Well-posedness of the Cauchy problem for nonlinear Kolmogorov-Fokker-Planck equations for measures

Oxana A. Manita

PhD Student, Department of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia oxana.manita@gmail.com; o.manita@lambda.msu.ru

We consider the Cauchy problem:

$$\partial_t \mu_t = \partial_{x_i x_j} (a^{ij}(x, t, \mu) \mu_t) - \partial_{x_i} (b^i(x, t, \mu) \mu_t), \quad \mu_0 = \nu, \tag{1}$$

where μ_t and ν are probability measures on \mathbb{R}^d .

Set $L_{\mu}u = a^{ij}(x,t,\mu)\partial_{x_ix_j}u + b^i(x,t,\mu)\partial_{x_i}u.$

Definition. $\mu = (\mu_t)_{t \in [0,\tau]}$ is a *solution* of (1) iff all coefficients $a^{ij}(x,t,\mu)$, $b^i(x,t,\mu)$ are μ -locally integrable and for all $t \in [0,\tau]$ and $\varphi \in C_0^{\infty}(\mathbb{R}^d)$ the identity holds:

$$\int \varphi d\mu_t - \int \varphi d\nu = \int_0^t \int L_\mu \varphi d\mu_s ds.$$

Some examples

1. Transport equation (cf. [?, ?, ?, ?]). Set $\dot{x}_t = b(x_t)$, $x_0 = x$. Then $\mu_t(B) = \nu(x_t^{-1}(B))$ satisfies

$$\partial_t \mu = -\operatorname{div}(b\mu_t), \quad \mu_0 = \nu.$$

2. Vlasov equation (cf. [?]). Let $\dot{x}_t^j = N^{-1} \sum_{i=1}^N B\left(x_t^j, x_t^i\right)$. Set $\mu_t = N^{-1} \sum \delta_{x_t^i}$. Then

$$\partial_t \mu_t = -\operatorname{div}(b\mu_t), \quad b(x,t,\mu) = \int B(x,y) d\mu_t$$

3. Fokker-Planck-Kolmogorov equation (cf. [?, ?, ?]). Consider

$$dX_t = dW_t + b(X_t) dt, \quad X_0 = x.$$

Then $\mu_t(B) = \int P(X_t \in B) d\nu$ satisfies $\partial_t \mu_t = \triangle \mu_t - \operatorname{div}(b\mu_t), \quad \mu_0 = \nu.$ 4. McKean-Vlasov equation (cf. [?]). Let $dX_t^{i,N} = dW_t^i + N^{-1} \sum_{j=1}^N B\left(X_t^j, X_t^i\right)$. Then $X_t^{i,N}$ converges in law to solution X_t of $dX_t = dW_t + b(X_t) dt$ and

$$\partial_t \mu_t = \bigtriangleup \mu_t - \operatorname{div}\left(b\left(\mu_t, x\right) \mu_t\right)$$

An Important Example

$$\partial_t \mu_t = \operatorname{div}\left(\mu_t \int |x - y|^{m-1} (x - y) \, d\mu_t\right), \quad \mu_0 = \nu.$$
(2)

Let m > 0. Suppose v is a probability measure on \mathbb{R}^d and $|x|^{m+1} \in L^1(v)$ $(|x|^2 \in L^1(v)$ if m < 1). One can see that all assumptions of the previous theorem are fulfilled. Thus there exists $\tau > 0$ such that on $[0, \tau]$ the Cauchy problem (2) has a probability solution with uniformly bounded moments of order m + 1. If 0 < m < 1 the solution is global with uniformly bounded second moments.

Absence of global solution

Estimates for the existence time (provided in Main Existence Theorem) are in some sense exact.

"Blow-up" Theorem $V \in C^2(\mathbb{R}^{\hat{d}}), V \ge 0, \lim_{|x|\to\infty} V(x) = +\infty, G \text{ is a continuous positive increasing function on } [0, +\infty).$ The coefficients of the operator

$$L_{\mu} = a^{ij}(x,t,\mu)\partial_{x_ix_j} + b^i(x,t,\mu)\partial_{x_i}$$

are defined on every set $M_{\tau,\alpha}(V)$ and for all $\mu \in M_{\tau,\alpha}(V)$ and all $(x,t) \in \mathbb{R}^d \times [0,\tau]$ one has

$$L_{\mu}V(x,t) \ge G\left(\int V(x)d\mu_t\right)V(x).$$

Suppose that $|\sqrt{A(x,t,\mu)}\nabla V(x)|^2 \leq C_1 + C_2 V(x)$ for some $C_1 > 0$ and $C_2 > 0$. Suppose that $u_0 = \int V dv > 0$ and

$$T = \int_{u_0}^{\infty} \frac{du}{uG(u)} < +\infty.$$

Then (1) has no probability solution $\mu = (\mu_t)_{t \in [0,T]}$ on $[0, \tau]$ for $\tau \ge T$ with

$$\sup_{t\in[0,T]}\int V(x)\,d\mu_t<\infty.$$

where $b(\mu_t, x) = \int B(x, y) d\mu_y(y), \quad \mu_t(dy) = P(X_t \in dy).$ This result is called propagation of chaos for McKean-Vlasov equations.

