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Particle-based approach

Track position of each agent Xi . For each time step dt, for example,

dXi = f (X1, . . . ,XN)dt +
√
2D dBi(t)

Each agent moves according to its surroundings, and the position of
some/all of the other agents, with maybe some additional randomness.
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Particle-based approach

Track position of each agent Xi . For each time step dt, for example,

dXi = f (X1, . . . ,XN)dt +
√
2D dBi(t)

Each agent moves according to its surroundings, and the position of
some/all of the other agents, with maybe some additional randomness.

Or we might track position and velocity:

dXi = Vi dt,

dVi = f (X1, . . . ,XN)dt +
√
2D dBi(t).
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Examples of individual-level diffusion processes

Continuous diffusion Agents on a lattice
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∂c
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= ∇ · (D∇c),

where c is the particle concentration
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Continuum (population level) description

Diffusion

∂c

∂t
= ∇ · (D∇c),

where c is the particle concentration

Poisson-Nernst-Planck

∂n

∂t
= ∇ · (D∇n − n∇φ),

∂p

∂t
= ∇ · (D∇p + p∇φ),

λ2∇2φ = n− p,

n, p concentration of negative/positive particles, φ electric potential.
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Care need to be taken when passing from individual to continuum models.

The following argument is common but fallacious. As the concentration
of individuals increases, so the available space to diffuse decreases, so the
diffusion coefficient should be reduced:

D(c) ∝ 1− c .
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Individual to continuum

Care need to be taken when passing from individual to continuum models.

The following argument is common but fallacious. As the concentration
of individuals increases, so the available space to diffuse decreases, so the
diffusion coefficient should be reduced:

D(c) ∝ 1− c .

Using the (experimentally measured) root mean square displacement to
estimate the (collective) diffusion coefficient can also be trouble.
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Paradigm problem

System of N interacting Brownian particles in Ω ⊂ R
3.

Particle-level description (high-dim.)

dXi =
√
2D dBi (t) + f i (X)dt, 1 ≤ i ≤ N

Fokker–Planck PDE for joint probability density P(x1, . . . , xN , t):

∂P

∂t
(~x , t) = ~∇~x ·

[

D ~∇~x P − ~F (~x)P
]

in ΩN ,

where ~x = (x1, . . . , xN), ~F = (f 1, . . . , fN).
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Paradigm problem

System of N interacting Brownian particles in Ω ⊂ R
3.

Particle-level description (high-dim.)

dXi =
√
2D dBi (t) + f i (X)dt, 1 ≤ i ≤ N

Fokker–Planck PDE for joint probability density P(x1, . . . , xN , t):

∂P

∂t
(~x , t) = ~∇~x ·

[

D ~∇~x P − ~F (~x)P
]

in ΩN ,

Population-level description (low-dim.)
PDE for marginal density p(x, t) =

∫

P(~x , t) δ(x− x1)d~x :

∂p

∂t
(x, t) = ∇x ·

[

D̄(p)∇x p − f̄(x, p) p
]

in Ω
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Diffusion of pairwise interacting particles

Suppose each particle exerts a force on the others which depends only on
their separation. Then the interaction potential of the system is

U(~x) =
∑

1≤i<j≤N

V (‖xi − xj‖)

and fi(~x) = −∇xiU(~x) = −
∑

j 6=i

∇xiV (‖xi − xj‖).
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Diffusion of pairwise interacting particles

Suppose each particle exerts a force on the others which depends only on
their separation. Then the interaction potential of the system is

U(~x) =
∑

1≤i<j≤N

V (‖xi − xj‖)

and fi(~x) = −∇xiU(~x) = −
∑

j 6=i

∇xiV (‖xi − xj‖).

Integrating the Fokker–Planck eqn over x2, . . . , xN gives

∂p

∂t
= ∇x1 ·[∇x1 p − B(x1)] ,

where the function B is given by

B(x1) = −
∫

ΩN−1

N
∑

j=2

∇x1V (‖x1 − xj‖)P(x1, x2, . . . , xN , t)dx2 . . .dxN .
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Diffusion of pairwise interacting particles

Suppose each particle exerts a force on the others which depends only on
their separation. Then the interaction potential of the system is

U(~x) =
∑

1≤i<j≤N

V (‖xi − xj‖)

and fi(~x) = −∇xiU(~x) = −
∑

j 6=i

∇xiV (‖xi − xj‖).

