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Université Paris-Sud, Orsay, France
alpar.meszaros@math.u-psud.fr

(joint work with G. De Philippis, F. Santambrogio and B. Velichkov)

Introduction

Optimal transportation and Wasserstein
spaces

The problem of Monge

•OT begins with the following problem of G. Mongea back in 1781:

given two probability densities f, g ≥ 0 on Rd (
∫
f =

∫
g = 1), find

a map T : Rd → Rd, which “transports” (pushes forward) f onto g
and minimizes the transportation cost

M(T ) :=

∫
Rd

1

2
|x− T (x)|2f (x)dx.

Kantorovich’s approach by relaxation

• Kantorovich solved the existence questionb in the full generality in 1942
by a relaxation method.

• For µ, ν probability measures on X and Y (here X and Y are Rd,
compact subsets of Rd or more general Polish spaces) we consider

(PK) inf

{∫
X×Y

1

2
|x− y|2dγ(x, y) : γ ∈ Π(µ, ν)

}
,

the set Π(µ, ν) :=
{
γ ∈ P(X × Y ) : (πx)#γ = µ, (πy)#γ = ν

}
is

called transport plans, where πx and πy are the two projections of
X × Y onto X and Y respectively.

• If the optimal transport plan is of the form γ = (id × T )#µ for a
measurable map T : X → Y, then T is an optimal transport map.

• The dual problem is:

(PD) sup

{∫
X
φdµ +

∫
Y
ψdν : φ(x) + ψ(y) ≤ 1

2
|x− y|2

}
• φ and ψ are called Kantorovich potentials.

Brenier’s theorem

• If X = Y = Rd or X = Y = Ω ⊂ Rd is a compact set and µ� Ld,
then there exists a unique optimal transport map, which is the gradient
of a convex function. It is linked to the Kantorovich potential via

T (x) = x−∇φ(x) = ∇
(

1

2
|x|2 − φ(x)

)
.

Wasserstein spaces and gradient flows

• For an Ω ⊂ Rd compact set we can equip the space of probability
measures P(Ω) with a metric, called Wasserstein metric:

W2(µ, ν) := inf

{∫
Ω×Ω

1

2
|x− y|2dγ : γ ∈ Π(µ, ν)

}1
2

.

• Gradient flows: the ODE{
x′(t) = −∇F (x(t)),
x(0) = x0.

• Generalization to metric spaces via a discrete implicit Euler scheme:
for a time step τ > 0 consider x0 and

xk+1 := argminxF (x) +
1

2τ
d(x, xk)2.

aG. Monge, Mémoire sur la théorie des déblais et des remblais, Hist. de l’Acad. Roy. des Sci. de

Paris, 666-704, (1781)
bL. Kantorovich, On the transfer of masses, Dokl. Acad. Nauk. USSR, (37), 7-8, 1942.

Main results

Assumptions

• Let Ω ⊂ Rd be a convex, compact subset.

• Let H : Ω → R be a smooth convex function, such that H(z) =
H(|z|) (hence its gradient preserves the direction of the vectors).

• The statement of our main result is the following:

Main theorem

Theorem 1 Let ρ, g ∈ P(Ω) sufficiently smooth probability densities,
which are away from 0 and infinity. Then we have the following inequality

−
∫

Ω
∇ρ · ∇H(∇ϕ) ≤

∫
Ω
∇g · ∇H(∇ψ), (1)

where ϕ and ψ are the Kantorovich potentials (for the quadratic
1

2
|x−y|2

cost) from ρ to g and from g to ρ respectively.

Further versions

Remark 1 This theorem remains true if we work in the whole Rd (instead
of Ω), but with compactly supported densities g and ρ. In this case
we also can drop the assumption on H, that H(z) = H(|z|), hence
∇H(−z) 6= −∇H(z),

−
∫
Rd
∇ρ · ∇H(∇ϕ) ≤ −

∫
Rd
∇g · ∇H(−∇ψ).

Remark 2 Another interesting example is the quadratic case for H, i.e.
H(z) = 1

2|z|
2. In this particular case our inequality has the form of

−
∫
Rd
∇ρ · ∇ϕ ≤

∫
Rd
∇g · ∇ψ.

The proof of this inequality is immediate using the geodesic convexity of
the entropy functional. Indeed it is well-known that the entropy functional
E(ρ) : P2(Rd) 3 ρ 7→

∫
Rd ρ log ρ if ρ� Ld and +∞ otherwise is convex

along any (absolutely continuous) geodesics in the Wasserstein space. In
particular if we consider the geodesic ρt connecting ρ and g and we

calculate
d

dt
E(ρt) which is increasing, we obtain the desired result.

