The lemma of de la Vallée-Poussin

27 April 2006

Here you will find a version of the classical lemma of de la Vallée-Poussin with a proof; a similar one can be found in [1].

Proposition 1. Let \(\mu \) be a positive Borel measure on \((0, +\infty)\), and \(f : (0, +\infty) \to \mathbb{R} \) a nonnegative \(\mu \)-integrable function. Then there is a measurable function \(\Phi : [0, +\infty) \to [0, +\infty) \) which is increasing, such that

\[
\lim_{y \to \infty} \Phi(y) = \infty,
\]

and

\[
\int_0^\infty \Phi f \mu < +\infty.
\]

In addition, the function \(\Phi \) can be chosen so that it is strictly increasing, \(\Phi(0) = 0 \), \(\Phi \) is \(C^\infty \), concave, and such that \(\Phi(y) \leq y \) for all \(y \geq 0 \).

If \(G : [0, +\infty) \to \mathbb{R} \) is a nonnegative function such that \(\lim_{y \to \infty} G(y) = +\infty \) and, for some \(\epsilon > 0 \) and all \(y \in [0, \epsilon] \), \(G(y) \geq \epsilon y \), then \(\Phi \) can be also chosen to be less than \(G \).

Proof. Define

\[
F(x) := \int_x^\infty f \mu
\]

which is a decreasing function and tends to zero as \(x \to \infty \) (as \(f \) is integrable). Define

\[
a_n := \inf \{ x > 0 \mid F(x) < 1/n^2 \} \in \mathbb{R}, \quad n \geq 1,
\]

and consider the increasing sequence \(\{x_n\}_{n \geq 0} \) given by

\[
x_0 := 0
\]

\[
x_{n+1} := \max \{x_n + 1, a_{n+1} + 1\}.
\]
The point of this sequence is that \(x_n \to \infty \) when \(n \to \infty \) (which is not necessarily true of \(a_n \)) and that

\[
F(x_n) \leq \frac{1}{n^2}.
\]

Finally, we can define \(\phi \):

\[
\chi_n := \chi_{[x_n,\infty)} \quad \text{for } n \geq 0
\]

\[
\phi := \sum_{n=0}^{\infty} \chi_n.
\]

The function \(\phi \) is well defined because for every \(x > 0 \), \(\phi(x) \) is given by a finite sum. Actually, we could define \(\phi \) equivalently as

\[
\phi(x) = n + 1 \quad \text{for } x \in [x_n, x_{n+1}), \quad n \geq 0.
\]

It is clear that \(\lim_{x \to \infty} \phi(x) = \infty \), as \(\phi(x) > n + 1 \) for \(x > x_n \). Also, the integral of \(\phi f \) is finite because

\[
\int_0^\infty \phi f \mu = \int_0^\infty \left(\sum_{n=0}^{\infty} \chi_n \right) f \mu = \sum_{n=0}^{\infty} \int_0^\infty \chi_n f \mu = \sum_{n=0}^{\infty} F(x_n) \leq \sum_{n=0}^{\infty} \frac{1}{n^2} < +\infty.
\]

(The monotone convergence theorem justifies the interchange of sums and integral here.)

Now, let us find a function \(\Phi \) in these conditions, which is also concave and strictly increasing, with \(\Phi(0) = 0 \) and \(\Phi(y) \leq y \) for \(y \geq 0 \). With the help of \(\phi \) and the above sequence \(\{x_n\} \), we will define \(\Phi \) recursively as follows:

\[
d_0 := 1;
\]

\[
\Phi(0) = 0;
\]

\[
d_{n+1} := \min \left\{ d_n, \frac{n + 1 - \Phi(x_n)}{x_{n+1} - x_n} \right\} \quad \text{for } n \geq 0
\]

\[
\Phi(x) := \Phi(x_n) + d_{n+1}(x - x_n) \quad \text{for } n \geq 0, \quad x \in [x_n, x_{n+1}].
\]

First, note that \(\Phi \) is continuous and \(\Phi(0) = 0 \) by definition. Its derivative on the interval \((x_n, x_{n+1}) \) is \(d_{n+1} \); as \(\{d_n\} \) is decreasing and positive, \(\Phi \) is concave and strictly increasing, and as \(d_0 = 1 \), we have \(\Phi(y) \leq y \) for \(y \geq 0 \).
Figure 1: Definition of Φ. The step function is ϕ, and the piecewise linear one is Φ. The scales on the axes are not the same.

