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ABSTRACT
We presents a systematic existence and uniqueness theory of weak measure solutions for

systems of nonlocal interaction PDEs with two species, which are the PDE counterpart of sy-
stems of deterministic interacting particles with two species. The main motivations behind
those models arise in cell biology, pedestrian movements and opinion formation. In case
of symmetrizable systems (i. e. with cross-interaction potentials one multiple of the other),
we provide in [3] a complete existence and uniqueness theory within (a suitable generali-
zation of) the Wasserstein gradient flow theory in [1], which allows to consider interaction
potentials with discontinuous gradient at the origin, see [2]. In the general case of non sym-
metrizable systems, we provide in [3] an existence result for measure solutions which uses
a implicit-explicit version of the JKO scheme, which holds in a reasonable non-smooth set-
ting for the interaction potentials. Uniqueness in the non symmetrizable case is proven for
smooth potentials using a variant of the method of characteristics. One-dimensional local
nonlinear stability for a nonlocal predator-prey model is discussed in [4], both at particles
and PDE levels providing some numerical results.

INTRODUCTION
Several phenomena in particle physics, cell and population biology, and social sciences, can be modelled by a discrete set of N interacting agents, or particles. We focus on models with more

than one species. Assume X1, . . . , XN are particles of the first species and Y1, . . . , YM are particles of the second species, the movement of the particles can be described through the Cauchy
problem on {

Ẋi(t) = −
∑
k 6=i nk∇H1(Xi(t)−Xk(t))−

∑
kmk∇K1(Xi(t)− Yk(t))

Ẏj(t) = −
∑
k 6=jmk∇H2(Yj(t)− Yk(t))−

∑
k nk∇K2(Yj(t)−Xk(t))

(1)

with i = 1, . . . , N and j = 1, . . . ,M . Denoting with µ1, µ2 ∈ P(Rd) the empirical measures of the sets Xj ’s and Yj ’s respectively, one easily obtain the following system as continuum PDE
counterpart of (1)

{
∂tµ1 = div (µ1∇H1 ∗ µ1 + µ1∇K1 ∗ µ2)

∂tµ2 = div (µ2∇H2 ∗ µ2 + µ2∇K2 ∗ µ1) .
(2)

In (1) and (2), H1 and H2 are called self-interaction potentials, whereas K1 and K2 are called cross-interaction potentials.
WASSERSTEIN DISTANCE:
We denote with P(Rd) the space of all the probability measures on Rd and with P2(Rd) the space of probability measures with finite second moment. We endow the space P2(Rd) with

the Wasserstein distance, cf. for instance [1]

W 2
2 (µ, ν) =

∫
R2d

|x− y|2dγ(x, y), γ ∈ Γo(µ, ν).

where Γo(µ, ν) as the class of optimal plans, between µ and ν. In order to match the ‘multi-species’ structure (2) of our modeling setting, we shall work in the product spaceP2(Rd)×P2(Rd). We
shall use bold symbols to denote elements in a product space. For instance, we use µ = (µ1, µ2) ∈ P2(Rd)×P2(Rd), x = (x1, x2) ∈ Rd×Rd. Let α > 0 be fixed. For all µ,ν ∈ P2(Rd)×P2(Rd),
we define the α-product Wasserstein distance as follows

W2
2,α(µ,ν) = W 2

2 (µ1, ν1) +
1

α
W 2

2 (µ2, ν2).
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SYMMETRIZABLE SYSTEMS AND GRADIENT FLOW STRUCTURE

Our first aim is to address the case in which there exists a constant
α > 0 such that

K2 = αK1. (3)

We shall call symmetrizable systems those which satisfy condition (3),
that can be cast in a variational Wasserstein gradient flow approach
by means of the interaction energy functional

F(µ1, µ2) =
1

2

∫
Rd

H1∗µ1dµ1+
1

2

∫
Rd

H2∗µ2dµ2+

∫
Rd

K∗µ2dµ1.

(4)

More precisely, the system (2) can be formally written as
∂tµ1 = div

(
µ1∇

δF
δµ1

)
∂tµ2 = αdiv

(
µ2∇

δF
δµ2

)
.

(5)

MAIN ASSUMPTIONS:
A function K : Rd → R is called an admissible potential if K ∈

C(Rd) and K(0) = 0 and K(−x) = K(x). An admissible poten-

tial K is said to be λ-convex for some λ ∈ R if the map Rd 3 x 7→
K(x)− λ

2 |x|
2 ∈ R is convex. K is said to be mildly singular if

(MS) K ∈ C1(Rd \ {0}).

