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What we address Example of evolution for the three systems

Wasserstein gradient flow Entropy solution L? gradient flow

= Equivalence of the three systems

« Approximation of solutions
= Characterization of the subdifterential ot YW | 1 o

Equivalence

The variables u, F, X are mutually defined

Attractive
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Theorem (Equivalence among Wasserstein gradient flows, L* gradient flows, and entropy solutions.)

Let W(x) = ol|x| with o € {—1,1}. Let pug € P(R). Let Fy(x) = po((—o0, z]) and X, be the pseudo-inverse of . Let g(F) = o(F*—F). Let u; € AC(]0,+00)) — Pa(R).
Then, the following are equivalent:

1 The curve u; is the unique Wasserstein gradient flow solution with tnitial condition L.

2 The curve F(x,t) = pu((—o0, x|) is the unique entropy solution to the scalar conservation law with initial condition Fy.

3 The curve Xi(s) = inf{x | F(x,t) > s} is the unique L* gradient flow with initial condition Xj.

Theorem (Particle approximation in the repulsive case) Outlook

Let 1y € Po(R), and let u(x,t) be the unique gradient flow solution of W with o = —1 with initial datum py. For - Connection for general W

each N, let u¥ be the empirical measure u” (t) = Zj\;l %%N(t) with wé\[ satisfying
J
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Then, for allt > 0, we have imy_o diy (™ (t), u(t)) = 0.

= Non-convex interaction in R™, n > 1
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Theorem (Characterization of the subdifferential)

Given the functional W and a measure Po(R) 5 g = v + > .c;mid,., for some finite or countable I and with
v({x}) =0 for every x € R, then, defining o, such that X,, = z; on (ay, a; +m;), A; = 20 — 1, 2(a;; + m;) — 1],
XA the characteristic function of the interval A; and ko(x) = 2Fy(x) — 1, the plan
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is the unique element of minimal norm in AW ().