Also, $\Phi(x)$ is smaller than $\phi(x)$, as for x on the interval $[x_n, x_{n+1})$ ($n \geq 0$) one has

$$
\Phi(x) = \Phi(x_n) + d_{n+1}(x - x_n)
\leq \Phi(x_n) + \frac{n + 1 - \Phi(x_n)}{x_{n+1} - x_n}(x_{n+1} - x_n) = n + 1 = \phi(x).
$$

So the function Φf is still μ-integrable (as ϕf is). Note that the latter inequality, written for $x = x_{n+1}$, also proves that $\Phi(x_n) \leq n$ for $n \geq 0$. Also, $\lim_{x \to \infty} \Phi(x) = \infty$. To prove this, observe that d_n is always positive (as $\Phi(x_n) \leq n < n + 1$), so Φ is strictly increasing. Consider the set of the n such that d_{n+1} is different from d_n; if it is finite, then from some point on Φ has a constant positive slope and hence it tends to ∞; if it is infinite, then for all such n one has

$$
\Phi(x_{n+1}) = \Phi(x_n) + d_{n+1}(x_{n+1} - x_n)
= \Phi(x_n) + \frac{n + 1 - \Phi(x_n)}{x_{n+1} - x_n}(x_{n+1} - x_n) = n + 1.
$$

(The equality holds because d_{n+1} is not d_n, so it must be the other quantity in the minimum). So $\lim_{x \to \infty} \Phi(x) = \infty$.

3
Now we can find a function Ψ with the same properties as Φ, and which is also C^∞: extend Φ to all of \mathbb{R} as

$$\Phi(x) := d_1 x \quad \text{for } x \leq 0.$$

Take a “bump function” $\rho : \mathbb{R} \to \mathbb{R}$ which is C^∞, nonnegative, with integral 1, symmetric about the $x = 0$ axis and with support contained in $[-1/2, 1/2]$.

The function

$$\Psi(x) := (\Phi * \rho)(x) = \int_{-\infty}^{\infty} \Phi(x-y) \rho(y) \, dy = \int_{-\infty}^{\infty} \Phi(y) \rho(x-y) \, dy$$

is the one we are looking for: $\Psi(0) = 0$, as Φ is equal to $d_1 y$ on the interval $[-1/2, 1/2]$ (recall that $x_1 \geq 1$) and ρ is symmetric, so

$$\Psi(0) = \int_{-\infty}^{\infty} \Phi(y) \rho(-y) \, dy = d_1 \int_{-1/2}^{1/2} y \rho(-y) \, dy = 0.$$

Ψ is C^∞, being a regularization of Φ by a C^∞ function; it is less than x, as for $0 \leq x \leq 1/2$ we know that $\Psi(x) = d_1 x \leq x$, and for $x \geq 1/2$ we have, using the symmetry of ρ and the bound for Φ,

$$\Psi(x) = \int_{-\infty}^{\infty} \rho(y) \Phi(x-y) \, dy \leq \int_{-\infty}^{\infty} \rho(y) (x-y) \, dy$$

$$= x \int_{-\infty}^{\infty} \rho(y) \, dy - \int_{-\infty}^{\infty} \rho(y) y \, dy = x.$$

