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Kac’s Model

In 1956 Marc Kac introduced an N−particle linear model from which a
caricature of the Boltzmann equation arose as a mean field limit.

Kac’s model consisted of N indistinguishable particles with one
dimensional velocity that undergo random collision in the following
manner: Suppose that a moment before the collision the velocity vector
of the ensemble was (v1, . . . , vN). When the collision occurs, we pick a
pair of particles at random, say (vi , vj), with equal probability for any i , j ,
and collide them. After their collision the new velocity vector is given by
(v1, . . . , vi (ϑ), . . . , vj(ϑ), . . . , vN) where(

vi (ϑ)
vj(ϑ)

)
=

(
vi cosϑ+ vj sinϑ
−vi sinϑ+ vj cosϑ

)
= Rϑ

(
vi (ϑ)
vj(ϑ)

)
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Kac’s Master Equation.

Denoting by

Q(ψ)(v) =
1(
N
2

)∑
i<j

1

2π

∫ 2π

0

ψ (Ri,j,ϑv) dϑ,

one finds that the evolution equation for the N−particles distribution
function, FN , is given by

∂FN

∂t
(v1, . . . , vN , t) = N(Q − I )FN (v1, . . . , vN , t) , (1)

This equation is usually called Kac’s Master equation.

Kac’s Master equation can be considered on RN , but a more realistic
approach would be to restrict it to the manifold SN−1(

√
N) (which we

will call ’Kac’s sphere’) where Q is a bounded, self adjoint operator
satisfying Q ≤ I and

Ker (I − Q) = span {1} .
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Connection to Boltzmann’s Equation and Chaoticity.

Integrating over all the velocities but v1 in Kac’s Master equation, and
using symmetry one can see that

∂tΠ1(FN)(v1) =
1

π

∫ 2π

0

∫
R

(Π2(FN)(v1(ϑ), v2(ϑ))− Π2(FN)(v1, v2)) dϑdv2

where Πk(FN) is the k−th marginal.

The above equation looks very similar to a Boltzmann type equation if
Π2(FN) ≈ Π1(FN)⊗ Π1(FN).

Definition

Let X be a Polish space. A family of symmetric probability measures on XN ,
{µN}N∈N, is called µ−chaotic, where µ is a probability measure on X , if for
any k ∈ N

lim
N→∞

Πk (µN) = µ⊗k ,

where Πk (µN) is the k−th marginal of µN , and the limit is taken in the weak
topology.
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Connection to Boltzmann’s Equation and Chaoticity Cont.

Under the assumption of f−chaoticity on the family of density functions
{FN}N∈N (i.e. assuming that the family dµN = FNdσ

N is

dµ = f (v)dv−chaotic, where σN is the uniform probability measure on
Kac’s sphere), our marginal equation turns into the Boltzmann-Kac
equation:

∂t f (v1) =
1

π

∫ 2π

0

∫
R

(f (v1(ϑ))f (v2(ϑ))− f (v1)f (v2)) dϑdv2.

Kac showed that if the initial data is chaotic, then the solution to his
Master equation is also chaotic for all t > 0. Moreover, the limit function
f (t, v) satisfies the above caricature of the Boltzmann equation.
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The Existence of Chaotic States.

There is a simple formula to create chaotic states on Kac’s sphere. Given
a ’nice’ enough distribution function, f (v), on R, one defines the
following distribution function on Kac’s sphere:

FN (v1, . . . , vN) =
ΠN

i=1f (vi )

ZN

(
f ,
√
N
) , (2)

where ZN

(
f ,
√
N
)

=
∫
SN−1(

√
N) ΠN

i=1f (vi )dσ
N . We call distributions of

the form (2) conditioned tensorisation of f .

Kac showed that under very restrictive integrability conditions on f , the
above family is indeed f−chaotic. This was extended in 2010 by Carlen,
Carvalho, Le Roux, Loss and Villani who managed to show the following:

Theorem

Let f be a distribution function on R such that f ∈ Lp (R) for some p > 1,∫
R v

2f (v)dv = 1 and
∫
R v

4f (v)dv <∞. Then the family of conditioned
tensorisation of f is f−chaotic.
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The Normalisation Function.

The proof of Carlen et al’s theorem relies heavily on an asymptotic
approximation of the normalisation function

ZN

(
f ,
√
r
)

=

∫
SN−1(r)

ΠN
i=1f (vi )dσ

N
r ,

where dσN
r is the uniform probability measure on the sphere SN−1(r), as

it measures how well the tensoriastion of f is concentrated on the sphere
of radius r .

