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Introduction

Swarming in nature
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Introduction

What is the swarming?

“Swarming” is a collective behavior exhibits by agents of similar size and body

type moving in a coordinated way.

• Describing collective behaviours in nature; insects(ants, bees, ...), fishes,

birds, micro-organisms(myxo-bacteria).

• Industry; formation controls of robots, unmanned aerial vehicles, etc.

• 3 interaction regions:
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Introduction

1st order aggregation equations: motivation

Consider the Newton’s equations with very small variations of the velocity and

speed1:

m
d2xi
dt2

+ α
dxi
dt

+
∑
j 6=i

∇W (|xi − xj |) = 0.

Then we can formally derive 1st order particle and its continuum equations:

dxi
dt

=
∑
j 6=i

∇W (|xi−xj |) mean field limit(N →∞) ⇒


∂ρ

∂t
+ div(ρu) = 0

u = −∇W ∗ ρ.

1Edelshtein-Keshet and Mogilner(1999)
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Mathematical tools: Wasserstein distance

Mathematical tools: Wasserstein distance

Definition 1. (Wasserstein p-distance)

Let ρ1, ρ2 be two Borel probability measures on Rd. Then the Euclidean Wasser-

stein distance of order 1 ≤ p <∞ between ρ1 and ρ2 is defined as

dp(ρ1, ρ2) := inf
γ

(∫
Rd×Rd

|x− y|p dγ(x, y)

)1/p

,

where the transference plan γ runs over the set of joint probability measures on

Rd × Rd with marginals ρ1 and ρ2 ∈ Pp(Rd). For p = ∞ (this is the limiting

case, as p→∞),

d∞(ρ1, ρ2) := inf
γ

(
sup

(x,y)∈supp(γ)

|x− y|

)
,
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Mathematical tools: Wasserstein distance

Definition 2.

Let ρ1 be a Borel measure on Rd and T : Rd → Rd be a measurable mapping.

Then the push-forward of ρ1 by T is the measure ρ2 defined by

ρ2(B) = ρ1(T −1(B)) for B ⊂ Rd,

and denoted as ρ2 = T#ρ1.

Remark 1.

The definition of ρ2 = T#ρ1 is equivalent to∫
Rd
φ(x) dρ2(x) =

∫
Rd
φ(T (x)) dρ1(x) ,

for all φ ∈ Cb(Rd). Given a probability measure with bounded p-th moment

ρ0, consider two measurable mappings X1, X2 : Rd → Rd, then the following

inequality holds.

dpp(X1#ρ0, X2#ρ0) ≤
∫
Rd×Rd

|x− y|pdγ(x, y) =

∫
Rd
|X1(x)−X2(x)|pdρ0(x).

Here, we used as transference plan γ = (X1 ×X2)#ρ0.
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Mean-field limit for the aggregation equation

Aggregation equation

This model consists of the continuity equation for the probability density of

individuals ρ(t, x) at position x ∈ Rd and time t > 0 given by:
∂tρ+∇ · (ρu) = 0, t > 0, x ∈ Rd,

u(t, x) := −∇W ∗ ρ, t > 0, x ∈ Rd,

ρ(0, x) := ρ0(x), x ∈ Rd,

(1)

where u(t, x) is velocity field non-locally computed in terms of the density of

individuals.
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Mean-field limit for the aggregation equation

Approximation by particles

As an approximation by particles of the aggregation equations (1), we consider

the following ODE system: Ẋi(t) = −
∑
j 6=i

mj∇W (Xi(t)−Xj(t)),

Xi(0) = X0
i , i = 1, . . . , N.