•One more interesting particular case is for H(z) = |z| (obtaining it by

an approximation Hε(z) :=
√
|z|2 + ε)

Theorem 2 Let ρ, g ∈ P2(Rd) sufficiently smooth, compactly supported
probability densities, which are away from 0 and infinity. Then we have
the following inequality

−
∫
Rd
∇ρ · ∇ϕ

|∇ϕ|
≤
∫
Rd
∇g · ∇ψ

|∇ψ|
, (2)

where ϕ and ψ are the Kantorovich potentials (for the quadratic
1

2
|x−y|2

cost) from ρ to g and from g to ρ respectively.
Remark 3 By approximation arguments both Theorem 1 and Theorem
2 will remain true for W 1,1 densities.

Applications

BV estimates for projection and
obstacle-like problems

• Consider K1 := {ρ ∈ P2(Rd) : ρ ≤ 1 a.e}, or if we work on a
compact set Ω ⊂ Rd, this set is the same as {ρ ∈ P(Ω) : ρ ≤ 1 a.e}.
• The projection operator of a density g ∈ P(Ω) is defined as

PK1
[g] := argminρ∈K1

1

2
W 2

2 (g, ρ).

•We have the following estimate:

Theorem 3 If g ∈ BV (Ω) is a probability density, the total variation (in
Ω) of its projection is less than its own total variation (in Ω), i.e.

TV
(
PK1

[g],Ω
)
≤ TV (g,Ω).

•We study a more general problem, the projection below a given positive
BV function f : Rd→ R, which could represent an obstacle.

• For this we consider the set Kf := {ρ ∈ P(Ω) : ρ ≤ f a.e} and the
problem

min

{
1

2
W 2

2 (ρ, g) : ρ ∈ Kf

}
. (3)

Theorem 4 If f, g ∈ BV (Ω) we have the following estimation for the
solution ρ ∈ P(Ω) of (3)

TV (ρ,Ω) ≤ TV (g,Ω) + 2TV (f,Ω). (4)

Remark 4 The constant 2 in the previous inequality is sharp.

BV estimates for the porous medium
equation

• Let us consider the problem{
∂tρt = ∆

(
ρmt
)
, in (0, T ]× Rd,

ρ(0, ·) = ρ0, in Rd,
(5)

where ρ0 is a non-negative BV probability density and m > 0 is fixed.

• Since the seminal work of F. Otto a we know that the problem (5) can

be seen as a gradient flow of the functional F(ρ) :=
1

m− 1

∫
Rd
ρm in

the space (P(Rd),W2).

• As a corollary of Theorem 2 we obtain the estimate ∀t, s ∈ [0, T ], t ≥
s:

TV (ρt) ≤ TV (ρs),

and in particular for any t ∈ [0, T ]

TV (ρt) ≤ TV (ρ0).

Remark 5 For m = 1, i.e. for the heat equation considering the gradient
flow of the entropy functional, F(ρ) := E(ρ) we get the same estimates.

aF. Otto, The geometry of dissipative evolution equations: the porous medium equation, Commun. in

PDE, 26 (2001), No. 1-2, 101-174.

Set evolution problems

Let us consider the following problem:

• For a set A ⊂ Rd of finite perimeter with |A| = 1, we define ρ0 = IA,
the uniform density on the set A, which gives a probability measure.

• For a time interval [0, T ] and a time step τ > 0 (and N + 1 :=
[
T
τ

]
)

we consider the following scheme ρτ0 := ρ0 and

ρτk+1 := PK1

[
(1 + τ )ρτk

]
, k ∈ {0, . . . , N − 1}, (6)

and want to study the convergence of this algorithm as τ → 0.

• Theorem 2 will ensure that after each step of the algorithm (6) we will
get a BV density and moreover the total variation of the new density
decreases.

• This allows us to pass to the limit as τ → 0 and we have a
strong L1 convergence, which tells us that in the limit we will have
precisely indicator functions of sets of finite perimeter, hence during
the evolution of a set A we always have sets.

Crowd movements with congestion

• Similar estimates are very important to get compactness in some second
order macroscopic crowd motion models with density constraints
(similar to the one studied in a).

• The analysed Fokker-Planck type equation for a given ρ0 BV initial
density and ut smooth enough velocity field is the following,

∂tρt −∆ρt +∇ ·
(
Padm(ρt)[ut]ρt

)
= 0,

where Padm(ρ) is a projection operator onto the set of admissible vector
field w.r.t. ρ, the ones with positive divergence on the saturated set
{ρ = 1}.
• In particular a key ingredient is an estimate of the form Wp(µ0, µt) ≤
Ct when µt is a solution of the Fokker-Planck equation without
projection. This requires µ0 ∈ BV , and our BV estimate ensures
that the projection does not worsen the BV behaviour.

• This is the subject of a future work (see b)
aB. Maury, A. Roudneff-Chupin, F. Santambrogio, A macroscopic crowd motion model of gradient

flow type, Math. Models and Meth. in Appl. Sci., 20 (2010), No. 10, 1787-1821.
bA. R. Mészáros, F. Santambrogio, A second order model for macroscopic crowd movements with

congestion, in preparation.


