Nonlocal interaction equations with singular kernels: Wasserstein gradient flow vs entropy solutions

<u>Giovanni A. Bonaschi</u>, Technische Universiteit Eindhoven & Università degli Studi di Pavia

joint work with J.A. Carrillo, M. Di Francesco, M.A. Peletier

Non local interaction PDE

$$\mu \in \mathcal{P}_2(\mathbb{R}) , \ W(x) = -|x| \text{ or } W(x) = |x|$$
$$\frac{\partial \mu}{\partial t} = \frac{\partial}{\partial x} \left(\mu \frac{\partial}{\partial x} W * \mu \right), \qquad x \in \mathbb{R}, \quad t > 0,$$
$$\mathcal{W}(\mu) = \frac{1}{2} \int W(x - y) d\mu d\mu$$

What we address

- Equivalence of the three systems
- Approximation of solutions
- Characterization of the subdifferential of $\mathcal W$

Burgers equation

 $F \in L^{\infty}(\mathbb{R}; [0, 1]), \ \partial_x F \in \mathcal{P}_2(\mathbb{R})$ $\frac{\partial F}{\partial t} + \frac{\partial}{\partial x}g(F) = 0, \qquad x \in \mathbb{R}, t > 0.$ where $q(F) = \pm (F^2 - F)$.

ODE in L^2

 $X \in \mathcal{K} := \{ f \in L^2([0,1]) \mid f \text{ is non-decreasing} \}$ $\partial_t X_t(s) = h(s), \qquad s \in [0, 1], \quad t > 0,$ $h(s) = \begin{cases} \int_0^1 \operatorname{sign}(X_t(z) - X_t(s)) dz \\ 2s - 1 \end{cases}$

