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\ Main theorem

Optimal transportation and Wasserstein
spaces

The problem of Monge

e OT begins with the following problem of G. Monge? back in 1781:
given two probability densities f,g > 0on R? ([ f = [g = 1), find
amap T : RY — RY which “transports” (pushes forward) f onto g
and minimizes the transportation cost

M(T) = /R d %\x (@) f () da

Kantorovich’s approach by relaxation

b

e Kantorovich solved the existence question® in the full generality in 1942

by a relaxation method.

e For 11, v probability measures on X and Y (here X and Y are Rd,
compact subsets of R? or more general Polish spaces) we consider

(PK) inf {/XW%IQj — y|*dy(z,y) < v € (g, V)} ,

the set II(p,v) == {7y € P(X XY): (7%) gy = p, (7¥) gy = v} is
called transport plans, where ©* and 7Y are the two projections of
X XY onto X and Y respectively.

e If the optimal transport plan is of the form v = (id X T)#,u for a
measurable map 17" : X — Y, then 1" is an optimal transport map.

e [ he dual problem is:

(PD) Sup{[)(¢du+/§/¢dvr o(z) + ¢(y) S%\x—y\Q}

e ¢ and v are called Kantorovich potentials.
Brenier’s theorem

oIfX:Y:RdorX:Y:QCRdisacompactsetand,u<<£d,
then there exists a unique optimal transport map, which is the gradient
of a convex function. It is linked to the Kantorovich potential via

T(e) =2 = Vola) = ¥ (5lal* = olo)).

Wasserstein spaces and gradient flows

eFor an O C RY compact set we can equip the space of probability
measures P(€)) with a metric, called Wasserstein metric:

1
2

| 1
Wo(p, v) = inf {/ 512 = y[Pdy : v € (g, V)} -
(% ()

e Gradient flows: the ODE

{ #'(t) = =V F(x(t)),
z(0) = xp.

e Generalization to metric spaces via a discrete implicit Euler scheme:
for a time step 7 > 0 consider x( and

1
Ty = argmingF(z) + Q—d(a:, )2,
T
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Assumptions

olet Q C RY bea convex, compact subset.

elet H : ) — R be a smooth convex function, such that H(z) =
H(|z|) (hence its gradient preserves the direction of the vectors).

e [ he statement of our main result is the following:
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Theorem 1 Let p,g € P(S2) sufficiently smooth probability densities,
which are away from 0 and infinity. Then we have the following inequality

—/ Vp-VH(Vyp) < / Vg-VH(VY), (1)
() ()

1
where @ and 1) are the Kantorovich potentials (for the quadratic §|$ —y|?

cost) from p to g and from g to p respectively.

Further versions

Remark 1 This theorem remains true if we work in the whole R% (instead
of §2), but with compactly supported densities g and p. In this case
we also can drop the assumption on H, that H(z) = H(|z|), hence

VH(-z) # -VH(z),

— | Vp-VH(Vyp) < —/ Vg -VH(=V1).
Rd R4

Remark 2 Another interesting example is the quadratic case for H, i.e.
H(z) = %]2\2 In this particular case our inequality has the form of

— Vp-Vgog/ Vg- V.
R4 R4

The proof of this inequality is immediate using the geodesic convexity of
the entropy functional. Indeed it is well-known that the entropy functional
E(p) : Po(RY) 3 p — Jraplogpifp < L% and +00 otherwise is convex
along any (absolutely continuous) geodesics in the Wasserstein space. In
particular if we consider the geodesic py connecting p and g and we

d

calculate Eg(pt) which is increasing, we obtain the desired result.

e One more interesting particular case is for H(z) = |z| (obtaining it by
an approximation Hz(2) := 1/|z|? + ¢)

Theorem 2 Let p, g € Po(RY) sufficiently smooth, compactly supported
probability densities, which are away from 0 and infinity. Then we have
the following inequality

Vo Vi

— Vp- —— < Vg ——, 2
i VA S Jan VTV 2)

1
where o and 1) are the Kantorovich potentials (for the quadratic §|x — y|2

cost) from p to g and from g to p respectively.
Remark 3 By approximation arguments both Theorem 1 and Theorem
2 will remain true for W1 densities.

_______ Applications___|

BV estimates for
obstacle-like problems

projection and

o Consider K] == {p € Po(R%) : p < 1 a.e}, or if we work on a
compact set Q) C R?, this set is the same as {p € P(Q) : p < 1 a.e}.

e The projection operator of a density g € P((2) is defined as

S
Py lg] = argminpe i, 5 W3 (g, p).

e \We have the following estimate:

Theorem 3 If g € BV (X)) is a probability density, the total variation (in
(1) of its projection is less than its own total variation (in §2), i.e.

TV (Pg lg],22) <TV(g,9).

e \We study a more general problem, the projection below a given positive
BV function f : R — R, which could represent an obstacle.

e For this we consider the set K :={p € P(§2) : p < f a.e} and the
problem

win { W3(0.9) pe K| )

Theorem 4 If f,g € BV () we have the following estimation for the
solution p € P(€)) of (3)

TV (p, Q) <TV(g,Q)+2TV(f, Q). (4)

Remark 4 The constant 2 in the previous inequality is sharp.

BV estimates for the porous medium
equation
e Let us consider the problem
Ot = A (p)") » in (0, T] x RY,
_ . d (5)
10(07 ) = P05 in R )

where pq is a non-negative BV probability density and m > 0 is fixed.

e Since the seminal work of F. Otto  we know that the problem (5) can
1
be seen as a gradient flow of the functional F(p) := —/ o' in
Rd

m — 1
the space (P(R%), W5).

e As a corollary of Theorem 2 we obtain the estimate Vt, s € [0,T],t >
S:
TV(pt) < TV (ps),

and in particular for any t € [0, T

TV (pt) <TV(po).

Remark b Form =1, i.e. for the heat equation considering the gradient
flow of the entropy functional, F(p) := £(p) we get the same estimates.

?F. Otto, The geometry of dissipative evolution equations: the porous medium equation, Commun. in

PDE, 26 (2001), No. 1-2, 101-174.

Set evolution problems

Let us consider the following problem:

o For a set A C RY of finite perimeter with |A| = 1, we define pg = I 4,
the uniform density on the set A, which gives a probability measure.

e For a time interval [0, 7] and a time step 7 > 0 (and N + 1 := F})

=
we consider the following scheme p/, := py and

Pir1 = Pr, (1+7)p;|, ke{0,...,N —1}, (6)

and want to study the convergence of this algorithm as 7 — 0.

e Theorem 2 will ensure that after each step of the algorithm (6) we will
get a BV density and moreover the total variation of the new density
decreases.

e This allows us to pass to the limit as 7 — 0 and we have a
strong L' convergence, which tells us that in the limit we will have
precisely indicator functions of sets of finite perimeter, hence during
the evolution of a set A we always have sets.

Crowd movements with congestion

e Similar estimates are very important to get compactness in some second
order macroscopic crowd motion models with density constraints
(similar to the one studied in 9).

e The analysed Fokker-Planck type equation for a given py BV initial
density and u; smooth enough velocity field is the following,

Orpr — Apr + V- (Padm(pt) [ut]pt) =0,

where Padm(p) s a projection operator onto the set of admissible vector
field w.r.t. p, the ones with positive divergence on the saturated set

=1}

e In particular a key ingredient is an estimate of the form W (pq, pt) <
Ct when py is a solution of the Fokker-Planck equation without
projection. This requires g € BV, and our BV estimate ensures
that the projection does not worsen the BV behaviour.

e This is the subject of a future work (see )
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