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Non local interaction PDE

µ ∈ P2(R) , W (x) = −|x| or W (x) = |x|
∂µ

∂t
= ∂

∂x

(
µ
∂

∂x
W ∗ µ

)
, x ∈ R, t > 0,

W(µ) = 1
2

∫
W (x− y)dµdµ

Burgers equation

F ∈ L∞(R; [0, 1]) , ∂xF ∈ P2(R)
∂F

∂t
+ ∂

∂x
g(F ) = 0, x ∈ R, t > 0.

where g(F ) = ±(F 2 − F ).

ODE in L2

X ∈ K := {f ∈ L2([0, 1]) | f is non-decreasing}
∂tXt(s) = h(s), s ∈ [0, 1], t > 0,

h(s) =
{∫ 1

0 sign(Xt(z)−Xt(s))dz
2s− 1

What we address

• Equivalence of the three systems
• Approximation of solutions
• Characterization of the subdifferential of W

Equivalence

The variables µ, F,X are mutually defined
µ 7→ Fµ(x) 7→ Xµ(s)
Fµ = µ((−∞, x])

Xµ(s) = inf {x|Fµ(x) > s}
and the relation between the equations

∂

∂x

[
∂tF ± ∂x(F 2 − F )

]
= 0

↓
∂tµ = ±∂x (µ(2F − 1))

↓
±(2F − 1) = v = −∂W ,

∂tµ + ∂x(µv) = 0
↓

W(µ) = 1
2

∫
±|X(s)−X(z)|dsdz =

∫
±X(s)(2s− 1)ds

Example of evolution for the three systems

Wasserstein gradient flow Entropy solution L2 gradient flow
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Theorem (Equivalence among Wasserstein gradient flows, L2 gradient flows, and entropy solutions.)

Let W (x) = σ|x| with σ ∈ {−1, 1}. Let µ0 ∈ P(R). Let F0(x) = µ0((−∞, x]) and X0 be the pseudo-inverse of F0. Let g(F ) = σ(F 2−F ). Let µt ∈ AC([0,+∞))→ P2(R).
Then, the following are equivalent:
1 The curve µt is the unique Wasserstein gradient flow solution with initial condition µ0.
2 The curve F (x, t) = µt((−∞, x]) is the unique entropy solution to the scalar conservation law with initial condition F0.
3 The curve Xt(s) = inf{x | F (x, t) > s} is the unique L2 gradient flow with initial condition X0.

Theorem (Particle approximation in the repulsive case)

Let µ0 ∈ P2(R), and let µ(x, t) be the unique gradient flow solution of W with σ = −1 with initial datum µ0. For
each N , let µN be the empirical measure µN(t) =

∑N
j=1

1
NδxNj (t) with xNj satisfying

ẋNj (t) = 1
N

∑
k 6=j

sign(xNj (t)− xNk (t)) = 2j − 1−N
N

, xNj (0) = X0(j/N), j = 1, ..., N.

Then, for all t ≥ 0, we have limN→∞ dW (µN(t), µ(t)) = 0.

00 1 F

gN(F )

x

FN
0 (x)

1

Theorem (Characterization of the subdifferential)

Given the functional W and a measure P2(R) 3 µ0 = ν +
∑

i∈Imiδxi, for some finite or countable I and with
ν({x}) = 0 for every x ∈ R, then, defining αi such that Xµ0 = xi on (αi, αi +mi), ∆i = [2αi − 1, 2(αi + mi)− 1],
X∆i

the characteristic function of the interval ∆i and k0(x) := 2F0(x)− 1, the plan

γ(x, y) =
∑
i

1
2
δxi ⊗X∆i

+ (i⊗ k0)#ν,

is the unique element of minimal norm in ∂W(µ0).

Outlook

• Connection for general W
• Non-convex interaction in Rn, n > 1
• Different framework as in Gigli-Otto ”Entropic Burgers
equation via a minimizing movement scheme based
on the Wasserstein metric.” CVPDE (2012)
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