

Dynamics for a System of Screw Dislocations

Timothy Blass¹, Irene Fonseca¹, Giovanni Leoni¹, and Marco Morandotti²

¹Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213 USA ²Departamento de Matemática, Instituto Superior Técnico, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal

Motivation

Dislocations are point defects in solid crystalline structures. The interest in their study lies in the influence that their presence has on the properties of the material itself. A dislocation is characterized by its *Burgers vector*, which describes the lattice mismatch. There are two main types of dislocations, namely *edge* dislocations and *screw* dislocations. We describe the energy and the dynamics for a system of screw dislocations subject to antiplane shear.

Types of dislocations

An *edge* and a *screw* dislocation. The Burgers vectors are in red.

Essential references

- [1] P. Cermelli and M.E. Gurtin. *Arch. Ration. Mech. Anal.*, 148(1):3–52, 1999.
- [2] P. Cermelli and G. Leoni. *SIAM J. Math. Anal.*, 37(4):1131–1160 (electronic), 2005.
- [3] A.F. Filippov, Differential equations with discontinuous right-hand sides.
- [4] T. Blass, I. Fonseca, G. Leoni, and M. Morandotti. *In preparation*.

The model for screw dislocations

The elastic deformation associated with *antiplane shear* is described by the field $u : \Omega \to \mathbb{R}$ such that $(x_1, x_2, x_3) \mapsto (x_1, x_2, x_3 + u(x_1, x_2))$, whose deformation gradient can be written as $\mathbf{F} = (x_1, x_2, x_3) \mapsto (x_1, x_2, x_3 + u(x_1, x_2))$, whose deformation gradient can be written as $\mathbf{F} = (x_1, x_2, x_3) \mapsto (x_1, x_2, x_3 + u(x_1, x_2))$.

An open domain $\Omega \subset \mathbb{R}^2$. The dots repre-

 $\mathbf{I} + \mathbf{e}_3 \otimes (\mathbf{h}, 0)^{\top}$, where $\mathbf{h} = \nabla u$. Dislocations in a crystalline elastic solid body are modeled as singularities of the gradient of the displacement, so that \mathbf{h} fails to be a pure gradient and contains a singular part. This is encoded in the curl of \mathbf{h} . The system reads [1]

$$\operatorname{curl} \mathbf{h} = \sum_{i=1}^{N} \mathbf{b}_{i} \delta_{\mathbf{z}_{i}} \left\{ \operatorname{in} \Omega, \quad \operatorname{where} \mathbf{b}_{i} = b_{i} \mathbf{e}_{3}, \, b_{i} = \int_{\ell_{i}} \mathbf{h} \cdot \mathrm{d} \mathbf{x}; \quad (1)$$

sent the positions of the dislocations \mathbf{z}_i , the white ellipses $C_{\varepsilon,i}$ are the cores to be removed to solve (1) on $\Omega_{\varepsilon} := \Omega \setminus (\bigcup_{i=1}^N \overline{C}_{\varepsilon,i}).$

 $\mathcal{Z} := {\mathbf{z}_1, \dots, \mathbf{z}_N}$ is the set of the dislocations sites, $\mathcal{B} := {\mathbf{b}_1, \dots, \mathbf{b}_N}$ is the set of the corresponding Burgers vectors, and $\mathbf{L} = \mu \operatorname{diag}(1, \lambda^2)$ is the elastic tensor written in terms of the Lamé moduli of the material; finally, ℓ_i is a counterclockwise loop around the dislocation \mathbf{z}_i only.

There is a unique solution \mathbf{h}_{ε} for each Ω_{ε} .

Variational formulation

To tackle system (1) by means of a variational approach, we follow [2] and consider the energy density $W(\mathbf{h}) := \frac{1}{2}\mathbf{h} \cdot \mathbf{L}\mathbf{h}$. The associated energy functional is $J(\mathbf{h}) := \int_{\Omega} W(\mathbf{h}) \, \mathrm{d}\mathbf{x}$, which in the perforated domain reads $J_{\varepsilon}(\mathbf{h}) = \int_{\Omega} W(\mathbf{h}) \, \mathrm{d}\mathbf{x}$.