Theorem (Carlen et. al. 2010)

Let f be a distribution function on R such that f ∈ Lp(R) for some p > 1,∫
R v

2f (v)dv = 1 and
∫
R v

4f (v)dv <∞. Then

ZN(f ,
√
r) =

2
√
NΣ |SN−1| r

N−2
2

e
− (r−N)2

2NΣ2

√
2π

+ λN(r)

 ,

where Σ2 =
∫
R v

4f (v)dv − 1 and supr |λN(r)| −→
N→∞

0.
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Normalisation Function Cont.

This shows, as one can expect from the Law of Large Numbers, a
concentration of f ⊗N on Kac’s sphere when the second moment of f is 1.
However, Carlen et. al. managed to give a quantitative concentration
result which corresponds to a local central limit theorem. Indeed, the
normalisation function can be written as

ZN(f ,
√
r) =

2h∗N(r)

|SN−1|r
N−2

2

,

where h is the distribution function of the random variable V 2, obtained
from f via a simple transformation.

As the fourth moment of f equals the second moment of h, it is no
surprise that it is a part of the requirement for a Gaussian local central
limit theorem. However, in showing chaoticity, and a stronger sense of
chaoticity we’ll discuss later, what matters is not the exponential
concentration about Kac’s sphere - but the fact that there is
concentration about Kac’s sphere. This leads to the current investigation
of conditioned tensorisation of f , where f has moments of order 2α with
1 < α < 2.
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Lévy Type Local Central Limit Theorem.

The Gaussian is not the only ’attractor’ in the sense of central central
limit theorems. A different type of attractor, called α−stable distribution,
is a random variable X whose characteristic functions behaves like

ϕX (ξ) = e−|ξ|
α

,

for 0 < α < 2. This ensures the self similarity condition

ϕ(ξ) =

(
ϕ

(
ξ

N
1
α

))N

,

corresponding the an appropriate rescaling on the N−times convolution
of X .

In general, we say that a random variable X is an α−stable distribution
for 0 < α < 2, α 6= 1, if there exists σ > 0 and β ∈ [−1, 1] such that the
characteristic function of X satisfies

γ̂σ,α,β(ξ) = e−σ|ξ|
α(1+iβsgn(ξ) tan απ

2 ).
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Lévy Local Central Limit Theorem Cont.

Theorem (Carrapatoso and E. 2013)

Let g be the probability density function of a random real variable X with zero
mean. Assume that g ∈ Lp(R) for some p > 1, and that there exists C > 0
such that

µg (x) =

∫ x

−x

y 2g(y)dy ≈
x→∞

Cx2−α

for some 1 < α < 2. Assume in addition that

1− G(x)

1− G(x) + G(−x)
−→
x→∞

p,
G(−x)

1− G(x) + G(−x)
−→
x→∞

q

where G(x) =
∫ x

−∞ g(y)dy, and that g has finite moment of some order.
Define

gN(x) = N
1
α g∗N

(
N

1
α x
)
,

and

γσ,α,β(x) =
1

2π

∫
R
γ̂σ,α,β(ξ)e iξxdξ,

with σ = C Γ(3−α)
α(α−1)

cos
(

(α)
2

)
and β = p − q.
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Lévy Local Central Limit Theorem Cont.

Then, for any positive sequence {βN}N→∞ that converges to zero as N goes
to infinity, any τ > 0 and N large enough we have that

‖gN − γσ,α,β‖∞ ≤ Cg,α

(
N

1
α (1− β2+τ

N + φτ (βN))N−q + e−
σNβαN

2

+ωg (βN) + 2σβαN

(
1 + β2 tan2

(πα
2

)))
= ετ (N),

where

(i) Cg,α > 0 is a constant depending only on g , its moments and α.

(ii) q can be chosen to be the Hölder conjugate of min(2, p).

(iii) φτ satisfies

lim
x→0

φτ (x)

|x |2+τ
= 0,

(iv) ωg (β) = sup|ξ|<β
|ĝ(ξ)−1−σ|ξ|α(1+iβsgn(ξ) tan απ

2 )|
|ξ|α satisfies

lim
β→0

ωg (β) = 0.
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Normalisation Function Estimation

Theorem (Carrapatoso and E. 2013.)

Let f be the probability density function of a random real variable V such that
f ∈ Lp(R) for some p > 1 and let

νf (x) =

∫ √x

−
√

x

y 4f (y)dy .

