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Motivation
Dislocations are point defects in solid crystalline structures. The interest
in their study lies in the influence that their presence has on the properties
of the material itself. A dislocation is characterized by its Burgers vector,
which describes the lattice mismatch. There are two main types of dis-
locations, namely edge dislocations and screw dislocations. We describe
the energy and the dynamics for a system of screw dislocations subject to
antiplane shear.

Types of dislocations

An edge and a screw dislocation.
The Burgers vectors are in red.

The model for screw dislocations
The elastic deformation associated with antiplane shear is described by the field u : Ω → R such
that (x1, x2, x3) 7→ (x1, x2, x3 + u(x1, x2)), whose deformation gradient can be written as F =
I + e3 ⊗ (h, 0)>, where h = ∇u. Dislocations in a crystalline elastic solid body are modeled as
singularities of the gradient of the displacement, so that h fails to be a pure gradient and contains
a singular part. This is encoded in the curl of h. The system reads [1]

curlh =
∑N

i=1 biδzi

divLh = 0

}
in Ω, where bi = bie3, bi =

∫
`i

h · dx; (1)

Z := {z1, . . . , zN} is the set of the dislocations sites, B := {b1, . . . ,bN} is the set of the correspond-
ing Burgers vectors, and L = µdiag(1, λ2) is the elastic tensor written in terms of the Lamé moduli
of the material; finally, `i is a counterclockwise loop around the dislocation zi only.

An open domain Ω ⊂
R2. The dots repre-
sent the positions of
the dislocations zi, the
white ellipses Cε,i are
the cores to be re-
moved to solve (1) on
Ωε := Ω \ (∪Ni=1Cε,i).

There is a unique solution hε for each Ωε.

Variational formulation
To tackle system (1) by means of a variational approach, we follow [2]
and consider the energy density W (h) := 1

2h · Lh. The associated energy
functional is J(h) :=

∫
Ω
W (h) dx, which in the perforated domain reads

Jε(h) =

∫
Ωε

W (h) dx.

Define the space Hcurl(Ωε) := {h ∈ L2(Ωε,R2) : curlh ∈ L2(Ωε)}. Then,
by computing the first variation of Jε, it is possible to prove the following

Theorem ([4]). Assume L is positive definite. Then, if hε ∈
Hcurl

0 (Ωε,Z,B) := {h ∈ Hcurl(Ωε) : curlh = 0,
∫
∂Cε,i

h · dx = bi} is a
minimizer of Jε, it solves the Euler equation{

div(Lhε) = 0 in Ωε,
Lhε · n̂ = 0 on ∂Ωε.

Moreover, the solution is unique.
By letting ε→ 0, hε converges to h0 [2, 4], the solution to the problem for
the punctured domain Ω \ Z .

Renormalized energy
Theorem ([4]). Let hε be a minimizer of Jε. Then

Jε(hε) =

∫
Ωε

1

2
hε · Lhε =

N∑
i=1

µλb2i
4π

log
1

ε
+ U(Z) +O(ε), (2)

where U(Z) = US(Z) + UI(Z) + UE(Z) is the renormalized energy, where

US(Z) =
N∑
i=1

µλb2i
4π

logR+

N∑
i=1

∫
Ω\Ej,R

W (ki) dx, UI(Z) =
N−1∑
i=1

N∑
j=i+1

∫
Ω
kj · Lkidx,

UE(Z) =
∫

Ω
W (∇u0)dx+

N∑
i=1

∫
∂Ω

u0Lki · n̂ds.

The term US is the “self” energy associated with the presence of the dis-
locations themselves; the term UI is the energy given by the interaction
between the dislocations; the term UE is the energy associated with the
presence of the elastic medium: it contains the contribution of the medium
and the influence of the tractions of the dislocations on the boundary.

