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We consider the Cauchy problem:

∂tµt = ∂xix j(a
i j(x, t,µ)µt)−∂xi (b

i(x, t,µ)µt), µ0 = ν , (1)

whereµt andν are probability measures onRd.

SetLµu= ai j(x, t,µ)∂xix ju+bi(x, t,µ)∂xiu.
Definition. µ = (µt)t∈[0,τ ] is asolutionof (1) iff all coefficientsai j (x, t,µ), bi(x, t,µ) areµ-locally
integrable and for allt ∈ [0,τ ] andϕ ∈C∞

0 (R
d) the identity holds:

ˆ

ϕdµt −

ˆ

ϕdν =

ˆ t

0

ˆ

Lµϕdµsds.

Some examples
1. Transport equation (cf. [?, ?, ?, ?]). Setẋt = b(xt), x0 = x. Thenµt(B) = ν(x−1

t (B)) satisfies

∂tµ =−div(bµt) , µ0 = ν .

2. Vlasov equation (cf. [?]). Let ẋ j
t = N−1∑N

i=1B
(

x j
t ,x

i
t

)

. Setµt = N−1∑δxi
t
. Then

∂tµt =−div(bµt) , b(x, t,µ) =
ˆ

B(x,y)dµt.

3. Fokker-Planck-Kolmogorov equation (cf. [?, ?, ?]). Consider

dXt = dWt +b(Xt)dt, X0 = x.

Thenµt (B) =
ˆ

P(Xt ∈ B)dν satisfies∂tµt =△µt −div(bµt) , µ0 = ν .

4. McKean-Vlasov equation (cf. [?]). Let dXi,N
t = dWi

t +N−1∑N
j=1B

(

X j
t ,X

i
t

)

. ThenXi,N
t con-

verges in law to solutionXt of dXt = dWt +b(Xt)dt and

∂tµt =△µt −div(b(µt,x)µt) ,

whereb(µt,x) =
ˆ

B(x,y)dµy(y), µt(dy) = P(Xt ∈ dy).

This result is called propagation of chaos for McKean-Vlasov equations.

Typical coefficients contain expressions like
ˆ

K(x,y, t)dµt or
ˆ t

0

ˆ

K(x,y,s)dµsds, with a

kernelK growing at infinity.

Let τ0 > 0 be a fixed number andV be a nonnegative function. For eachα ∈C+([0,τ0]) wedenote
by Mτ ,α(V) the set of nonnegative measuresµ = (µt)t∈[0,τ ] such that

ˆ

V(x)dµt ≤ α(t) ∀t ∈ [0,τ ].

In typical examplesV(x) = 1+ |x|p or exp(k|x|r).

Assumptions
(H1) There exists aLyapunov function: V ∈C2(Rd):

V(x)> 0, lim
|x|→+∞

V(x) = +∞,

and mappingsΛ1 andΛ2 of C+([0,τ0]) into C+([0,τ0]): functionsai j andbi are defined on each
Mτ ,α = Mτ ,α(V) and

LµV(x, t)≤ Λ1[α](t)+Λ2[α](t)V(x).

Remark. Typical examples ofΛ1 andΛ2 areα(t) 7→ G(α(t)) or α(t) 7→
´ t

0 G(α(s))ds.

Definition. A sequence of measuresµn = (µn
t )t∈[0,τ ] in Mτ ,α V-convergesto a measureµ =

(µt)t∈[0,τ ] in Mτ ,α if for all t ∈ [0,τ ]

lim
n→∞

ˆ

F(x)dµn
t =

ˆ

F(x)dµt

for everyF ∈C
(

R
d
)

: lim
|x|→∞

F(x)/V(x) = 0.

(H2) (continuity)

• for all τ ∈ (0,τ0], α ∈C+([0,τ0]), σ ∈ Mτ ,α, andx∈ R
d the mappings

t 7→ ai j(x, t,σ), t 7→ bi(x, t,σ)

are Borel measurable on[0,τ ]
• the mappings x 7→ bi(x, t,σ) and x 7→ ai j(x, t,σ) are bounded on closed balles uniformly

in σ ∈ Mτ ,α andt ∈ [0,τ ] and continuous on closed balls uniformly inσ ∈ Mτ ,α andt ∈ [0,τ ]
• µn ∈ Mτ ,α is V-convergent toµ ∈ Mτ ,α, then

lim
n→∞

ai j(x, t,µn) = ai j(x, t,µ), lim
n→∞

bi(x, t,µn) = bi(x, t,µ).

Example: The Assumption (H2) is fulfilled for

b(x, t,µ) =
ˆ

K(x,y)dµt

with a continuous vector fieldK on R
d × [0,τ ]: |K(x,y)| ≤ C1(x)+C2(x)V1−γ(y), γ ∈ (0,1), and

continuousC1(x),C2(x).
(H3) (parabolicity) A(x, t,σ) = (ai j(x, t,σ))1≤i, j≤d is symmetric and nonnegative definite.