K is said to be sub-quadratic at infinity if there exists a constant C > 0
such that

(SQ) K(x) ≤ C(1 + |x|2) for all x ∈ Rd.

K is said to be an attractive non-Osgood potential if is radial, i.e. there
exists a function k such that K(x) = k(|x|), k is increasing on r > 0,
and the function [0,+∞) 3 r 7→ k′(r)/r is non increasing and the
non-Osgood condition holds for some ε > 0:∫ ε

0

dr

k′(r)
<∞. (6)

GRADIENT FLOW THEORY AND FINITE TIME BLOW UP:

Definition 1. We say that an absolutely continuous curve µt =
(µ1,t, µ2,t) : [0, T ] → P2(Rd) × P2(Rd) is a gradient flow for F if µ1,t

and µ2,t solve the system of two continuity equations:

∂tµ1,t = div (µ1v1,t)

∂tµ2,t = div (µ2v2,t) , (7)

with vi,t in the sub-differentials of F .

We obtain the existence of solutions by means of the Jordan-
Kinderlehrer-Otto (JKO) scheme: given an initial product measure
µ0 ∈ P(Rd) × P(Rd) and a time step τ > 0, we define the recursive
sequence µkτ via µ0

τ = µ0 and

µk+1
τ ∈ argminµ∈P2(Rd)2

{
1

2τ
W2

2 (µkτ ,µ) + F [µ]

}
.

Theorem 1. Let Kij be admissible λij convex potentials satisfying (SQ)
and (MS), and let µt be a gradient flow solution to (2) according to Defini-
tion 1. Then, µt satisfies the following Evolution Variational Inequality
(E. V. I.)

1

2

d

dt
W2

2 (µt,ν) +
λ

2
W2

2 (µ,ν) ≤ F(ν)−F(µ), (8)

for all ν ∈ P2(Rd) × P2(Rd). In addition, given two gradient flow
solutions µ1, µ2 corresponding to the initial data µ1

0 and µ2
0, we have the

|λ|-contraction property inW2

W2
2 (µ1

t ,µ
2
t ) ≤ e|λ|tW2

2 (µ1
0,µ

2
0). (9)

Theorem 2. Let Kij be admissible, λij convex potentials satisfying (SQ),
(MS), and let µ(t) the unique gradient flow solution to (2) with initial
datum µ0 = (µ0,1, µ0,2).

1. Assume that all the potentials Kij are attractive non-Osgood po-
tential, and assume µ0 is supported in B̄ (XC , R0) × B̄ (YC , R0).
Then, there exists T ∗ depending only on R0 such that µ(t) =
(δCM

, δCM
) ∀t ≥ T ∗.

2. Assume that K11 and K22 are attractive non-Osgood potential and
K12 is admissible, radial and satisfies k′12 non-increasing, and

|∇K12(x)| → 0 for |x| → +∞. (10)

. Then that there exist 0 < T ∗ < T̄ and 0 < R1 < R2 such that, if:

• µ0,1, µ0,2 are supported in B̄ (xC , R1) and B̄ (yC , R1)
respectively,

• d
(
B̄ (xC , R1) , B̄ (yC , R0)

)
≥ R2;

then
µ(t) = (δxC

, δyC ) ∀t ∈ [T ∗, T̄ ],

and µ(t) = (δCM
, δCM

) ∀t ≥ T̄ .

NON-SYMMETRIZABLE SYSTEMS: WELL-POSEDNESS VIA IMPLICT-EXPLICIT EULER SCHEME

Let us consider the general system

{
∂tµ1 = div (µ1∇H1 ∗ µ1 + µ1∇K1 ∗ µ2)

∂tµ2 = div (µ2∇H2 ∗ µ2 + µ2∇K2 ∗ µ1)
(11)

with Hi and Ki admissible potentials, H1 and H2 satisfying (MS), and furthermore

(GL) Hi and Ki are globally Lipschitz on Rd, i = 1, 2,

(RK) ∇K1 and∇K2 are continuous on R2.