(Note that $\Phi(x)$ is not less than x for $x < 0$, so this calculation does not work for $0 \leq x < 1/2$). Ψ is concave and strictly increasing because Φ is, and convolution with a positive function preserves this; $\Psi(x)$ tends to ∞ when $x \to \infty$, and if we observe that for $x \geq 0$

$$\Psi(x) = \int_{-\infty}^{\infty} \Phi(y) \rho(x-y) \, dy \leq \|\rho\|_\infty \Phi(x+1/2) \leq \|\rho\|_\infty (\Phi(x) + \Phi(1/2)), \quad (1)$$

(note that Ψ is sublinear, as it is concave and $\Psi(0) = 0$, so $\Psi(x + y) \leq \Psi(x) + \Psi(y)$ for $x, y \geq 0$), then it is clear that Ψf is integrable on $(0, +\infty)$.

Finally, let us see that Ψ can be chosen to be less than a G in the conditions of the statement. Call

$$b_n := \inf\{x \in [0, +\infty) \mid G(x) > n + 1\} < +\infty.$$
In the definition at the beginning of the proof, put \(y_n := \max x_n, b_n + 1 \), and define \(\phi \) using \(y_n \) instead of \(x_n \). Then,

\[
\phi(x) \leq G(x) + 1 \quad \text{for } x \geq x_1.
\]

Define \(\Phi \) accordingly (so \(\Phi(x) \leq G(x) + 1 \) for \(x \geq x_1 \)), and choose \(\delta > 0 \) such that

\[
\delta \leq \min\{1, 1/\|\rho\|_{\infty}, 1/(\|\rho\|_{\infty} \Phi(1/2))\}.
\]

Then define \(\Psi \) as the convolution above, times \(\delta \):

\[
\Psi := \delta \Phi \ast \rho.
\]

The bound in (1) proves that \(\Psi(y) \leq G(y) \) for \(y \geq x_1 \), and this \(\Psi \) still satisfies all the other properties of the proposition. Now we only have to choose another \(\delta > 0 \) such that

\[
\delta \Psi'(0) \leq \epsilon \\
\delta \Psi(x) \leq G(x) \quad \text{for } \epsilon \leq x \leq x_1,
\]

and then \(\delta \Psi \) is less than \(G \) (recall that \(G(x) \geq \epsilon x \) for \(x \in [0, \epsilon] \) and \(\Psi \) is concave) and satisfies all the other properties. \(\square \)

In the rest of this section, \(S \) will be a set, \(\mathcal{A} \) will be a \(\sigma \)-algebra of subsets of \(S \) and \(\mu \) be a positive measure on \(\mathcal{A} \).

Proposition 2. Consider the positive measure space \((S, \mathcal{A}, \mu)\). If \(f : S \to \mathbb{R} \) is a nonnegative \(\mu \)-integrable function, then there is a continuous function \(\Lambda : [0, +\infty) \to [0, +\infty) \) which is increasing, such that \(\lim_{y \to \infty} \Lambda(y)/y = \infty \), and

\[
\int_0^\infty \Lambda(f(y))\mu(y) < +\infty.
\]

The function \(\Lambda \) can be chosen so that \(\Lambda(0) = 0 \), \(\Lambda \) is \(C^\infty \), and strictly convex.

If \(H : [0, +\infty) \to \mathbb{R} \) is an absolutely continuous function so that \(G = H' \) is in the conditions of \(G \) in proposition 1, then \(\Lambda \) can be chosen to be less than \(H \).

This result is a corollary of the previous proposition if one uses the concept of the *distribution function* of a given function \(f \):
Definition 3. If \(f : S \to \mathbb{R} \) is a nonnegative \(\mu \)-integrable function, then its distribution function is the function \(F_f : (0, +\infty) \to [0, +\infty) \) given by

\[
F_f(\lambda) := \mu\{ y \in X \mid f(y) > \lambda \} \quad \text{for} \quad \lambda > 0.
\]

Note that the set \(\{ y \in X \mid f(y) > \lambda \} \) is measurable, as \(f \) is. It is clear that \(F_f \) is decreasing, so in particular it is Borel measurable. The following lemma gives a way to calculate the integral of \(\varphi(f) \) for suitable functions \(\varphi \) knowing only the distribution function \(F_f \).

