem 9.8 implies that the image of f must be compact, and then The-
orem 9.12 shows that f(K) is bounded. Being compact, f(K) must have a largest element,
for otherwise {(−∞, x) | x ∈ f(K)} is an open covering of f(K) from which one cannot
extract a finite subcovering, reaching a contradiction.

9.3 Sequential compactness

Definition 9.14. We say that a topological space X is sequentially compact when every
sequence in X has a subsequence which converges to a point in X.

Theorem 9.15. Let X be a metrizable space. Then it is compact if and only if it is sequen-
tially compact.

Proof that compactness implies sequential compactness. (We omit the proof that sequential
compactness implies compactness.) Take d a distance for the topology of X and consider a
sequence {xn}n≥1 in X. Reasoning by contradiction, assume that no subsequence of {xn}
converges to a point in X. Then for every point x ∈ X there must be εx > 0 such that
B(x, εx) contains only a finite number of terms of the sequence (otherwise one can build a
subsequence that converges to x). Then {B(x, εx) | x ∈ X} is an open covering of X, of
which we can extract a finite subcovering. This implies that the sequence can only have a
finite number of terms, which is a contradiction.
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