Integrating the Fokker–Planck eqn over x2, . . . , xN gives

∂p

∂t
= ∇x1 ·[∇x1 p − B(x1)] ,

where the function B is given by

B(x1) = −(N − 1)

∫

Ω

∇x1V (‖x1 − x2‖)P2(x1, x2, t)dx2,

where the two-particle density function

P2(x1, x2, t) :=

∫

P(~x , t)dx3 . . .dxN .
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Closure

Suppose P2(x1, x2, t) = p(x1, t)p(x2, t). Then

Bc(x1) = −(N − 1) p(x1, t)

∫

Ω

∇x1V (‖x1 − x2‖) p(x2, t)dx2.

Very natural. Often done implicitly.
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Closure

Suppose P2(x1, x2, t) = p(x1, t)p(x2, t). Then

Bc(x1) = −(N − 1) p(x1, t)

∫

Ω

∇x1V (‖x1 − x2‖) p(x2, t)dx2.

Very natural. Often done implicitly.

Assume a short range potential: V (r) = Ṽ (r/ǫ). For ǫ ≪ 1 we find

Bc(x1) = −2π ǫ3(N − 1)∇x1p
2(x1, t)

∫ ∞

0

Ṽ (r)r2 dr .

Nonlinear diffusion equation

∂p

∂t
(x, t) = ∇ ·

(

D̄(p)∇p
)

,

where

D̄(p) = D
[

1 + 2(N − 1)ǫ3β̄V p
]

, βV = 2π

∫ ∞

0

Ṽ (r)r2 dr .
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Outer region away from the collision surface: ‖x1 − x2‖ ≫ ǫ

• Particles are independent

Pouter (x1, x2, t) ∼ p(x1, t)p(x2, t) +O(ǫd).
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Matched asymptotic expansions

Can we approximate P2(x1,x2, t) using asymptotic expansions?

Outer region away from the collision surface: ‖x1 − x2‖ ≫ ǫ

• Particles are independent

Pouter (x1, x2, t) ∼ p(x1, t)p(x2, t) +O(ǫd).

Inner region near the collision surface: ‖x1 − x2‖ ∼ ǫ

• Particles are correlated

• Change of variables to inner variables:

x1 = x̃1, x2 = x̃1 + ǫx̃

• Solve for the inner function P̃(x̃1, x̃, t) =
P(x1,x2, t) (asymptotic expansion in ǫ).

ǫx̃

x2

x1
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Inner problem

The leading order inner problem is

2∇x̃ ·
[

∇x̃P̃
(0) +∇x̃Ṽ (x̃)P̃(0)

]

= 0,

P̃(0) ∼ p2(x̃1, t) as ‖x̃‖ → ∞,

with solution
P̃(0)(x̃1, x̃, t) = p2(x̃1, t) e

−Ṽ (x̃).
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Inner problem

The leading order inner problem is

2∇x̃ ·
[

∇x̃P̃
(0) +∇x̃Ṽ (x̃)P̃(0)

]

= 0,

P̃(0) ∼ p2(x̃1, t) as ‖x̃‖ → ∞,

with solution
P̃(0)(x̃1, x̃, t) = p2(x̃1, t) e

−Ṽ (x̃).

The O(ǫ) inner problem is

2∇x̃ ·
[

∇x̃P̃
(1) +∇x̃Ṽ (x̃)P̃(1)

]

−∇x̃1 ·
[

2∇x̃P̃
(0) +∇x̃Ṽ (x̃)P̃(0)

]

= 0,

P̃(1) ∼ p(x̃1) x̃ · ∇x̃1p(x̃1) as ‖x̃‖ → ∞,

with solution

P̃(1)(x̃1, x̃, t) = p(x̃1, t)x̃ · ∇x̃1p(x̃1, t) e
−Ṽ (x̃).
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Recall we need to calculate

B(x1) = −(N − 1)

∫

Ω

∇x1V (‖x1 − x2‖)P2(x1, x2, t)dx2.
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Recall we need to calculate

B(x1) = −(N − 1)

∫

Ω

∇x1V (‖x1 − x2‖)P2(x1, x2, t)dx2.

Using our inner expression for P2(x1, x2, t) we find

B(x1) = −2βV ǫ3 p(x1, t)∇x1p(x1),

where

βV = 2π

∫ ∞

0

(

1− e
−Ṽ (r)

)

r2 dr .
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Recall we need to calculate

B(x1) = −(N − 1)

∫

Ω

∇x1V (‖x1 − x2‖)P2(x1, x2, t)dx2.

Using our inner expression for P2(x1, x2, t) we find

B(x1) = −2βV ǫ3 p(x1, t)∇x1p(x1),

where

βV = 2π

∫ ∞

0

(

1− e
−Ṽ (r)

)

r2 dr .

Same form, different coefficient.

βV = 2π

∫ ∞

0

Ṽ (r)r2 dr .