Typical coefficients contain expressions like $\int K(x,y,t) d\mu_t$ or $\int_0^t \int K(x,y,s) d\mu_s ds$, with a kernel *K* growing at infinity.

Let $\tau_0 > 0$ be a fixed number and *V* be a nonnegative function. For each $\alpha \in C^+([0, \tau_0])$ we *denote* by $M_{\tau,\alpha}(V)$ the set of nonnegative measures $\mu = (\mu_t)_{t \in [0,\tau]}$ such that

$$\int V(x) d\mu_t \leq \alpha(t) \quad \forall t \in [0, \tau].$$

In typical examples $V(x) = 1 + |x|^p$ or $\exp(k|x|^r)$.

Assumptions

(H1) There exists a Lyapunov function: $V \in C^2(\mathbb{R}^d)$:

$$V(x) > 0$$
, $\lim_{|x| \to +\infty} V(x) = +\infty$

and mappings Λ_1 and Λ_2 of $C^+([0, \tau_0])$ into $C^+([0, \tau_0])$: functions a^{ij} and b^i are defined on each $M_{\tau,\alpha} = M_{\tau,\alpha}(V)$ and

$$L_{\mu}V(x,t) \leq \Lambda_1[\alpha](t) + \Lambda_2[\alpha](t)V(x).$$

Remark. Typical examples of Λ_1 and Λ_2 are $\alpha(t) \mapsto G(\alpha(t))$ or $\alpha(t) \mapsto \int_0^t G(\alpha(s)) ds$. Definition. A sequence of measures $\mu^n = (\mu_t^n)_{t \in [0,\tau]}$ in $M_{\tau,\alpha}$ V-converges to a measure $\mu =$ $(\mu_t)_{t\in[0,\tau]}$ in $M_{\tau,\alpha}$ if for all $t\in[0,\tau]$

$$\lim_{n\to\infty}\int F(x)d\mu_t^n=\int F(x)d\mu_t$$

for every $F \in C(\mathbb{R}^d)$: $\lim_{|x|\to\infty} F(x)/V(x) = 0.$

(H2) (continuity)

• for all $\tau \in (0, \tau_0]$, $\alpha \in C^+([0, \tau_0])$, $\sigma \in M_{\tau, \alpha}$, and $x \in \mathbb{R}^d$ the mappings

$$t \mapsto a^{ij}(x,t,\sigma), \quad t \mapsto b^i(x,t,\sigma)$$

are Borel measurable on $[0, \tau]$

• the mappings $x \mapsto b^i(x,t,\sigma)$ and $x \mapsto a^{ij}(x,t,\sigma)$ are bounded on closed balles uniformly in $\sigma \in M_{\tau,\alpha}$ and $t \in [0, \tau]$ and continuous on closed balls uniformly in $\sigma \in M_{\tau,\alpha}$ and $t \in [0, \tau]$

• $\mu^n \in M_{\tau,\alpha}$ is *V*-convergent to $\mu \in M_{\tau,\alpha}$, then

 $\lim a^{ij}(x,t,\mu^n) = a^{ij}(x,t,\mu),$ $\lim b^i(x,t,\mu^n) = b^i(x,t,\mu).$

Uniqueness

Obviously, uniqueness is a difficult question even in the linear case (especially with matrix A which is not strictly positive definite), cf.[?].

We want to deal with unbounded coefficients and possibly degenerate matrix A. Suppose $A(x,t,\mu) = A(x,t).$

One possible approach is approximative Holmgren method.

The main idea can be show in a simple case.

Suppose all coefficients are smooth with bounded derivatives and for some increasing G

$$|b(x,t,\mu) - b(x,t,\sigma)| \le G(||m_t - \sigma_t||), \qquad (3)$$

where $\|\cdot\|$ is Kantorovich-Rubinshtein (Vasserstein) norm.