(2)

Here, {Xi}Ni=1 and {mi}Ni=1 are the positions and weights of i-th particles,

respectively. We define the associated empirical distribution µN (t) as

µN (t) =
N∑
i=1

miδXi(t),
N∑
i=1

mi =

∫
Rd
ρ0(x)dx = 1, (3)

with mi > 0, i = 1, . . . , N . We set ∇W (0) = 0 even if there is a singular at

the origin.
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Mean-field limit for the aggregation equation

A question on the mean-field limit

As long as two particles (or more) do not collide, µN satisfies (1) in the sense

of distributions, i.e., µN (t) and ρ(t) satisfy the same equation. In this

framework, the convergence:

“µ0
N ⇀ ρ0 weakly-∗ as measures =⇒ µN (t) ⇀ ρ(t) weakly-∗ as measures

for small time or for every time?”

is a natural question.
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Mean-field limit for the aggregation equation

Notations

• Quantities to estimate: d∞-distance between ρ(t) and µN (t) and minimum

inter-particle distance:

η(t) := d∞(µN (t), ρ(t)), ηm(t) := min
1≤i 6=j≤N

(|Xi(t)−Xj(t)|) , (4)

with η0 := η(0) and η0m := ηm(0).

• Functional space: Solutions of the aggregation equations (1) in

L∞(0, T ; (L1 ∩ Lp)(Rd)) with 1 ≤ p ≤ ∞ to be determined depending not he

singularity of the potential. We set

‖ρ‖(L1∩Lp)(Rd) := ‖ρ‖1 + ‖ρ‖p, ‖ρ‖ := ‖ρ‖L∞(0,T ;(L1∩Lp)(Rd)) ,

where ‖ρ‖p denotes the Lp(Rd)-norm of ρ, 1 ≤ p ≤ ∞.
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Mean-field limit for the aggregation equation

Assumption on the potential function W (x)

In order to make sense of solutions to (1), we need the following assumptions

on the interaction potential: we first fix ∇W (0) = 0 by definition, and

|∇W (x)| ≤ C

|x|α , and |D2W (x)| ≤ C

|x|1+α , ∀ x ∈ Rd\{0} , (5)

for 0 ≤ α < d− 1. Note that due to the assumptions on W , we can always find

1 < p <∞ such that (α+ 1)p′ < d, and thus ∇W belongs to W1,p′

loc (Rd).

We remark that our strategy does not take advantage of the repulsive or

attractive character of the potentials.
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Mean-field limit for the aggregation equation

Statement of the mean field limit

Theorem 1. (Mean field limit)

Suppose the kernel W satisfies (5), and let ρ be a solution to the system (1)

up to time T > 0, such that ρ ∈ L∞(0, T ; (L1 ∩ Lp)(Rd)) ∩ C([0, T ],P1(Rd)),

with initial data ρ0 ∈ (P1 ∩ Lp)(Rd), 0 ≤ α < −1 + d/p′, and 1 < p ≤ ∞.

Furthermore, we assume µ0
N converges to ρ0 for the distance d∞ as the number

of particles N goes to infinity, i.e.,

d∞(µ0
N , ρ

0)→ 0 as N →∞,

and that the initial quantities η0, η0m satisfy

lim
N→∞

(η0)d/p
′

(η0m)1+α
= 0. (6)
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Mean-field limit for the aggregation equation

Theorem 1. (Continued)

Then, for N large enough the particle system (2) is well-defined up to time T ,

in the sense that there is no collision between particles before that time, and

moreover

µN (t) ⇀ ρ(t) weakly-∗ as measures as N →∞, for all t ∈ [0, T ].
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Mean-field limit for the aggregation equation

Strategy of the proof

In Step A, we estimate the growth of the d∞ Wasserstein distance

between the continuum and the discrete solutions η that involves η itself

and ηm in the form:

dη

dt
≤ Cη‖ρ‖

(
1 + ηd/p

′
η−(1+α)
m

)
. (7)

In Step B, we estimate the decay of the minimum inter-particle distance

ηm, which also involves the terms η and ηm in the form:

dηm
dt
≥ −Cηm‖ρ‖

(
1 + ηd/p

′
η−(1+α)
m

)
. (8)

In Step C, under the assumption of the initial approximation (6), we

combine (7) and (8) to conclude the desired result.
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Mean-field limit for the aggregation equation

Step A: Estimate for growth of the d∞(t)

