Boundary conditions for

measure-valued evolutions

Joep Evers, Adrian Muntean & Sander Hille

We aim to derive suitable boundary conditions for the evolu-
tion of measures on bounded domains. We restrict ourselves
to a simplified scenario in which mass moves on an interval
[0, 1], stops at x = 1 and disappears from there at a certain
rate. The object of interest is the mass measure u; on [0, 1]
that evolves in time.

Flow

The velocity v : [0, 1] — R is prescribed and is only space-
dependent, as is illustrated by Figure 1, in which a point mass
(ball) starts at xo and follows a characteristic. Once it hits the
right-hand boundary x = 1 at time ¢t = 73(xp), it sticks there.
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Figure 1: ‘Individualistic flow’: a point mass moves along a characteristic.

This process is described by the semigroup ®,, such that
®,(xg) is the position at time ¢ of a point mass that started
at position xo. The semigroup P; is the lift of ®, to the space
of Borel measures by means of a push-forward:

1 = Pr o == o = puo o ;.
Here, o denotes the initial mass measure.

Absorption

At x = 1 mass accumulates and is then taken away at rate
a. We introduce a regularization: absorption of mass takes
place in a boundary layer of width 1/n around x = 1. The
corresponding solution is denoted by /Lﬁ"). The function f, in
Figure 2 is used to incorporate absorption of mass on a layer.
The total ‘sink of mass’ is given by

FOu:=—af,p.

This term can formally be interpreted as the right-hand side of

a continuity equation that describes the evolution of ut(").
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Figure 2: Function f, used for regularization.

Equations

We look for a mild solution of the evolution of M;”) under the

given flow and absorption in the boundary layer. Such solu-
tion satisfies (by definition) the variation of constants formula

t
w™ =P o+ / P F™u™ ds.
0

Formally, as n — oo we obtain

t
MKt =PtM0—a/0 us({1})) ds - 61,

or, in shorthand notation,

0 0
EM + 5(1) ) = —a pu ({1}) 61.
We made this passage to the limit rigorous.

Results
The main results of [1, 2] are:

o Existence and uniqueness for the regularized problem;

o Existence and uniqueness for the limit problem;

« Convergence rate: [|u{" — i,|| = O(})
in the dual bounded Lipschitz norm;

e Continuous dependence on initial conditions.
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