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Motivation: Collective animal behaviour

e Self-organization from local interaction, in

absence of leadership

e Even simple interaction

patterns observed in nature

e Diversity of patterns, va

mechanisms competing with each other

e Mathematical challenge:

— Formulation of simplified models

reproducing formations

— Pattern shape(s), convergence,
stability, phase transitions, ...

rules, reproducing

rying biological

Microscopic level
Agent/particle model

Macroscopic level
PDEs
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Self-propelled second-order interacting particle model

— Three-zone approach to interaction potential
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— The microscopic model for N particles, (x;,v;) € R? x R?

dX,' o

dr Vi,

dV,' p 1

T avi— Builvi|? — NVX,Z#;W(X,- —Xj).

o, 3: propulsion & friction force ;W(x): interaction potential,



Outline and Introduction Stability Existence of flocks Conclusion

Self-propelled second-order interacting particle model
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— The microscopic model for N particles, (x;,v;) € R? x R?

dX,' o

dr Vi,

dV,' p 1

T avi— Bvilvi|® — NVX,Z#;W(X,- —Xj).

o, 3: propulsion & friction force ;W(x): interaction potential,

— Other popular models: Cucker-Smale, Couzin-Viscek
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Two common patterns: flock and mill

&,
dt - VI7
dv; > 1
= Qi Bvilvil® = vi,- Z W(xi = x) -
speed /a/3 Hélv
the spatial shape
/.\.j
Flock o N, Ml
o N
o Y e ’

e 4

Conclusion
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Flocks and mills

dx;

. Vi,

dt

%zow,-f{)’v;\v;\2 VX‘ZW Xi — Xj) .
speed /a/3 ik v

the spatial shape

Two basic questions in this talk:

e Simpler (reduced) system to look for stable patterns?

e Existence of patterns in the parameter regimes?
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Stability for flocks: from second order to first order

i
dt
dv;
dtl ﬁv,|v,‘2 *vxl Z W(xi — xj) -
JFi
Flocking solution: (x;(t), vi(t)) = (X + mot, mo)
e the constant mean velocity mg with speed \/%

e the spatial configurations {x;} satisfy
Vi Y WX —%)=0,i=12,--- N

(2nd)

The condition for the spatial configurations motivates the first
order system

dx,

= vX,ZW Xi — ;). (1st)
J#i



Stability

Linearized system: first order

d i
s VX,ZW X — ), (1st)
J#i
Assuming x;(t ) X + g)\(,( t), the linearized system for the
perturbation ox = (6x1, -, 0xp) is
d — —
E(SX = G(X)dx,
where .
—5 > Hess W(% — %) for i =j
GIJ = N J#i )
~Hess W(% — %) for i # j

and Hess W is the Hessian matrix of W.
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Linearized first order system: Eigenvalues of G(X)

The spatial configurations at X = (X1, -, xy) are stable if G(X)
has

e no positive eigenvalues and

e no generalized eigenvectors for eigenvalue zero.

The simplest unstable system with zero eigenvalues:

d_ (01
a " \o o)
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Linearized first order system: Eigenvalues of G(X)
The spatial configurations at X = (x1,-- -, Xn) are stable if G(X)
has

e no positive eigenvalues and

e no generalized eigenvectors for eigenvalue zero.

The simplest unstable system with zero eigenvalues:
ix ~ (01! X
dt”  \0 O
Eigen-structures of the Jacobian G(X):

a) 2d — 1 zero eigenvalues: translations (d) and rotations (d — 1).

b) no generalized eigenvector for zero eigenvalue (G(X) is derived
from a potential and symmetric)

c) G(X) is non-positive semi-definite
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Stability Existence of flocks Conclusion
Linearized system: second order
dx;
—_— V-7
dt ' (2nd)
dv; 1 n
d—t' = Vi — ﬁv,-|v,-\2 — vii Z W(X,‘ — XJ) .