Example of evolution for the three systems

 Wasserstein gradient flow	Entropy solution	L^2 gradient flow

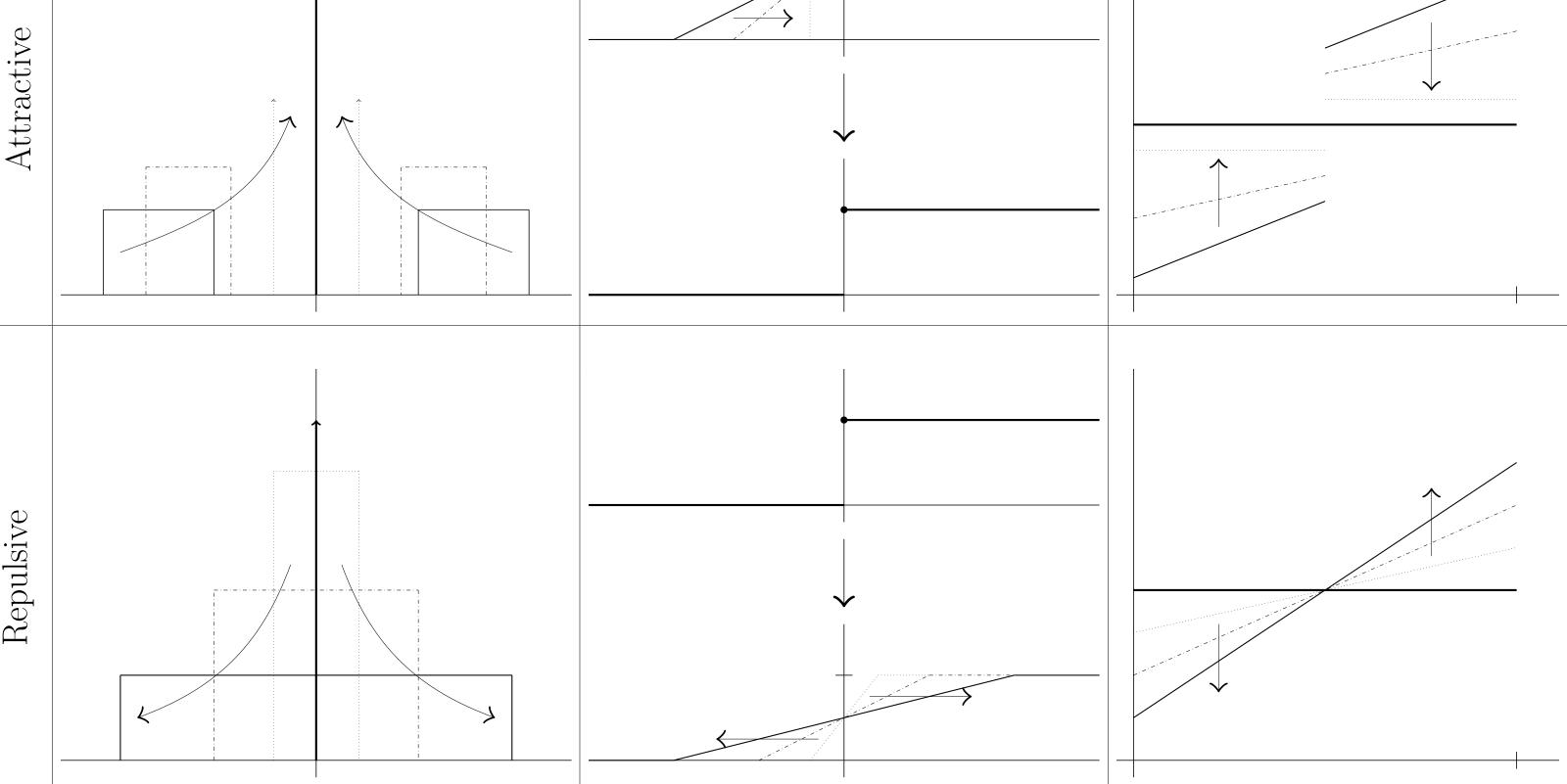
Equivalence

The variables μ, F, X are mutually defined

$$\mu \mapsto F_{\mu}(x) \mapsto X_{\mu}(s)$$
$$F_{\mu} = \mu((-\infty, x])$$
$$X_{\mu}(s) = \inf \{x | F_{\mu}(x) > s\}$$

and the relation between the equations

$$\begin{split} \frac{\partial}{\partial x} \left[\partial_t F \pm \partial_x (F^2 - F) \right] &= 0 \\ \downarrow \\ \partial_t \mu &= \pm \partial_x \left(\mu (2F - 1) \right) \\ \downarrow \\ \pm (2F - 1) &= v = -\partial \mathcal{W}, \\ \partial_t \mu + \partial_x (\mu v) &= 0 \\ \downarrow \\ \mathcal{W}(\mu) &= \frac{1}{2} \int \pm |X(s) - X(z)| ds dz = \int \pm X(s) (2s - 1) ds \end{split}$$



Theorem (Equivalence among Wasserstein gradient flows, L^2 gradient flows, and entropy solutions.)

Let $W(x) = \sigma |x|$ with $\sigma \in \{-1, 1\}$. Let $\mu_0 \in \mathcal{P}(\mathbb{R})$. Let $F_0(x) = \mu_0((-\infty, x])$ and X_0 be the pseudo-inverse of F_0 . Let $g(F) = \sigma(F^2 - F)$. Let $\mu_t \in AC([0, +\infty)) \to \mathcal{P}_2(\mathbb{R})$. Then, the following are equivalent:

1 The curve μ_t is the unique Wasserstein gradient flow solution with initial condition μ_0 .

2 The curve $F(x,t) = \mu_t((-\infty,x])$ is the unique entropy solution to the scalar conservation law with initial condition F_0 .