We first define the flows ΨN ,Ψ : R+ × R+ × Rd → Rd as solutions of
d

dt
(Ψ(t; s, x)) = u(t; s,Ψ(t; s, x)),

Ψ(s; s, x) = x,

(9)

for all s, t ∈ [0, T ], and
d

dt
(ΨN (t; s, x)) = uN (t; s,ΨN (t; s, x)),

ΨN (s; s, x) = x,

(10)

for all s, t ∈ [0, TN0 ]. Here u(x, t) = −∇W ∗ ρ and uN := −∇W ∗ µN . We can

easily check that the flow map ΨN (t; s, x) solution to (10) is well-defined for

t, s ∈ [0, TN0 ].
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Mean-field limit for the aggregation equation

Assumptions (5) imply that

|∇W (x)−∇W (y)| ≤ 2|x− y|
min(|x|, |y|)α+1

. (11)

The estimate (11) implies that the velocity field is Lipschitz continuous with

respect to the spatial variable. Actually, one can estimate it as

|u(t, x)− u(t, y)| ≤
∫
Rd
|∇W (x− z)−∇W (y − z)|ρ(t, z) dz

≤ 2|x− y|
∫
Rd

1

min(|x− z|, |y − z|)α+1
ρ(t, z) dz

≤ 4|x− y| sup
x∈Rd

∫
Rd

1

|x− z|α+1
ρ(t, z) dz .

Now, splitting the last integral into the near- and far-field sets

A := {z : |x− z| ≥ 1} and B := Rd −A and estimating the two terms, we

deduce∫
Rd

1

|x− z|α+1
ρ(t, z) dz ≤ ‖ρ(t)‖1 +

(∫
B

1

|x− y|(1+α)p′
dy

)1/p′

‖ρ(t)‖p

≤ C‖ρ‖ , (12)

for all x ∈ Rd due to the assumption (1 + α)p′ < d.
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Mean-field limit for the aggregation equation

Fixed 0 ≤ t0 < min(T, TN0 ) and choose an optimal transport map for d∞

denoted by T 0 between ρ(t0) and µN (t0); µN (t0) = T 0#ρ(t0). Then

ρ(t) = Ψ(t; t0, · )#ρ(t0) and obviously µN (t) = ΨN (t; t0, · )#µN (t0) for

t ≥ t0. We also notice that for t ≥ t0

T t#ρ(t) = µN (t), where T t = ΨN (t; t0, ·) ◦ T 0 ◦Ψ(t0; t, ·).

It follows from the property of Wasserstein distance that

η(t) = d∞(µN (t), ρ(t)) ≤ ‖Ψ(t; t0, ·)−ΨN (t; t0, ·) ◦ T 0‖∞.

We notice that

d

dt

(
ΨN (t; t0, T 0(x))−Ψ(t; t0, x)

) ∣∣∣
t=t0

= uN (t0, T 0(x))− u(t0, x).

We also find

d

dt
‖ΨN (t; t0, ·) ◦ T 0 −Ψ(t; t0, ·)‖∞

∣∣∣
t=t+0

≤ ‖uN (t0, ·) ◦ T 0 − u(t0, ·)‖∞.
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Mean-field limit for the aggregation equation

We notice that

uN (t0, T 0(x))− u(t0, x)

= −
∫
Rd
∇W (T 0(x)− y)dµN (t0, y) +

∫
Rd
∇W (x− y)ρ(t0, y)dy

= −
∫
Rd

(
∇W (T 0(x)− T 0(y))−∇W (x− y)

)
ρ(t0, y)dy.

For notational simplicity, we omit the time dependency on t0 in the next few

computations. This yields

d+η

dt
≤ C sup

x∈Rd

∫
Rd
|∇W (T (x)− T (y))−∇W (x− y)|ρ(y)dy. (13)
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Mean-field limit for the aggregation equation

We decompose the integral on Rd into the near- and the far-field parts as

A := {z : |x− z| ≥ 4η} and B := Rd −A as∫
Rd
|∇W (T (x)− T (y))−∇W (x− y)|ρ(y)dy =

∫
A
· · ·+

∫
B
· · ·

:= I1 + I2.
(14)

For the estimate in the set A, we use (11) and (12) to obtain

I1 ≤
∫
A

2 (|x− T (x)|+ |y − T (y)|)
min(|x− y|, |T (x)− T (y)|)α+1

ρ(y)dy ≤ Cη‖ρ‖.