Assume that ∫
R
x2f (x)dx = E <∞.

and νf (x) ∼
x→∞

Cx2−α for some C > 0 and 1 < α < 2. Then

ZN

(
f ,
√
r
)

=
2

|SN−1| r
N−2

2

1

N
1
α

(
γσ,α,1

(
r − NE

N
1
α

)
+ λN(r)

)
,

where supu |λN(u)| −→
N→∞

0.
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Entropic Chaos.

In their work, Carlen et al have defined a new, more robust, concept of
chaoticty - entropic chaoticity. Motivated by the attempt to investigate
the rate of convergence to equilibrium in the Boltzmann-Kac equation via
Kac’s many particle model, it was noticed that the inherent L2 norm and
associated spectral gap problem is not adequate to deal with chaotic
states. A different type of ’distance’ was needed to investigate the trend
to equilibrium. Taking a leaf form Boltzmann’s research one can define
the entropy on Kac’s sphere as

HN(FN) =

∫
SN−1(

√
N)

FN log FNdσ
N .

For ’natural’ f−chaotic states, one can imagine that FN ≈ f ⊗N in some
sense. Plugging this into the entropy yields

HN(FN) ≈ N

∫
R
f (v) log

(
f (v)

γ(v)

)
dv = NH (f |γ) ,

where γ is the normal Gaussian. We see that in the above expression all
the particles (and correlations) come into play, which is much stronger
than the normal chaoticity definition.
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Entropic Chaos Cont.

This leads us to define the following

Definition

A family of densities {FN}N∈N on Kac’s sphere is called f−entropically chaotic
if it is f−chaotic and

lim
N→∞

HN(FN)

N
= H(f |γ).

The concept of entropic chaoticity plays an important role in recent
studies of trend to equilibrium. Moreover, conditioned tensorisation of a
function f , for f that satisfies our theorem’s condition, are f−entropically
chaotic and play a sort of ’attractors’ in the setting of entropically
chaotic families in the following sense: If µN is a family of symmetric
measures on Kac’s sphere such that

lim
N→∞

HN (µN |FN)

N
= 0,

where FN is the conditioned tensorisation of f , then µN is f−entropically
chaotic.
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Idea of the Proof.

One can show that the k−th marginal of FN is given by the density

Πk (FN) (v1, . . . , vk) =

∣∣SN−k−1
∣∣

|SN−1|

(
N −

∑k
i=1 v

2
i

) N−k−2
2

N
N−2

2

ZN−k

(
f ,
√

N −
∑k

i=1 v
2
i

)
ZN

(
f ,
√
N
) f ⊗k (v1, . . . , vk)

Using our approximation theory one gets

Πk (FN) (v1, . . . , vk) =

(
N

N − k

) 1
α

γσ,α,1

(
k−

∑k
i=1 v2

i

(N−k)
1
α

)
+ λN−k

(
N −

∑k
i=1 v

2
i

)
γσ,α,1(0) + λN(N)

f ⊗k (v1, . . . , vk)
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Idea of the Proof Cont.

As γσ,α,1 is bounded, we can use the dominated convergence theorem to
show that

Πk (FN) −→
N→∞

f ⊗k

in L1
(
Rk
)
, which is stronger than in the weak topology. This shows

chaoticity.

For entropic chaoticity one can show that

HN(FN)

N
=

(
N

N − 1

) 1
α
∫ √N

−
√

N

γσ,α,1

(
1−v2

(N−1)
1
α

)
+ λN−1

(
N − v 2

)
γσ,α,1(0) + λN(N)

f (v) log f (v)dv −
log

(
2(γσ,α,1(0)+λN (N))

|SN−1|N
N−2

2

N
1
α

)
N

and taking N to infinity, one gets H(f |γ), as desired.
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Final Remarks.

Much of the current research around Kac’s model surrounds the attempt
to show an exponential rate of decay to equilibrium that is uniform in N
(the so called Cercignani many body conjecture). That way, one can hope
to pass to the limit and get the same decay rate for the Boltzmann-Kac
equation. Conditioned tensorition played a role in showing that in general
this isn’t true. However, there is a tremulous hope in the community that
some restrictions on the underlying distribution function may lead to a
positive result. This problems is of great interest to us.

While it seems that the entropy is a good functional to investigate trend
to equilibrium, there are other extensive functional on Kac’s sphere that
may prove to be better tools to measure convergence to equilibrium. One
prominent example is the Wasserstein distance, which seems to appear a
lot in Kinetic Theory and has been used extensively in a recent
remarkable work by Mouhot and Mischler to solve many unkown problems
with regards to propagation of chaos and convergence to equilibrium.
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Thank You!
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