Define the space $H^{\operatorname{curl}}(\Omega_{\varepsilon}) := \{\mathbf{h} \in L^{2}(\Omega_{\varepsilon}, \mathbb{R}^{2}) : \operatorname{curl} \mathbf{h} \in L^{2}(\Omega_{\varepsilon})\}$. Then, by computing the first variation of J_{ε} , it is possible to prove the following **Theorem** ([4]). Assume \mathbf{L} is positive definite. Then, if $\mathbf{h}_{\varepsilon} \in H_{0}^{\operatorname{curl}}(\Omega_{\varepsilon}, \mathcal{Z}, \mathcal{B}) := \{\mathbf{h} \in H^{\operatorname{curl}}(\Omega_{\varepsilon}) : \operatorname{curl} \mathbf{h} = 0, \int_{\partial C_{\varepsilon,i}} \mathbf{h} \cdot d\mathbf{x} = b_{i}\}$ is a

Renormalized energy

Theorem ([4]). Let \mathbf{h}_{ε} be a minimizer of J_{ε} . Then $J_{\varepsilon}(\mathbf{h}_{\varepsilon}) = \int_{\Omega_{\varepsilon}} \frac{1}{2} \mathbf{h}_{\varepsilon} \cdot \mathbf{L} \mathbf{h}_{\varepsilon} = \sum_{i=1}^{N} \frac{\mu \lambda b_{i}^{2}}{4\pi} \log \frac{1}{\varepsilon} + U(\mathcal{Z}) + O(\varepsilon), \quad (2)$ where $U(\mathcal{Z}) = U_{S}(\mathcal{Z}) + U_{I}(\mathcal{Z}) + U_{E}(\mathcal{Z})$ is the renormalized energy, where $U_{S}(\mathcal{Z}) = \sum_{i=1}^{N} \frac{\mu \lambda b_{i}^{2}}{4\pi} \log R + \sum_{i=1}^{N} \int_{\Omega \setminus E_{j,R}} W(\mathbf{k}_{i}) \, \mathrm{d}\mathbf{x}, \quad U_{I}(\mathcal{Z}) = \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \int_{\Omega} \mathbf{k}_{j} \cdot \mathbf{L} \mathbf{k}_{i} \, \mathrm{d}\mathbf{x},$ $U_{E}(\mathcal{Z}) = \int_{\Omega} W(\nabla u_{0}) \, \mathrm{d}\mathbf{x} + \sum_{i=1}^{N} \int_{\partial\Omega} u_{0} \mathbf{L} \mathbf{k}_{i} \cdot \hat{\mathbf{n}} \, \mathrm{d}s.$

minimizer of J_{ε} , it solves the Euler equation

$$\begin{cases} \operatorname{div}(\mathbf{L}\mathbf{h}_{\varepsilon}) = 0 & \operatorname{in} \Omega_{\varepsilon}, \\ \mathbf{L}\mathbf{h}_{\varepsilon} \cdot \hat{\mathbf{n}} = 0 & \operatorname{on} \partial \Omega_{\varepsilon}. \end{cases}$$

Moreover, the solution is unique.

By letting $\varepsilon \to 0$, \mathbf{h}_{ε} converges to \mathbf{h}_0 [2, 4], the solution to the problem for the punctured domain $\Omega \setminus \mathcal{Z}$.