For the second part I2, we estimate separately each term using (5) to deduce

I2 ≤
∫
B

ρ(y)

|x− y|α dy +

∫
B

ρ(y)

ηαm
dy

≤ C(ηd/p
′−α + ηd/p

′
η−αm )‖ρ‖p ≤ C(ηd/p

′−α + ηd/p
′
η−αm )‖ρ‖ .

(15)

Hence we have

d+η

dt
≤ Cη‖ρ‖

(
1 + ηd/p

′−1η−αm

)
≤ Cη‖ρ‖

(
1 + ηd/p

′
η−(1+α)
m

)
, ∀t ∈ [0,min(T, TN0 )),

where we used ηm ≤ 2η.
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Mean-field limit for the aggregation equation

Step B: Estimate for decay of the ηm(t)

We choose two indices i, j so that |Xi −Xj | = ηm. Then we get

d

dt
|Xi −Xj | ≥ −|uN (Xi)− uN (Xj)|

≥ −
∫
Rd
|∇W (Xi − y)−∇W (Xj − y)| dµN (y)

= −
∫
Rd
|∇W (Xi − T (y))−∇W (Xj − T (y))| ρ(y)dy ,

where we used µN (t) = T#ρ(t), for each t ∈ [0,min(T, TN0 )). Similar to

(14), we split in near- and far-field parts the domain Rd as

A := {y : |Xi − y| ≥ 2η and |Xj − y| ≥ 2η} and B := Rd −A.

In a similar fashion with the previous arguments, we find

dηm
dt
≥ −Cηm‖ρ‖

(
1 + ηd/p

′
η−(1+α)
m

)
, ∀t ∈ [0,min(T, TN0 )).
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Mean-field limit for the aggregation equation

Step C: Closing the argument

Until now, we have
d+η

dt
≤ Cη‖ρ‖

(
1 + ηd/p

′
η
−(1+α)
m

)
,

dηm
dt

≥ −Cηm‖ρ‖
(

1 + ηd/p
′
η
−(1+α)
m

)
,

(16)

for t ∈ [0,min(T, TN0 )). We set

f(t) :=
η(t)

η0
, g(t) :=

ηm(t)

η0m
and ξN := (η0)d/p

′
(η0m)−(1+α).

This yields

d+f

dt
≤ C‖ρ‖ f

(
1 + ξNf

d/p′g−(1+α)
)
,

dg

dt
≥ −C‖ρ‖ g

(
1 + ξNf

d/p′g−(1+α)
)
.
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Mean-field limit for the aggregation equation

Since f(0) = g(0) = 1 and ξN → 0 as N goes to infinity, we obtain that there

exists a positive constant TN∗ (≤ TN0 ) such that

ξNf
d/p′g−(1+α) ≤ 1 for t ∈ [0, TN∗ ] ,

for sufficiently large N . Then we find

f(t) ≤ e2‖ρ‖t and g(t) ≥ e−2‖ρ‖t.

This yields

ξNf
d/p′g−(1+α) ≤ 1 holds for t ≤ − ln(ξN )

2(d/p′ + (1 + α))‖ρ‖ ,

so that

− ln(ξN )

2(d/p′ + (1 + α))‖ρ‖ ≤ T
N
∗ .