Lemma 4. Let \(\varphi : [0, +\infty) \to [0, +\infty) \) be a nonnegative \(\mathcal{C}^1 \) function such that \(\varphi(0) = 0 \), and \(f : S \to \mathbb{R} \) a nonnegative \(\mu \)-integrable function. Then

\[
\int_S \varphi(f(x))\mu(x) = \int_0^\infty F_f(\lambda)\varphi'(\lambda)\,d\lambda.
\]

Proof. To prove this, note first that the function

\[
G : S \times [0, +\infty) \to \mathbb{R},
\]

\[
(x, t) \mapsto f(x) - t
\]

is measurable for the product \(\sigma \)-algebra \(\mathcal{A} \otimes \mathcal{B} \), as it is a sum of two measurable functions. Hence, the set \(\{(x, t) \in S \times [0, +\infty) \mid f(x) < t\} \) is measurable, and therefore the function

\[
\chi : S \times [0, +\infty) \to \mathbb{R},
\]

\[
(x, t) \mapsto \begin{cases} 1 & \text{if } f(x) < t \\ 0 & \text{if } f(x) \geq t \end{cases}
\]

is measurable. Observe that

\[
F_f(\lambda) = \int_S \chi(x, \lambda)\mu(x) \quad \text{for} \quad \lambda > 0.
\]

Hence we can apply Fubini’s theorem and write

\[
\int_0^\infty F_f(\lambda)\varphi'(\lambda)\,d\lambda = \int_0^\infty \int_S \chi(x, \lambda)\mu(x)\varphi'(\lambda)\,d\lambda
\]

\[
= \int_S \int_0^\infty \chi(x, \lambda)\varphi'(\lambda)\,d\lambda\mu(x) = \int_S \int_0^{f(x)} \varphi'(\lambda)\,d\lambda\mu(x) = \int_S \varphi(f(x))\mu(x).
\]

This proves the lemma. \(\square \)
Now we can prove proposition 2:

Proof of proposition 2. The previous lemma proves that \(\int_S f \mu = \int_0^\infty F_f(\lambda) \, d\lambda \), so \(F_f \) is integrable. Proposition 1 then shows that there is a \(C^\infty \) nonnegative concave function on \([0, +\infty)\), which we call \(\Lambda' \), such that \(\Lambda'(0) = 0 \), \(\lim_{\lambda \to \infty} \Lambda'(\lambda) = +\infty \) and

\[
\int_0^\infty F_f(\lambda) \Lambda'(\lambda) \, d\lambda < +\infty.
\]

We define \(\Lambda \) as its primitive:

\[
\Lambda(\lambda) := \int_0^\lambda \Lambda'(y) \, dy.
\]

Then \(\Lambda \) clearly fulfills the requirements of the proposition; in particular,

\[
\int_S \Lambda(f(x)) \mu(x) = \int_0^\infty F_f(\lambda) \Lambda'(\lambda) \, d\lambda < +\infty,
\]

and also, using l’Hôpital’s rule,

\[
\lim_{\lambda \to \infty} \frac{\Lambda(\lambda)}{\lambda} = \lim_{\lambda \to \infty} \frac{\Lambda'(\lambda)}{1} = +\infty.
\]

Finally, if \(H \) is in the conditions of the proposition, we may choose \(\Lambda' \) less than \(H' \) and the result follows. \(\square \)

1 About this text

This document has been written by José Alfredo Cañizo. For comments or suggestions write to ozarfreo@yahoo.com. The latest version should be at http://www.ugr.es/~ozarfreo/tex.

You can use this work under the terms of the Creative Commons license which can be found at http://creativecommons.org/licenses/by-nc-sa/1.0/.

References