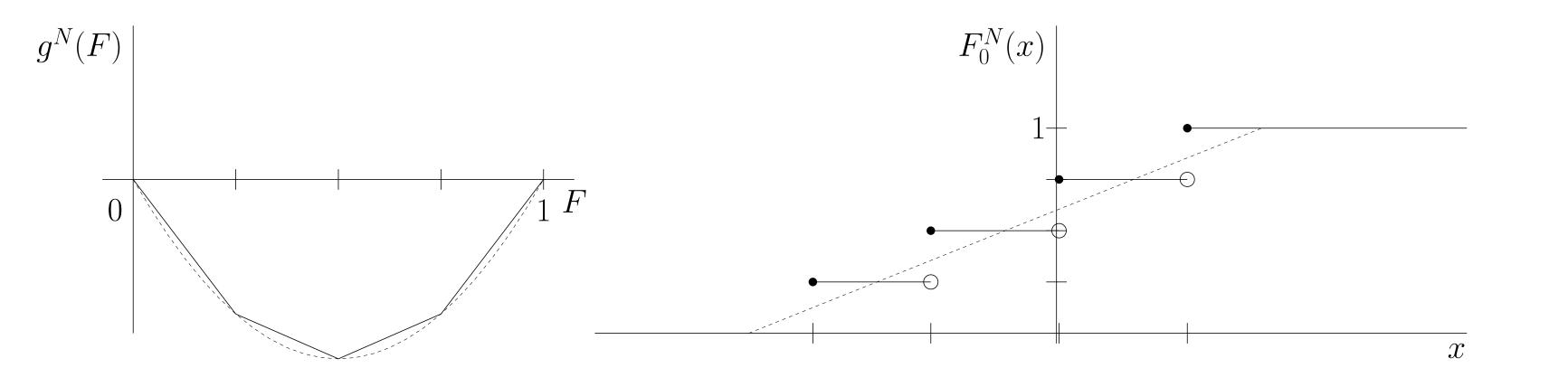
3 The curve $X_t(s) = \inf\{x \mid F(x,t) > s\}$ is the unique L^2 gradient flow with initial condition X_0 .

Theorem (Particle approximation in the repulsive case)

Let $\mu_0 \in \mathcal{P}_2(\mathbb{R})$, and let $\mu(x,t)$ be the unique gradient flow solution of \mathcal{W} with $\sigma = -1$ with initial datum μ_0 . For each N, let μ^N be the empirical measure $\mu^N(t) = \sum_{j=1}^N \frac{1}{N} \delta_{x_j^N(t)}$ with x_j^N satisfying

$$\dot{x}_{j}^{N}(t) = \frac{1}{N} \sum_{k \neq j} \operatorname{sign}(x_{j}^{N}(t) - x_{k}^{N}(t)) = \frac{2j - 1 - N}{N}, \qquad x_{j}^{N}(0) = X_{0}(j/N), \qquad j = 1, \dots, N.$$

Then, for all $t \ge 0$, we have $\lim_{N\to\infty} d_W(\mu^N(t), \mu(t)) = 0$.



Theorem (Characterization of the subdifferential)

Given the functional \mathcal{W} and a measure $\mathcal{P}_2(\mathbb{R}) \ni \mu_0 = \nu + \sum_{i \in I} m_i \delta_{x_i}$, for some finite or countable I and with $\nu(\{x\}) = 0$ for every $x \in \mathbb{R}$, then, defining α_i such that $X_{\mu_0} = x_i$ on $(\alpha_i, \alpha_i + m_i), \Delta_i = [2\alpha_i - 1, 2(\alpha_i + m_i) - 1],$ \mathcal{X}_{Δ_i} the characteristic function of the interval Δ_i and $k_0(x) := 2F_0(x) - 1$, the plan

$$\boldsymbol{\gamma}(x,y) = \sum \frac{1}{2} \delta_{x} \otimes \mathcal{X}_{\Delta} + (i \otimes k_0)_{\#} \nu,$$

Outlook

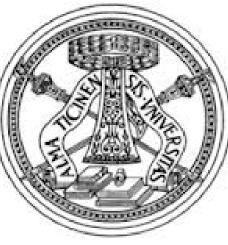
• Connection for general W

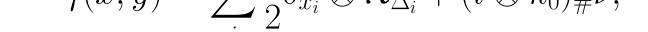
• Non-convex interaction in \mathbb{R}^n , n > 1

• Different framework as in Gigli-Otto "Entropic Burgers" equation via a minimizing movement scheme based on the Wasserstein metric." CVPDE (2012)

References

- L. Ambrosio, N. Gigli, G. Savaré. Gradient Flows in Metric Spaces and in the Spaces of Probability Measures, (2008).
- J. A. Carrillo, M. Di Francesco, A. Figalli, T. Laurent and D. Slepcev. Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations, (2011).
- A. Bressan. Global solutions of systems of conservation laws by wave-front tracking, (1992).
- F. Bolley, Y. Brenier and G. Loeper. Contractive metrics for scalar conservation laws, (2005).





is the unique element of minimal norm in $\partial \mathcal{W}(\mu_0)$.