On the other hand, our assumption for the initial data (6) implies

lim inf
N→∞

TN∗ ≥ lim
N→∞

− ln(ξN )

2(d/p′ + (1 + α))‖ρ‖ =∞ ,

and thus for N large enough, T < TN∗ < TN0 . This completes the proof.
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Local existence and uniqueness of Lp-solutions

Theorem 2. (Local existence and uniqueness of solutions)

Assume that W satisfies the condition (5), for some 0 ≤ α < d
p′ − 1, and that

ρ0 ∈ P1(Rd)∩Lp(Rd), 1 < p ≤ ∞. Then there exists a time T > 0, depending

only on ‖ρ0‖p and α, and a unique nonnegative solution to (1) satisfying ρ ∈
L∞(0, T ;L1 ∩ Lp(Rd)) ∩ C([0, T ],P1(Rd)). Furthermore, the solution satisfies

that there exists C > 0 depending only on ‖ρ0‖p and α such that

‖ρ(t)‖p ≤ C for all t ∈ [0, T ]. (17)

The velocity field generated by ρ, given by u = −∇W ∗ ρ, is bounded and

Lipschitz continuous in space uniformly on [0, T ], and ρ is determined as the

push-forward of the initial density through the flow map generated by u.
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Local existence and uniqueness of Lp-solutions

Theorem 2. (Continued)

Moreover, if ρi, i = 1, 2, are two such solutions to (1) with initial conditions

ρ0i ∈ P1(Rd) ∩ Lp(Rd), 1 < p ≤ ∞, we have the following stability estimate:

d

dt
d1(t) ≤ C max(‖ρ1‖, ‖ρ2‖)d1(t),

where d1(t) := d1(ρ1(t), ρ2(t)).
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Local existence and uniqueness of Lp-solutions

Sketch of the proof; Step A.- Uniquness

Given two weak solutions ρi ∈ L∞(0, T ;L1 ∩ Lp(Rd)) ∩ C([0, T ],P1(Rd)),

i = 1, 2, to the continuous aggregation equations (1), consider the two flow

maps Ψi : R+ × R+ × Rd → Rd, i = 1, 2, generated by the two velocity fields,

i.e., 
d

dt
(Ψi(t; s, x)) = ui(t; s,Ψi(t; s, x)) ,

Ψi(s; s, x) = x,

where ui := −∇W ∗ ρi, t, s ∈ [0, T ] and x ∈ Rd. We know that the solutions

are constructed by transporting the initial measures through the velocity fields

ρi = Ψi#ρ
0
i , i = 1, 2.
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Local existence and uniqueness of Lp-solutions

Let T 0 be the optimal transportation between ρ1(0) and ρ2(0) for the

d1-distance. Then we define a transport (not necessarly optimal) between ρ1(t)

and ρ2(t) by

T t(x) = Ψ2(t; 0, x) ◦ T 0(x) ◦Ψ1(0; t, x), T t#ρ1(t) = ρ2(t),

and d
dt
d1(t) ≤ Q(t), where d1(t) := d1(ρ1(t), ρ2(t)) and

Q(t) :=

∫
Rd×Rd

|∇W (T t(x)− T t(y))−∇W (x− y)|ρ1(t, x)ρ1(t, y)dxdy ,

where we have used a similar argument as in Step A of the proof of Theorem

1. Note by symmetry and the near- and far-field decomposition as in (12) that

Q(t) ≤ 4

∫
Rd×Rd

(
|T (x)− x|

|T (x)− T (y)|1+α +
|T (x)− x|
|x− y|1+α

)
ρ1(x)ρ1(y)dxdy

≤ C max(‖ρ1‖, ‖ρ2‖) d1(t).
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Local existence and uniqueness of Lp-solutions

Step B.- Existence

We first regularize ∇W such as ∇Wε := (∇W ) ∗ θε. Then since ∇Wε is a

globally Lipschitz, there exists a unique global solution ρε to the following

system 
∂tρε +∇ · (ρεuε) = 0, t > 0, x ∈ Rd,

uε(t, x) := −∇Wε ∗ ρε, t > 0, x ∈ Rd,

ρε(0, x) := ρ0(x), x ∈ Rd,

(18)

A standard calculation implies that

d

dt
‖ρε‖L1∩Lp ≤ C‖ρε‖

2
L1∩Lp , (19)

where C is an uniform constant in ε.
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Local existence and uniqueness of Lp-solutions

Thus we deduce that there exists a T > 0 such that

sup
ε>0
‖ρε‖ <∞. (20)

It follows from (20) and the evolution in time of the first momentum of ρ, that

this first moment is also uniformly bounded:

sup
ε>0
‖xρε‖L∞(0,T ;L1(Rd)) ≤ C,

where C depends only on T, ‖xρ0‖1, and ‖ρ0‖.