Dynamics: existence of solutions

Following [1], dislocations can only move along a finite set $\mathcal{G} := \{\mathbf{g}_1, \ldots, \mathbf{g}_M\}$ of *glide directions*, with a velocity determined by the force acting on each dislocation. The Peach-Köhler force \mathbf{j}_i acting on the *i*-th dislocation is the derivative of the energy (2), at a minimum point, with respect to the position of the dislocation \mathbf{z}_i . Let $\mathbf{Z} := (\mathbf{z}_1, \ldots, \mathbf{z}_N) \in \Omega^N$. The equations of motion read

$$\dot{\mathbf{z}}_i \in F_i(\mathbf{Z}), \qquad \mathbf{z}_i(0) = \mathbf{z}_{i,0}, \tag{3}$$

for given initial conditions $\mathbf{Z}_0 := (\mathbf{z}_{1,0}, \dots, \mathbf{z}_{N,0})$. Here

 $F_i(\mathbf{Z}) := \Big\{ (\mathbf{j}_i(\mathbf{Z}) \cdot \mathbf{g}_i) \, \mathbf{g}_i : \mathbf{g}_i \in \arg \max\{\mathbf{j}_i(\mathbf{Z}) \cdot \mathbf{g}, \, \mathbf{g} \in \mathcal{G}\} \Big\},\$

so that the vectors \mathbf{g}_i 's represent the glide directions *closest to* $\mathbf{j}_i(\mathbf{Z})$ (see [1]), that is $\mathbf{j}_i(\mathbf{Z}) \cdot \mathbf{g}_i \ge \mathbf{j}_i(\mathbf{Z}) \cdot \mathbf{g}$, for all $\mathbf{g} \in \mathcal{G}$. To solve (3), we use a technique introduced by Filippov [3].

The term U_S is the "self" energy associated with the presence of the dislocations themselves; the term U_I is the energy given by the *interaction* between the dislocations; the term U_E is the energy associated with the presence of the *elastic* medium: it contains the contribution of the medium and the influence of the tractions of the dislocations on the boundary.

Dynamics: uniqueness of solutions

To discuss uniqueness of solutions, a deep investigation of the set

 $\mathcal{A}_i := \{ \mathbf{Z} \in \mathcal{D}(F) : \operatorname{card}(F_i(\mathbf{Z})) = 2 \}, \qquad i \in \{1, \dots, N\}, \tag{5}$

where the direction of motion is not uniquely defined, is required. Note that, if $\mathbf{Z} \in \mathcal{A}_i$, then $F_i(\mathbf{Z}) = \{\mathbf{f}_i^-(\mathbf{Z}), \mathbf{f}_i^+(\mathbf{Z})\}$. Define $\mathbf{f}^{\pm}(\mathbf{Z}) := (\mathbf{f}_1(\mathbf{Z}), \dots, \mathbf{f}_{i-1}(\mathbf{Z}), \mathbf{f}_i^{\pm}(\mathbf{Z}), \mathbf{f}_{i+1}(\mathbf{Z}), \dots, \mathbf{f}_N(\mathbf{Z})) \in \mathbb{R}^{2N}$. These results, together with general theorems from [3], yield

Theorem (Right uniqueness [4]). Let $\Omega \subset \mathbb{R}^2$ be a connected open set. Let $F(\mathbf{Z}) : \mathcal{D}(F) \to \mathcal{P}(\mathbb{R}^{2N})$, let $\mathbf{Z}_0 \in \mathcal{I}_i$ for some $i \in \{1, \ldots, N\}$, and let $\mathbf{n}(\mathbf{Z}_0)$ be the unit normal to \mathcal{A}_i at \mathbf{Z}_0 . If either $\mathbf{f}^-(\mathbf{Z}_0) \cdot \mathbf{n}(\mathbf{Z}_0) > 0$ or $\mathbf{f}^+(\mathbf{Z}_0) \cdot \mathbf{n}(\mathbf{Z}_0) < 0$, then there exists T > 0 such that the solution to (4) is unique in [0, T].

Here, $\mathcal{I}_i := \mathcal{A}_i \setminus (\mathcal{S}_i \cup \mathcal{E}_{int} \cup \mathcal{E}_{zero})$. The previous theorem allows to deal with situations like *cross-slip* and *fine cross-slip*, initially described in [1].