Main Existence Theorem
Suppose (H1), (H2), (H3), initial dataν is a probability measure onRd andV ∈ L1(ν). Then

(i) There existsτ ∈ (0,τ0] such that the Cauchy problem (1) has a solution on[0,τ ].
(ii) If Λ1 andΛ2 are constant then the Cauchy problem (1) has a solution on thewhole [0,τ0].

(iii) SupposeΛ1[α] = 0 andΛ2[α](t) = G(α(t)) for some strictly increasing continuous positive
function G on [0,+∞). Then the Cauchy problem (1) has a solution on each[0,τ ] with τ ∈
(0,min{T,τ0}], where

T =

ˆ +∞

u0

1
uG(u)

du, u0 =

ˆ

V(x)dν .

In all casesµt are probability measures and supt∈[0,τ ]
´

V(x)dµt < ∞.

The proof is based on Schauder fixed-point theorem and vanishing viscosity method (cf. [?]).
How does this theorem work?

An Important Example

∂tµt = div
(

µt

ˆ

|x−y|m−1(x−y)dµt

)

, µ0 = ν . (2)

Let m> 0. Supposeν is a probability measure onRd and|x|m+1 ∈ L1(ν) (|x|2 ∈ L1(ν) if m< 1).
One can see that all assumptions of the previous theorem are fulfilled. Thus there existsτ > 0 such
that on[0,τ ] the Cauchy problem (2) has a probability solution with uniformly bounded moments
of orderm+1. If 0< m< 1 the solution is global with uniformly bounded second moments.

Absence of global solution
Estimates for the existence time (provided in Main Existence Theorem) are in some sense exact.

“Blow-up” Theorem
V ∈ C2(Rd), V ≥ 0, lim

|x|→∞
V(x) = +∞, G is a continuous positive increasing function on[0,+∞).

The coefficients of the operator

Lµ = ai j (x, t,µ)∂xix j +bi(x, t,µ)∂xi

are defined on every setMτ ,α(V) and for allµ ∈ Mτ ,α(V) and all(x, t) ∈ R
d× [0,τ ] one has

LµV(x, t)≥ G

(
ˆ

V(x)dµt

)

V(x).

Suppose that|
√

A(x, t,µ)∇V(x)|2 ≤ C1 +C2V(x) for someC1 > 0 andC2 > 0. Suppose that

u0 =

ˆ

V dν > 0 and

T =

ˆ ∞

u0

du
uG(u)

<+∞.

Then (1) has no probability solutionµ = (µt)t∈[0,T] on [0,τ ] for τ ≥ T with

sup
t∈[0,T]

ˆ

V(x)dµt < ∞.

Uniqueness
Obviously, uniqueness is a difficult question even in the linear case (especially with matrixA
which is not strictly positive definite), cf.[?].

We want to deal with unbounded coefficients and possibly degenerate matrixA. Suppose
A(x, t,µ) = A(x, t).

One possible approach is approximative Holmgren method.

The main idea can be show in a simple case.

Suppose all coefficients are smooth with bounded derivatives and for some increasingG

|b(x, t,µ)−b(x, t,σ)| ≤ G(‖mt −σt‖), (3)

where‖ · ‖ is Kantorovich-Rubinshtein (Vasserstein) norm.

Suppose we have 2 solutionsµ andσ . For anyψ ∈ C∞
0 (R

d) with |ψ(x)| ≤ 1 and|∇ψ(x)| ≤ 1
consider an adjoint problem

∂t f = ai j(x, t)∂xix j f +bi(x, t,σ)∂xi f = 0, f |s=t = ψ .

Then f is a smooth function with a gradient, bounded uniformly inψ . We get
ˆ

Rd
ψ(x)dσt =

ˆ

Rd
f (x, t)dν

and
ˆ

Rd
ψ(x)dµt =

ˆ

Rd
f (x, t)dν +

ˆ t

0

ˆ

Rd
(b(x,s,µ)−b(x,s,σ),∇x f (x,s))dµsds.

This yields
ˆ

Rd
ψ(x)d(µt −σt)≤C

ˆ t

0
G(‖µs−σs‖)ds,

so if G is Osgood (i.e.
´

0G−1(u)du=+∞) we come to a contradiction.

This method can be extended to the general case and requires one-side Lipschitz condition ofb in
x, existence of a particular Lyapunov function and (3).

These assumptions, together with some technical regularity assumptions, are sufficient for
uniqueness of probability solutions of (1) even with a degenerate matrixA.

The Important Example satisfies all these assumptions.
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