Dynamics: existence of solutions
Following [1], dislocations can only move along a finite set G :=
{g1, . . . ,gM} of glide directions, with a velocity determined by the force
acting on each dislocation. The Peach-Köhler force ji acting on the i-th
dislocation is the derivative of the energy (2), at a minimum point, with
respect to the position of the dislocation zi. Let Z := (z1, . . . , zN ) ∈ ΩN .
The equations of motion read

żi ∈ Fi(Z), zi(0) = zi,0, (3)
for given initial conditions Z0 := (z1,0, . . . , zN,0). Here

Fi(Z) :=
{

(ji(Z) · gi)gi : gi ∈ arg max{ji(Z) · g, g ∈ G}
}
,

so that the vectors gi’s represent the glide directions closest to ji(Z) (see
[1]), that is ji(Z) · gi > ji(Z) · g, for all g ∈ G. To solve (3), we use a
technique introduced by Filippov [3].
Theorem (Local existence [4]). Let Ω ⊂ R2 be a connected open set. Let
F (Z) := F1(Z)× · · ·×FN (Z) : D(F ) → P(R2N ) and let Z0 ∈ D(F ) be a
given initial configuration of dislocations. Consider the initial value problem

Ż ∈ coF (Z), Z(0) = Z0. (4)
Then there exists a solution Z : [0, T ] → D(F ) to problem (4), for a maximal
existence time T depending only on Z0, D(F ), and |ji(Z)|’s.

The domain D(F ) of the set-valued function F is ΩN \ {collisions}. To
prove the local existence theorem it is enough to notice that the set-valued
function coF defined in (4) satisfies the hypotheses of Theorem 1 in [3,
page 77]. Finally, notice that solutions to (4) exist as long as the disloca-
tions stay away from the boundary ∂Ω and do not collide.

Dynamics: uniqueness of solutions
To discuss uniqueness of solutions, a deep investigation of the set

Ai := {Z ∈ D(F ) : card(Fi(Z)) = 2}, i ∈ {1, . . . , N}, (5)
where the direction of motion is not uniquely defined, is required. Note
that, if Z ∈ Ai, then Fi(Z) = {f−i (Z), f+

i (Z)}. Define f±(Z) :=
(f1(Z), . . . , fi−1(Z), f±i (Z), fi+1(Z), . . . , fN (Z)) ∈ R2N . These results, to-
gether with general theorems from [3], yield
Theorem (Right uniqueness [4]). Let Ω ⊂ R2 be a connected open set. Let
F (Z) : D(F )→ P(R2N ), let Z0 ∈ Ii for some i ∈ {1, . . . , N}, and let n(Z0) be
the unit normal toAi at Z0. If either f−(Z0) ·n(Z0) > 0 or f+(Z0) ·n(Z0) < 0,
then there exists T > 0 such that the solution to (4) is unique in [0, T ].

Here, Ii := Ai \ (Si ∪ Eint ∪ Ezero). The previous theorem allows to deal
with situations like cross-slip and fine cross-slip, initially described in [1].

Theorem (Cross-Slip [4]). Suppose Z(t) is a solution to (4) for t ∈ [0, T ] and
that ∃ t1 ∈ (0, T ) and Ẑ ∈ Ii for some i ∈ {1, . . . , N} such that Z(t1) = Ẑ,
f−(Ẑ) · n(Ẑ) > 0 and f+(Ẑ) · n(Ẑ) > 0. Furthermore, suppose ∃ δ1 > 0 such
that Z(t) ∈ V − for t ∈ (t1 − δ1, t1). Then ∃ δ2 > 0 such that Z(t) ∈ V + for
t ∈ (t1, t1 + δ2). That is, Z(t) crosses from V − into V +.

Theorem (Fine Cross-Slip [4]). Let Z0 ∈ Ii for some i ∈ {1, . . . , N} and
suppose ∃ r > 0 such that for all Z ∈ Br(Z0), f−(Z) · n(Z) > 0 and f+(Z) ·
n(Z) < 0. Then ∃T > 0 and a unique solution Z : [0, T ] → D(F ) to (4).
Moreover, ∃ δ > 0 such that Z(t) ∈ Ii ⊂ Ai for t ∈ [0, δ) and solves the
ordinary differential equation

Ż = f0(Z) ∈ coF (Z), where f0(Z) := αf+(Z) + (1− α)f−(Z),

and α ∈ (0, 1) is defined by α :=
f−(Z) · n(Z)

f−(Z) · n(Z)− f+(Z) · n(Z)
.
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