One can use the similar arguments to the previous part to find that

d

dt
ηε,ε′(t) ≤ C max(‖ρε‖, ‖ρε′‖)

(
ηε,ε′(t) + ε+ ε′

)
, (21)

where C is an uniform constant in ε and ε′. We remark that the above

estimate (21) implies that {ρε}ε>0 is a Cauchy sequence in C([0, T ],P1(Rd)).



Mean-field limit and propagation of chaos for aggregation equations

Local existence and uniqueness of Lp-solutions

∃ limit curve of measures ρ ∈ C([0, T ],P1(Rd)) ∩ L∞(0, T ; (L1 ∩ Lp)(Rd))

Show that ρ satisfies the weak formulation

⇒ ρ is a solution of the aggregation equations (1)

Note that the velocity field is bounded and Lipschitz continuous in space with

|u(t, x)− u(t, y)| ≤ C‖ρ‖|x− y|,

for all x, y ∈ Rd and t ∈ [0, T ]. Thus, the flow map
d

dt
(Ψ(t; s, x)) = u(t; s,Ψ(t; s, x)),

Ψ(s; s, x) = x,

for all s, t ∈ [0, T ] is well-defined.

Choosing as test function in weak formulation φ(t, x) = ϕ(Ψ(t; T̄ , x)) for any

T̄ ∈ (0, T ] with ϕ ∈ C∞c (Rd),∫
Rd
ρ0(x)ϕ(Ψ(0; T̄ , x))dx =

∫
Rd
ρ(T̄ , x)ϕ(x)dx,

for all ϕ ∈ C∞c (Rd) ⇒ ρ(T̄ ) = Ψ(T̄ ; 0, · )#ρ0 for any T̄ ∈ (0, T ].
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Propagation of chaos

Propagation of chaos

Let us consider ρN (t, x1, · · · , xN ) being the image by the dynamics to the

coupled system (2) with N -equal masses particles of the initial law (ρ0)⊗N .

We define the k-marginals as follows.

ρNk (t, x1, · · · , xk) :=

∫
Rd(N−k)

ρN (t, x)dxk+1 · · · dxN .

The propagation of chaos property is defined as follows: for any fixed k ∈ N,

ρNk ⇀ (ρ)⊗k weakly-∗ as measures as N →∞.
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Propagation of chaos

Theorem 3. (Propagation of chaos)

Given ρ(t) ∈ L∞(0, T ; (L1 ∩ Lp)(Rd)) ∩ C([0, T ];P1(Rd)) the unique solution

to (1) with initial data ρ0 ∈ P1(Rd)∩Lp(Rd), 1 < p ≤ ∞, d ≥ 3. Assume that

ρ0 has compact support, the initial positions XN,0 := {X0
i }Ni=1 are iid with law

ρ0, and

(1 + α)p′ <
p− 1

2p− 1
d, with α ≥ 0.

Then the propagation of chaos holds in the sense that

P

(
sup
t∈[0,T ]

d1(µN (t), ρ(t)) ≥ C

Nγ/d

)
→ 0, as N → +∞,

where γ is a positive constant satisfying

p′(2p− 1)(1 + α)

d(p− 1)
< γ < 1.
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Propagation of chaos

We define the “blob” initial data ρ0N as

ρ0N := µ0
N ∗

1Bε(0)
|Bε(0)| =

1

cdεd
(µ0
N ∗ 1Bε(0)), (22)

where ε = ε(N) = N−γ/d, 0 < γ < 1 and cd is the volume of the unit ball in

dimension d. We also define the “blob” approximation ρN (t) to be the solution

of the system (1) with the initial data ρ0N .

Proposition 1.