Theorem (Local existence [4]). Let $\Omega \subset \mathbb{R}^2$ be a connected open set. Let $F(\mathbf{Z}) := F_1(\mathbf{Z}) \times \cdots \times F_N(\mathbf{Z}) : \mathcal{D}(F) \to \mathcal{P}(\mathbb{R}^{2N})$ and let $\mathbf{Z}_0 \in \mathcal{D}(F)$ be a given initial configuration of dislocations. Consider the initial value problem

 $\dot{\mathbf{Z}} \in \operatorname{co} F(\mathbf{Z}), \qquad \mathbf{Z}(0) = \mathbf{Z}_0.$ (4)

Then there exists a solution $\mathbf{Z} : [0,T] \to \mathcal{D}(F)$ to problem (4), for a maximal existence time T depending only on \mathbf{Z}_0 , $\mathcal{D}(F)$, and $|\mathbf{j}_i(\mathbf{Z})|'s$.

The domain $\mathcal{D}(F)$ of the set-valued function F is $\Omega^N \setminus \{\text{collisions}\}$. To prove the local existence theorem it is enough to notice that the set-valued function $\operatorname{co} F$ defined in (4) satisfies the hypotheses of Theorem 1 in [3, page 77]. Finally, notice that solutions to (4) exist as long as the dislocations stay away from the boundary $\partial\Omega$ and do not collide.

Theorem (Cross-Slip [4]). Suppose $\mathbf{Z}(t)$ is a solution to (4) for $t \in [0, T]$ and that $\exists t_1 \in (0, T)$ and $\hat{\mathbf{Z}} \in \mathcal{I}_i$ for some $i \in \{1, ..., N\}$ such that $\mathbf{Z}(t_1) = \hat{\mathbf{Z}}$, $\mathbf{f}^-(\hat{\mathbf{Z}}) \cdot \mathbf{n}(\hat{\mathbf{Z}}) > 0$ and $\mathbf{f}^+(\hat{\mathbf{Z}}) \cdot \mathbf{n}(\hat{\mathbf{Z}}) > 0$. Furthermore, suppose $\exists \delta_1 > 0$ such that $\mathbf{Z}(t) \in V^-$ for $t \in (t_1 - \delta_1, t_1)$. Then $\exists \delta_2 > 0$ such that $\mathbf{Z}(t) \in V^+$ for $t \in (t_1, t_1 + \delta_2)$. That is, $\mathbf{Z}(t)$ crosses from V^- into V^+ .

Theorem (Fine Cross-Slip [4]). Let $\mathbf{Z}_0 \in \mathcal{I}_i$ for some $i \in \{1, ..., N\}$ and suppose $\exists r > 0$ such that for all $\mathbf{Z} \in B_r(\mathbf{Z}_0)$, $\mathbf{f}^-(\mathbf{Z}) \cdot \mathbf{n}(\mathbf{Z}) > 0$ and $\mathbf{f}^+(\mathbf{Z}) \cdot \mathbf{n}(\mathbf{Z}) < 0$. Then $\exists T > 0$ and a unique solution $\mathbf{Z} : [0,T] \rightarrow \mathcal{D}(F)$ to (4). Moreover, $\exists \delta > 0$ such that $\mathbf{Z}(t) \in \mathcal{I}_i \subset \mathcal{A}_i$ for $t \in [0,\delta)$ and solves the ordinary differential equation

 $\dot{\mathbf{Z}} = \mathbf{f}^0(\mathbf{Z}) \in \operatorname{co} F(\mathbf{Z}), \quad \text{where} \quad \mathbf{f}^0(\mathbf{Z}) := \alpha \mathbf{f}^+(\mathbf{Z}) + (1 - \alpha)\mathbf{f}^-(\mathbf{Z}),$ and $\alpha \in (0, 1)$ is defined by $\alpha := \frac{\mathbf{f}^-(\mathbf{Z}) \cdot \mathbf{n}(\mathbf{Z})}{\mathbf{f}^-(\mathbf{Z}) \cdot \mathbf{n}(\mathbf{Z}) - \mathbf{f}^+(\mathbf{Z}) \cdot \mathbf{n}(\mathbf{Z})}.$