Suppose we have 2 solutions μ and σ . For any $\psi \in C_0^{\infty}(\mathbb{R}^d)$ with $|\psi(x)| \leq 1$ and $|\nabla \psi(x)| \leq 1$ consider an adjoint problem

$$\partial_t f = a^{ij}(x,t)\partial_{x_ix_j}f + b^i(x,t,\sigma)\partial_{x_i}f = 0, \quad f|_{s=t} = \psi.$$

Then f is a smooth function with a gradient, bounded uniformly in ψ . We get

$$\int_{\mathbb{R}^d} \Psi(x) \, d\sigma_t = \int_{\mathbb{R}^d} f(x,t) \, dv$$

and

$$\int_{\mathbb{R}^d} \psi(x) d\mu_t = \int_{\mathbb{R}^d} f(x,t) \, d\nu + \int_0^t \int_{\mathbb{R}^d} (b(x,s,\mu) - b(x,s,\sigma), \nabla_x f(x,s)) \, d\mu_s ds.$$

This yields

$$\int_{\mathbb{R}^d} \psi(x) d(\mu_t - \sigma_t) \leq C \int_0^t G(\|\mu_s - \sigma_s\|) ds,$$

so if *G* is Osgood (i.e. $\int_0 G^{-1}(u) du = +\infty$) we come to a contradiction.

This method can be extended to the general case and requires one-side Lipschitz condition of b in *x*, existence of a particular Lyapunov function and (3).

These assumptions, together with some technical regularity assumptions, are sufficient for uniqueness of probability solutions of (1) even with a degenerate matrix A.

The Important Example satisfies all these assumptions.

References

$$n \rightarrow \infty$$
 $n \rightarrow \infty$

Example: The Assumption (H2) is fulfilled for

$$b(x,t,\mu) = \int K(x,y)d\mu_t$$

with a continuous vector field K on $\mathbb{R}^d \times [0, \tau]$: $|K(x, y)| \leq C_1(x) + C_2(x)V^{1-\gamma}(y), \gamma \in (0, 1)$, and continuous $C_1(x)$, $C_2(x)$.

(H3) (parabolicity) $A(x,t,\sigma) = (a^{ij}(x,t,\sigma))_{1 \le i,j \le d}$ is symmetric and nonnegative definite.

Main Existence Theorem

Suppose (H1), (H2), (H3), initial data v is a probability measure on \mathbb{R}^d and $V \in L^1(v)$. Then

- There exists $\tau \in (0, \tau_0]$ such that the Cauchy problem (1) has a solution on $[0, \tau]$. **(i)**
- If Λ_1 and Λ_2 are constant then the Cauchy problem (1) has a solution on the whole $[0, \tau_0]$. (ii)
- Suppose $\Lambda_1[\alpha] = 0$ and $\Lambda_2[\alpha](t) = G(\alpha(t))$ for some strictly increasing continuous positive (iii) function G on $[0, +\infty)$. Then the Cauchy problem (1) has a solution on each $[0, \tau]$ with $\tau \in$ $(0, \min\{T, \tau_0\}],$ where

$$T = \int_{u_0}^{+\infty} \frac{1}{uG(u)} du, \quad u_0 = \int V(x) dv.$$

In all cases μ_t are probability measures and $\sup_{t \in [0,\tau]} \int V(x) d\mu_t < \infty$.

The proof is based on Schauder fixed-point theorem and vanishing viscosity method (cf. [?]). How does this theorem work?

- [1] Ambrosio L. // Calculus of Variations and Non-Linear PDE (CIME Series, Cetraro, 2005), 1927, B.Dacorogno, P.Marcellini eds., 2008. P.2-41.
- [2] Bertozzi A.L., Carrillo J.A., Laurent T. // Nonlinearity, 2009, v.22. P.683–710.
- [3] Bogachev V.I., Krylov N.V., Roeckner M., Shaposhnikov S.V. Fokker-Planck-Kolmogorov equations, M.-Izhevsk, 2013 and references therein.
- [4] Carrillo J.A., Difrancesco M., Figalli A., Laurent T., Slepcev D.// Duke Math. J., 2011, v.156, N2. P.229–271.
- [5] DiPerna R.J., Lions P.L. // Invent. Math., 1989, v.98. P.511–547.
- [6] Dobrushin R. // Functional Analysis and Its Applications, 1979, 13:2 P.115–123.
- [7] Funaki T. // Z. Wahrscheinlichkeitstheorie verw. Geb., 1984, V.67. P.331–348.
- [8] Kozlov V. // Russian Math. Surveys, 63:4 (2008) P.691–726.
- [9] Manita O.A., Shaposhnikov S.V. // St. Petersburg Mathematical Journal, 2014, 25:1, 43–62.
- [10] Natile L., Peletier M., Savare G. // J. Math. Pures Appl., 95 (2011) 18-35.
- [11] Veretennikov A.Yu. // Monte Carlo and Quasi-Monte Carlo Methods 2004, Niederreiter, H; Talay, D. (Eds.), Springer, Berlin et al., 471-486.

Acknowledgments. This work has been partially supported by the projects RFBR 10-01-00518-a, 11-01-00348-a, 11-01-12018-ofi-m-2011, 12-01-92103-JFa. The author is grateful to Prof. Vladimir I. Bogachev and Stanislav V. Shaposhnikov for fruitful discussions and valuable remarks.

Spring School, University of Bath, 12-16 May 2014