Under the assumptions of Theorem 3, and assuming that there exists C1 > 0

independent of the number of particles N such that

‖ρ0N‖p ≤ C1, and η0m ≥
1

C1
εr,

with 1 ≤ r < d
p′(1+α) . Then there exists T > 0 such that the solutions ρN (t)

and the empirical measure µN (t) are well-defined for all t ∈ [0, T ], and

d∞(ρN (t), µN (t)) ≤ d∞(ρ0N , µ
0
N )eC2T ≤ ε(N)eC2T ,

where C2 > 0 is independent of N .
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Sketch of proof for Theorem 1

We first remark that ‖ρN (t)‖p ≤ C for all t ∈ [0, T ] where C is independent of

N . Then we now use the similar argument as in the proof of Theorem 1 to find

dηN
dt
≤ CηN

(
1 + η

d/p′

N η−(1+α)
m

)
,

and
dηm
dt
≥ −Cηm

(
1 + η

d/p′

N η−(1+α)
m

)
,

where ηN (t) := d∞(ρN (t), µN (t)). Note that the condition r ≥ 1 makes sense

since ε ≈ η0N ≥ η0m ≥ Cεr for ε small enough. We finally conclude the desired

result using the fact that

(η0N )d/p
′

(η0m)1+α
≤ Cεd/p

′−r(1+α) → 0 as N →∞.
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Lemma 1.

Let ρ0 ∈ P1(Rd) ∩ Lp(Rd), 1 < p ≤ ∞, and the initial positions XN,0 be iid

with law ρ0. Suppose that there exists L > 0 such that

2c
1
p′
d ‖ρ

0‖pLdp′ ≤ N,

then η0m satisfies

P
(
η0m ≥ LN

− 2p−1
d(p−1)

)
≥ e−2c

1
p′
d
‖ρ0‖pL

d
p′
.
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Lemma 2.

Let ρ0 ∈ P1(Rd) ∩ Lp(Rd), 1 < p ≤ ∞ with compactly support included in

[−R,R]d. For any iid XN,0 with law ρ0, the smoothed empirical measures ρ0N

defined in (22) satisfy the explicit large deviations bound

P(Ld‖ρ0‖p ≤ ‖ρ0N‖p) ≤ [2(R+ 1)]dNγe−cR‖ρ‖pN
1−γ

,

where Ld and cR are explicitly given by

cR :=
2 ln 2

[2(R+ 1)]
d
p

and Ld :=
4(4[[
√
d]] + 1)d/p

cd
,

where [[·]] denoting the integer part.
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Sketch of proof for Theorem 3

We introduce several sets for the random initial data:

w1 := {XN,0 : η0m ≥ εr}, w2 := {XN,0 : Ld‖ρ0‖p ≥ ‖ρ0N‖p},

and

w3 := {XN,0 : d1(µ0
N , ρ

0) ≤ ε},

where r, ε, and Ld are given in the previous estimates. We can find that2

P(wc1) ≤ CN−
dβ
p′ , P(wc2) ≤ CNγe−CN

1−γ
, and P(wc3) ≤ CN−s

′
,

where C, β, and s′ are positive constants. We now denote w := w1 ∩w2 ∩w3.

Then we have

P(wc) ≤ CN−l, for some C, l > 0.

2Boissard(2011)
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If the initial data belongs to w, then we obtain from Proposition 1 that

d1(ρN (t), µN (t)) ≤ d∞(ρN (t), µN (t)) ≤ CeCT

Nγ/d
, for t ∈ [0, T ].

We can also notice from Theorem 1 that

d1(ρ(t), ρN (t)) ≤ CeCT

Nγ/d
for all t ∈ [0, T ].

Hence we have

P(w) ≤ P

(
sup
t∈[0,T ]

d1(ρ(t), µN (t)) ≤ CeCT

Nγ/d

)
,

and it implies that

P

(
sup
t∈[0,T ]

d1(ρ(t), µN (t)) ≥ CeCT

Nγ/d

)
≤ P(wc) ≤ C

N l
.

This completes the proof.
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Thank you for your attention
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