J#i
For solutions with mean velocity mg, assuming

xi(t) = % + tmo + 0xi(t),  vi(t) = mo + o,

the linearized system is

d ~ — _—
E&X,’ =dv;, Z Gij(X)ox; — 23(mq - dv;)mo,

d(ix\ (o0 Id ox
dt \ov/]  \GX) —28kron(Id,mg@® mo)) \6v )"

or
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Eigen-structure for the linearized second order system

If (5;,5/;) is an eigenvector with eigenvalue \, then
Aox = g;, Aov = G(?)g)\( — 2pkron(ld, mg & mo)g;,
or the “reduced eigenvalue problem”

A25x = G(X)dx — 2\Bkron(ld, mg & mp)dx.
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Eigen-structure for the linearized second order system

If (5;,5/;) is an eigenvector with eigenvalue A, then
Aox = dv, Aov = G(X)dx — 2Bkron(Id, mg & mg)dv,
or the “reduced eigenvalue problem”
A25x = G(X)dx — 2\Bkron(ld, mg & mp)dx.
Taking the inner problem of the equation with 5;

(@x,0x)X% +20 Y " (mo,0x;)? X — (3x, G(R)dx) = 0.
i <0

>0

— A\ <0!
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Generalized eigenvectors for linearized second order system

The perturbation dv; = dv (the same for each V;) leads to another
valid flock, but not “stable” in the previous context.

The speed is kept the same = make 90° turn, Sv = mé
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Generalized eigenvectors for linearized second order system

The generalized vector for at eigenvalue zero:
— —~ |
(SX,'ZO, (5v,-:m0.

Simple linear algebra:

<G(O§) —Zﬁkron(lldd, mo & mo)) <kr°n((1)» m&)) N (kron% mé))

and
(€1 amime) (57 -0
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Generalized eigenvectors for linearized second order system
Something wrong about the linearization x;(t) = X; + tmg + dx;(t)?

— introduce the “real time" mean velocity m(t) = %Z, vi(t)
and use the new linearization

xi(t) =% + /0 m(s)ds + ox;i(t),
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Stability in the new settings

The equation for the mean velocity:

%m == : ﬂ = —Z av; — Blvil*vi).

A few remarks:
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Stability in the new settings

The equation for the mean velocity:

%m == : ﬂ = —Z av; — Blvil*vi).

A few remarks:

a) The system for the new variables x;, v;, m is overdetermined

Conclusion
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Stability in the new settings
The equation for the mean velocity:
%m == : ﬂ = —Z av; — Blvil*vi).
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a) The system for the new variables x;, v;, m is overdetermined

b) The new Jacobian matrix has no positive eigenvalues (similar
quadratic equation for \)
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Stability in the new settings

The equation for the mean velocity:

%m:— : ﬂ:—z (av; — Blvil*v)).

A few remarks:

a) The system for the new variables x;, v;, m is overdetermined

b) The new Jacobian matrix has no positive eigenvalues (similar
quadratic equation for \)

c) there are (3d — 2) eigenvectors at eigenvalue zero
(perturbations of the velocity in mOl corresponds to regular

eigenvectors)

d) True stability theorem for flocks: the flock is a normally
hyperbolic invariant manifold (parametrized by X and my)

e) Spectral gap is shrinking (the first negative eigenvalue
approaches zero as N increases)
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Stability

Existence of flocks

What about the stability of the rotating mills?

The equation to find the steady configurations

Conclusion
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Existence of (flock) patterns for the particle system

When is there a concurrent moving flock?

i,
dti [
(2nd)

dv; 1
d—‘; =qav; — ﬂv,-|v,-\2 — NVX,. ; W(xi — x;) .
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“micro” and “macro” conditions for flocks

a) For two particles, W should be biologically relevant:

W(r)
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“micro” and “macro” conditions for flocks

a) For two particles, W should be biologically relevant:

W(r)

b) As more “averaged particles” are added into the system, a
continuum density is approached:

W is not H-stable.