Definition 2. A curve µ(·) = (µ1(·), µ2(·)) : [0,+∞) → P2(Rd)2 is a weak measure solution to
(11) is, for all φ, ψ ∈ C∞c (Rd), we have

d

dt

∫
φ(x)dµ1(x, t) = −1

2

∫∫
∇H1(x− y) · (∇φ(x)−∇φ(y))dµ1(x)dµ1(y)

−
∫∫
∇K1(x− y) · ∇φ(x)dµ1(x)dµ2(y)

d

dt

∫
ψ(x)dµ2(x, t) = −1

2

∫∫
∇H2(x− y) · (∇ψ(x)−∇ψ(y))dµ2(x)dµ2(y)

−
∫∫
∇K2(x− y) · ∇ψ(x)dµ2(x)dµ1(y).

IMPLICIT-EXPLICIT EULER SCHEME:
Let ν be a reference measure, time independent and consider the relative energy

functional:

F [µ|ν] =
1

2

∫
R

(H1 ∗ µ1 +K1 ∗ ν2) dµ1 +
1

2

∫
R

(H2 ∗ µ2 +K2 ∗ ν1) dµ2

We now construct the following implicit-explicit JKO scheme recursively. Let τ > 0 be a fi-
xed time step, and letµ0 = (µ0,1, µ0,2) ∈ P(Rd)2 be a fixed initial pair of probability measures.
For a given µnτ ∈ P2(Rd)2, we define the sequence µn+1

τ as

µn+1
τ ∈ argminµ∈P2(Rd)2

{
1

2τ
W2

2 (µnτ ,µ) + F [µ|µnτ ]

}
.

For a given choice of the sequence µnτ = (µn1,τ , µ
n
2,τ ), we introduce the piecewise con-

stant interpolation µ̄i,τ (t) = µni,τ , t ∈ ((n− 1)τ, nτ ] for i = 1, 2 and we define µ̄τ (t) =

(µ̄1,τ (t), µ̄2,τ (t)).

Theorem 3. Let T > 0. There exists an absolutely continuous curve µ̄ : [0, T ]→ P2(Rd)2 such that
the family µ̄τ (t) (up to a converging subsequence) satisfies µ̄τ → µ̄ as τ ↘ 0 uniformly on [0, T ].

Theorem 4. Let µ0 ∈ P2(Rd)2 be fixed. There exists an absolutely continuous curve µ(·) :
[0,+∞)→ P2(Rd)2 such that µ(0) = µ0 and µ(t) is a weak measure solution to (11) in the sense of
Definition 2. Such solution can be constructed as the limit (up to subsequences) of the approximating
curve µ̄τ .

UNIQUENESS FOR SMOOTH KERNELS:
We use basically a bootstrap version of the characteristic method.

Theorem 5. Assume that all the kernels Hi, Ki are C2 and consider two initial measures µ0,ν0 ∈
P2(Rd)2 with compact support and the related weak measure solutions of (11) µ, ν respectively. Then,
there exists a constant C̃ > 0 such that

W2 (µt,νt) ≤ eC̃tW2 (µ0,ν0) t ≥ 0. (12)

Consequently, for a given initial condition µ0 ∈ P(Rd)2, there exists a unique weak measure solution
to (11).

NON-SYMMETRIZABLE SYSTEMS: A PREDETOR-PREY MODEL

Consider the system in one space dimension

{
∂tµ1 = ∂x(µ1(∂xS1 ∗ µ1 + ∂xK ∗ µ2))

∂tµ2 = ∂x(µ2(∂xS2 ∗ µ2 − α∂xK ∗ µ1)),
(13)

Let K be an attractive potential. Under these assumptions, the sy-
stem can be seen as a predator-prey system type, in which the first
species is attracted by the second, which tries to escape.

We establish a criterion under which sums of Dirac’s deltas

(µ̄1, µ̄2) =

(
N∑
k=1

ρk1δX̄k
(x),

M∑
h=1

ρk2δȲh
(x)

)
, (14)

are stationary states for (13).
PARTICLES SYSTEM STABILITY:
We start our analysis with the particles system associated to (13)


Ẋi(t) =

N∑
k=1

mk
XS
′
1(Xk(t)−Xi(t)) +

M∑
h=1

mh
YK

′(Yh(t)−Xi(t))

Ẏj(t) =

M∑
h=1

mh
Y S
′
2(Yh(t)− Yj(t))− α

N∑
k=1

mk
XK

′(Xk(t)− Yj(t)).