Method can be modified to deal with hard spheres, where closure fails.
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Diffusion with size-exclusion: hard-spheres

Suppose system consists of N hard spheres of diameter ǫ under an
external potential W . Then the interaction potential is

VHS(r) =

{

∞, r < ǫ
0, r > ǫ

and βHS := α = 2π/3.

So p evolves according to the nonlinear PDE:

∂p

∂t
= ∇x ·

[

D(p)∇xp +∇xW p
]

, D(p) = 1 + 2α(N − 1)ǫ3p.

• Excluded-volume interactions → increased collective diffusion:

• It preserves gradient-flow structure of original Fokker-Planck (s.s. are
minimizers of energy functional):

F(p) =
∫

Ω

[

p log p + α(N − 1)ǫ3p2
]

+ pW (x)dx.
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Results: hard spheres

Linear diffusion equation (ǫ ≡ 0) MC of particle-system

Marginal density p(x, t) at time t = 0.05 with normally distributed initial data

(σ = 0.05), N = 400 and f = 0. Histogram made with 104 runs.
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Results: hard spheres
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Results: hard spheres
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Results: soft spheres

Particles interacting with U(r) = (ǫ/r)e−r/ǫ
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Blues and Reds



Introduction Single species Multiple species

Blues and reds

Take a mixture of two types of hard-spheres particles with

different numbers (Nb,Nr ), sizes (ǫb, ǫr ), diffusivities

(Db,Dr ) and external drifts (fb, fr ).

Nb blues at ~xb = (x1, . . . , xNb
) Nr reds at ~xr = (xNb+1, . . . , xN)

Joint probability density: P(x1, . . . , xNb
, xNb+1, . . . , xN , t)
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Blues and reds

Take a mixture of two types of hard-spheres particles with

different numbers (Nb,Nr ), sizes (ǫb, ǫr ), diffusivities

(Db,Dr ) and external drifts (fb, fr ).

Nb blues at ~xb = (x1, . . . , xNb
) Nr reds at ~xr = (xNb+1, . . . , xN)

Joint probability density: P(x1, . . . , xNb
, xNb+1, . . . , xN , t)

Configuration space: ΩN
ǫ = ΩN \ Bǫ with

Bǫ =
{

~x ∈ ΩN : ∃i 6= j s.t. ‖xi − xj‖ ≤ 1
2 (ǫi + ǫj)

}

.

Population-level densities:

b(x, t) =

∫

P(~x , t) δ(x− x1)d~x , r(x, t) =

∫

P(~x , t) δ(x− xN)d~x .

W b(x, t): probability of one of the Nb blue particles to be at x at time t.
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Blue’s population-level equation

Pick the first blue particle at x1 and integrate FP eq. over slice ΩN
ǫ (x1).

Only pairwise interactions with Nb − 1 blues . . .

∂b

∂t
(x1, t) = ∇x1 ·

[

Db∇x1b − fb(x1) b
]

+ (Nb − 1) ∇x1 ·
[

αǫ3b Db∇x1b
2
]
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Blue’s population-level equation

Pick the first blue particle at x1 and integrate FP eq. over slice ΩN
ǫ (x1).

Only pairwise interactions with Nb − 1 blues plus Nr reds . . .

∂b

∂t
(x1, t) = ∇x1 ·

[

Db∇x1b − fb(x1) b
]

+ (Nb − 1) ∇x1 ·
[

αǫ3b Db∇x1b
2
]

+ Nr Ibr

Ibr : contribution of an inner region involving one blue and one red.
Obtain it computing a blue–red interaction via matched asymptotics.
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Blue’s population-level equation

We find that

∂b

∂t
(x, t) = ∇x ·

[

Db∇xb − fb(x)b

+ (Nb − 1)ǫ3bDbα b∇xb

+ Nr ǫ
3
br

{

Db(βb b∇xr − γbr∇xb) + γb [fb(x)− fr (x)] br
}

]

,

where

ǫbr =
ǫb + ǫr

2
(distance at contact between red & blue particles)

α =
4π

3
, βb =

2π

3

[2Db + 3Dr ]

Db + Dr

, γb =
2π

3

Db

Db + Dr

,
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Final model for the blues & reds

We obtain a cross-diffusion system for b and r :

∂

∂t

(

b

r

)

(x, t) = ∇x ·
[

D(b, r)∇x

(

b

r

)

− F(b, r)

(

b

r

)]

with

D(b, r) =

(

Db

[

1 + (Nb−1)ǫ3bαb − Nrǫ
3
brγbr

]

DbNrǫ
3
brβbb

DrNbǫ
3
brβr r Dr

[

1 + (Nr−1)ǫ3rαr − Nbǫ
3
brγrb

]

)

F(b, r) =

(

fb Nrǫ
3
brγb(fr − fb)b

Nbǫ
3
brγr (fb − f r )r fr

)
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Gradient flow structure: two species

If fb = −∇xWb and fr = −∇xWr :

∂

∂t

(

b

r

)

= ∇ ·
[

M(b, r)∇
(

∂bF
∂rF

)]

,

where F(b, r) is a entropy functional and M(b, r) the mobility matrix.