Existence of flocks
H-stable vs Catastrophic potential W

Different behaviours of the minimizers of Z,’Yl W (xi — x;)

H-stable potential: minimal distance between particles are
approximately the same, forming crystal-like structures

SIEHAS

Catastrophic (non H-stable) potential: the total size does not
expand

o i R RS
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H-stable vs Catastrophic potential W in statistical
mechanics

A potential W for a many-body system is called H-stable (or
simply stable) if the potential energy per particle is bounded below
by a constant that is independent of the total number of particles,

ie.,

Z W(x; — x;) > —NB.
If the positions x1, x2,- -+ ,xy € R” minimize the interaction
energy Z,NJ W (xi — x;), then

o If W is H-stable, >, W(x; — x;) = O(N)
e If W is catastrophic, Zi,j W(x; — x;) = O(N?)
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Why the potentials are called “catastrophic”?

dX,'
= Vi,
dt
dV,' 2
E:av;—ﬂv,-|v,-| — Vi E W(xi — x;) .
J#i
//)A"'_“\\ e ST e TN
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//,/" **\\\\\ AR :::\:\\\ ,}’éffaﬁs\?\st\\
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N = 100, 200,300. Parameters 1: W(x) = Ce X/t — C,e=IXI/t
C,=05C =10¢,=20,0, =05,a=16,=05
M. R. D'Orsogna et al, PRL 96, 104302 (2006)
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Catastrophic potential: the definition used in the talk
Conditions for W to be catastrophic:

W < 0.
Rd

If W(r) is constructed from a decreasing function V/(r),

|

then [s W < 0 becomes (C¢9 —1) [ps V < 0 or

V(r) W(r)

W(r)=CV(r/t)—V(r)
—_—

cri—1<o.
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Conclusion
From particle system to hydrodynamic equations
dx;
—_Q = Vi,
dt
dv; 1
d—‘: =av; — Bvi|vi]* - NVXI. ; W(xi — xj).

e The kinetic equation for f(t, x, v) in the mean field limit:
Ocf + v - Vif + Flp] - Vo f +div, ((a — BJv[?) vf) =0,

p(t,x) = [ f(t,x,v)dv: macroscopic density;
Flp] = —=VxW % p: interaction force

e Mono-kinetic ansatz: f(t,x,v) = p(t,x)o(v — u(t,x)),

% + div(pu) =0,
4 (u-Vu=(a—Blul?)u— VW xp.

e For flocks: u(t,x) =ug = \/%no, p(t,x) = pr(x — upt),
where pr satisfies V, W *x pr = 0.
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Energy, gradient flow

The energies:
1 1
ﬁZW(Xi—Xj) or F(p)= Q/pW*p
ij
The corresponding gradient flow systems:

d axi oF
e VX, Z W (x or pr=V-(pVWxp) =V-(pV—).
JF#

The steady state equation for the continuum equation:

Wsxp=D.
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Yet another non H-stable condition

non H-stable condition in Jose's talk:
a) lim,—oo W(r) =0, W(0) is finite
b) There is p such that F(p) <0

How is this definition related to other definitions?
o If there is a such p, approximate p(x) by % 20— xi) =
Zu W(x — x) = O(=N?);
o if there is no such p, p(t) spreads to infinity.

The subtleties in normalization by 1/N and self-energy

()
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Governing equations for the (radial) flock profile pg

Conclusion

pron |z| < Rp
The spatial profile pr of the flock satisfies

Flock : W x pr= Dr

in B(0, Rr) = supp(pr)
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Rigorous existence results for Quasi-Morse potentials 2

Idea: convert integral equations into differential equations
W(x) = V(|x]) — CV(|x|/£) (simple condition for W to be
non H-stable)

Desired properties on V/(r): non-negative, fast decay to zero
—— > Fundamental solutions of the operator A — Id.