(15)

Let Ω̄ =
(
X̄1, ..., X̄N , Ȳ1, ..., ȲM

)
∈ RN+M be a steady states for

(15). Introducing the following quantities

diX =

(
N∑
k=1

mk
XS
′′
1 (X̄k − X̄i) +

M∑
h=1

mh
YK

′′(Ȳh − X̄i)

)
i = 1, .., N

djY =

(
M∑
h=1

mh
Y S
′′
2 (Ȳh − Ȳj)− α

N∑
k=1

mk
XK

′′(X̄k − Ȳj)

)
j = 1, ..,M,

S̄1 =
(
mk
XS
′′
1 (X̄k − X̄i)

)
i,k
, S̄2 =

(
mh
Y S
′′
2 (Ȳh − Ȳj)

)
i,k
,

K̄X =
(
mh
YK

′′(Ȳh − X̄i)
)
i,k
, K̄Y =

(
mk
XK

′′(X̄k − Ȳj)
)
i,k
,

the linearised equation for (15) around Ω̄, with Ω(t) = Ω̄ + δΩ(t) is

d

dt
δΩ = (D +H) δΩ,

with, for i = 2, ..., N and j = 1, ...,M

H =

 S̄1 K̄X

−αK̄Y S̄2

 D =

diag
(
−diX

)
0

0 diag
(
−djY

)
 .

(16)
So the system (15) is stable if and only if the matrix D+H has strictly
negative spectrum.

LOCAL NON-LINEAR STABILITY:
We rewrite (13) in the pseudo-inverse formalism,{

∂tu1(z, t) =
∫ 1

0
S′1(u1(ζ, t)− u1(z, t))dζ +

∫ 1

0
K ′(u2(ζ, t)− u1(z, t))dζ

∂tu2(z, t) =
∫ 1

0
S′2(u2(ζ, t)− u2(z, t))dζ − α

∫ 1

0
K ′(u1(ζ, t)− u2(z, t))dζ,

(17)
with ui, i = 1, 2 non-decreasing functions. Sums of Dirac’s deltas
corresponds to sums of increasing steps functions

(ū1(z), ū2(z)) =

(
N∑
i=1

X̄iχIi1(z),

M∑
h=1

ȲhχIh2 (z)

)
, Ipl =

∑
j<p

mj
l ,
∑
j≤p

mj
l


(18)

with |Ipl | = mp
l .

Theorem 6. Let S1, S2 and K admissible and smooth potentials. Consider
a steady state (ū1, ū2) as in (18) for (17), that satisfy:

(NS1) dhX , dkY are strictly positive for all h = 1, ..., N and k = 1, ...,M ;

(NS2) the matrix H + D defined in (16) has strictly positive spectrum, i.e.
for some ν > 0, σ(M) ⊂ {z ∈ C|Re(z) > ν > 0}.

Then for all initial data (u1,0, u2,0) such that, for ε > 0,

||u1,0 − ū1||∞ + ||u2,0 − ū2||∞ < ε

exist a constant C > 0 such that for all t > 0

||u1(t)− ū1||∞ + ||u2(t)− ū2||∞ < C
(
1 + tn−1

)
e−ηt

for some η > 0.

ONE DIMENSIONAL PARTICLE SIMULATIONS:
The following simulations are performed with normalized Gaus-

sian cross-interaction potential and self-interaction potentials given
by S1(x) = β1

2 (1− e−x2

) and S2(x) = β2

2 (1− e−x2

) respectively.
Consider a system with one predator and two prey. Calling A =

1
2K
′′(0) and Bi = 1

2S
′′
i (0), with B2 = 1

2β2, we obtain the following
conditions on α:

α < 1 α <
B2

A
.

Taking into account now the case of two particle per species and
setting 1

2K
′′(0) = A > 0, B1 = 1

2S
′′
1 (0) and B2 = 1

2S
′′
2 (0) we have

A+B1 > 0, α < B2

A , α < 1.

The last one-dimensional example is a system with 5 predator and
10 prey, where all the kernels are normalized Gaussian.

TWO DIMENSIONAL PARTICLE SIMULATIONS:
Here we present some simulation in the two-dimensional case.

First we consider 1000 particles for species with attractive normalized
Gaussian self-interaction potentials and α = 1.

The following dynamics is obtained with self-repulsive prey and
self-attractive predator, with α = 1. All the kernels are normalized
Gaussian.

The last example is with 100 predator and 1000 prey, with no
self-interaction between prey.

Note that predators collapse into the center of mass and then start to
chase the prey.

UPCOMING RESEARCH

• Stability analysis in space dimensions d > 1;

• Numerical simulations for the PDE system