Example for large num. of particles: Define b̃ = Nbb and r̃ = Nr r and
set Db = Dr = 1.

F =

∫

Ω

[

b̃ log b̃ + r̃ log r̃ + b̃Wb + r̃Wr +
2π
3

(

ǫ3b b̃
2 + 2ǫ3br b̃r̃ + ǫ3r r̃

2
)]

dx

M(b̃, r̃) =





b̃(1− π
3 ǫ

3
br r̃)

π
3 ǫ

3
br b̃r̃

π
3 ǫ

3
br b̃r̃ r̃ (1− π

3 ǫ
3
br b̃)




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Numerical example: Initial distributions

• Nb = 100, ǫb = 0.01, fb(x1) = 0, Db = 1.

• Nr = 300, ǫr = 0.02, fr (x1) = 0, Dr = 1.

• Volume fraction: 10.2%.
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Numerical example: blues at Tf

Point particles
(ǫb = 0)

Finite-sized
particles
(ǫb = 0.01)
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Stationary example

Stationary densities of blues (left) and reds (right) under an external potential,
Db = Dr = 1 and Nb = Nr = 400.
Top row Point particles (ǫb = ǫr = 0), bs ∝ e−Vb and rs ∝ e−Vr .

Bottom row Finite-size particles (ǫb = ǫr = 0.02).
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Self and collective diffusion

Suppose particles are identical, but we label one red and N blue.
No applied force.

∂tb = D∇·[∇b + (N − 1)ǫ3αb∇b + ǫ3β b∇r − ǫ3γr∇b],

∂t r = D∇·[∇r + Nǫ3β r∇b − Nǫ3γb∇r ]

where α = 4π
3 , β = 5π

3 , γ = π
3 .
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No applied force.

∂tb = D∇·[∇b + (N − 1)ǫ3αb∇b + ǫ3β b∇r − ǫ3γr∇b],

∂t r = D∇·[∇r + Nǫ3β r∇b − Nǫ3γb∇r ]

where α = 4π
3 , β = 5π

3 , γ = π
3 .

• Diffusion coefficient of r in a uniform concentration of b is:

Ds = D(1 − Nǫ3γb) (self diffusion).
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Self and collective diffusion

Suppose particles are identical, but we label one red and N blue.
No applied force.

∂tb = D∇·[∇b + (N − 1)ǫ3αb∇b + ǫ3β b∇r − ǫ3γr∇b],

∂t r = D∇·[∇r + Nǫ3β r∇b − Nǫ3γb∇r ]

where α = 4π
3 , β = 5π

3 , γ = π
3 .

• Diffusion coefficient of r in a uniform concentration of b is:

Ds = D(1 − Nǫ3γb) (self diffusion).

• But if r = b (= p, say) then both equations give

∂p

∂t
= D∇·

[

∇p + Nǫ3αp∇p
]

, since β − γ = α.

Thus Dc = D(1 + Nǫ3αp) (collective diffusion).
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Diffusion through obstacles

Use two-species model with red particles as obstacles, setting the reds
diffusion Dr and external forces fr , fb to zero:

∂b

∂t
(x, t) = ∇·

[

(

1 + ǫ3bαb b − ǫ3brγbr
)

∇b + ǫ3brβb∇r b
]

,

- Competition between enhanced diffusion from self-crowding and
reduced diffusion due to obstacles.

- Drift due to gradient in obstacles density.

- Can prescribe any obstacles distribution with r (random).

How does this relate with a deterministic distribution? Alternative

approach: multiple scale method on ordered array of obstacles.
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Obstacles in ordered array (deterministic)

Multiple scale method: y = x/δ x macroscale, y microscale.

δ

1

1

ε

x ∈ Ω y ∈ ω

∼ L = 1

Take blues as points, ǫb = 0, but red obstacles as big as we want, ǫr . 1.



Comparison between two approaches

Blues diffusion coefficient as a function of red obstacles concentration:
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Obstacles uniformly distributed (black line) vs. obstacles in a periodic
(deterministic) array (dots).



Summary

Systematic method to obtain a population-level equation from a system

of interacting Brownian particles.

- One-species: overall diffusion enhanced due to crowding.

- Two-species: competition between enhanced diffusion from self-

crowding and reduced diffusion due to crowding of the other species.

Outlook

- Combination of short- and long-range interactions.

- Anisotropic interactions.

- Away from Brownian motion.
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