Dimension-dependent potential
d=1: V(r)=-3e7r
d=2: V(r)= —%Kg(r)
d=3: V(r)=-41¢<"

4 r

and in general dimension n:
V(r) = —(2m) 52Ky _(r).
2

Price to pay: working with less familiar (modified) Bessel
functions

2J.A.Carrillo, S.Martin and V. Panferov, Physica D 2013
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What are the (modified) Bessel functions?
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From integral equation to differential equation
If W(x) = V(x)— CV(x/f) with AV (x) — V(x) = do, then

(A—Id)(A—%Id)W*p:(l—C)[Ap—i—Ap} - D,

with A = (1 — Ct9)/(Ct? — ?).
Since p satisfies the ODE

d’p d—1dp ~
-7 A=
dr? + roodr A ’
for r < Rg
,ulrlngg_l(ar) + Lo, A>0
p(r) = par + po, A=0,
ulrl*%lg_l(ar) + 2, A<O.

with a = /|A] = W % p is some function depends on 11 and /.
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Another approach for W x p

Since W x p satisfies the fourth order ODE

(A—Id)(A—%Id)W*p:D,

with A = (1 — Cr9)/(Crd —1?),

W p(r) = D+ \rt =21y (r) + dor' =921y (r/0).

The solvability condition for Re: A1(u1, 12) = 0, Aa(p1, p2) =0
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Solvability condition for the flock profile W x p =D

W x p is a constant on [0, R] (in radial variable) only if

= (5 1) (1) = (0):

or detM = B(1) — B(¢) = 0. Here B(¢) is defined as

) , B Ka_,(R/0) Ka_1(R/0)
Bi() = R (1+50) I[J‘z’—l("’m W (R *a“z—*a’“édiw}’
- K%+1(R/Z)

By(¢) = 25RW +1,

) ) ) Ky ,(R/ Ka_,(R/E)
B,(Z) _ R17§ (1 —3262) 1 [Igl(aR)W +aZId,2(3R) !2 ER/K) j| ’

1—ced
cia—¢2

Theorem: detM = 0 for some R > 0 if and only if A > 0.

where a2 = A = ’
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Existence and uniqueness in 3D

____det M+ = 0.7266
.
b
° The roots R’J 0. 2.0582 |
= 3.3892
2k 0. = 4.7200 |
+
=
a o
-
()] 0
k]
0.
St
N . -0.2 -
o 2 4 6 8 0 1 2 3 4 5
R r

The determinant M, = B(1) — B(¢) is oscillatory (as a function of
R, the size of the support). There are infinite many roots for
M, = 0, but only the first root gives a nonnegative density pr.
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Main Results for the flock profile governed by W x p = D
Let W be a Quasi-Morse potential:
Theorem (Existence and uniqueness in 3D)

In space dimension d = 3 with parameters in the regime
Cl > 1,0 < 1. Then flock profiles exist if and only if A > 0.
Furthermore, if A > 0, there exists a unique flock profile.

Theorem (Existence in 2D)

In space dimension d = 2 with parameters in the regime
C > 1,0 < 1. Then flock profiles exist if and only if A > 0 or
equivalently C/? < 1.

Why uniqueness in 3D?

2 2 2
J1/2(x) =4/ — Sinx, J_1/2(x) =4/ — cosx, I_1/2(x) = 1/; cosh x,

™

2 . —x
hya(x) =4/ —sinhx, Kijp(x) = Koypa(x) =4[ —e™
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Collecting all the pieces
For the quasi-Morse potential W(x) = V(x) — CV(x/¥),
e Existence of equilibrium distance for two particles:
0<1,Cd2>1
e Conditions for the non H-stability:
fW=@1-Ccriyfv<0
e Existence of nonnegative solutions for W x p = D:

1—cv

Conclusion
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How about W(x) = Ce (/0" — ="

006 —557 0 002 004 006 0 1 2

p=1/2,C=0.6 p=3/2,C=0.6

2 p=125  p=150 p=180  p=1095

C=10/9,(=3/4
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Conclusion and open problems

o The existence of flocks in the parameter space (C, ¢) for the
particle system

@ _

dt - [}

dv;

d—‘; =av; — ﬂv,|v, VX, Z W(x,

JF#

can be determined by the first order system and is
numerically indicated by (1) W(r) is stable for two particles;
(2) W is not H-stable

e The parameter space is the same for the corresponding
continuum integral equation W x p = D, for Quasi-Morse
potential.

e Generalization to integral equations W x p = D for other
potentials W, like the Morse potential W(x) = Ce=IxI/¢ — = IxI?7
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