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Kac’s process

Write S for the set of probability measures µ on R3 such that

〈v , µ〉 =

∫
R3

vµ(dv) = 0, 〈|v |2, µ〉 =

∫
R3

|v |2µ(dv) = 1.

Write SN for the subset of S consisting of N-particle normalized
empirical measures

µ =
1

N

N∑
i=1

δvi .

Given µN0 ∈ SN , consider the Markov chain (µNt )t>0 in SN with the
transition rule:

for every pair of particles v , v∗, at rate |v − v∗|/N, draw a

sphere with poles v , v∗, choose randomly a new axis for this

sphere, with poles v ′, v ′∗ say, and replace v , v∗ by v ′, v ′∗.
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I This is one of a class of processes proposed by Kac in 1954 as
models for the evolution by collisions of particle velocities in a
spatially homogeneous dilute gas.

I The rate of collisions is naturally proportional to the relative
speed |v − v∗|. Our time-scale normalizes this rate.

I Note that v ′ + v ′∗ = v + v∗ and write v ′ − v ′∗ = σ|v − v∗|.

I The transition (v , v∗)→ (v ′, v ′∗) models an elastic collision

|v |2 + |v∗|2 =
1

2
(|v + v∗|2 + |v − v∗|2) = |v ′|2 + |v ′∗|2.

I The special case we study, where the direction of v ′ − v ′∗ is
taken to be uniformly random, corresponds (in 3 dimensions)
to a model for hard sphere particles – by an elementary
geometric calculation.
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Kac’s purpose was to shed light on the Boltzmann equation which,
at least formally, should govern the behaviour of his process in the
limit N →∞.

Indeed he hoped to understand the N-particle system well enough
to deduce key properties of the Boltzmann equation.

McKean (1966) and Tanaka (1978, 1983) proved results on other
cases of Kac’s model.

Sznitman (1984) proved weak convergence in probability for hard
spheres to solutions of Boltzmann’s equation – formulated as
convergence in distribution and asymptotic independence of
particles.

Mischler and Mouhot (2013) have established quantitative versions
of Sznitman’s result (and much more) with good long-time
properties.

I will describe a new approach to the question of convergence,
based on direct use of martingale estimates, which leads to an
explicit pathwise estimate in Wasserstein distance.
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Martingales of Kac’s process
Encode the jumps in an integer-valued random measure m on
E = R3 × R3 × S2 × (0,∞) with atoms at all the quadruples
(V ,V∗,Σ,T ) such that the pair (V ,V∗) collides at time T with
post-collision velocities (V ′,V ′∗) given by V ′ − V ′∗ = Σ|V − V∗|.

The compensator m̄ of m is then given by

m̄(dv , dv∗, dσ, dt) = N|v − v∗|µNt−(dv)µNt−(dv∗)dσdt

where dσ is the uniform distribution on S2.

Define a random measure M on (0,∞)× R3 by specifying for
bounded measurable functions f

M f
t =

∫
(0,t]×R3

f (v)M(ds, dv)

=

∫
E

{f (v ′) + f (v ′∗)− f (v)− f (v∗)}
N

1(0,t](s)d(m − m̄)
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The process (M f
t )t>0 is a martingale, with

E|M f
t |2 6 32‖f ‖2∞t/N.

Moreover

〈f , µNt 〉 = 〈f , µN0 〉+ M f
t +

∫ t

0
〈f ,Q(µNs , µ

N
s )〉ds

where, for measures µ, ν on R3, Q(µ, ν) is the signed measure on
R3 given by

〈f ,Q(µ, ν)〉 =

∫
{f (v ′)+f (v ′∗)−f (v)−f (v∗)}|v−v∗|µ(dv)ν(dv∗)dσ.

Here v ′ = v ′(v , v∗, σ) and v ′∗ = v ′∗(v , v∗, σ) are given as always by

v ′ + v ′∗ = v + v∗, v ′ − v ′∗ = σ|v − v∗|.



Boltzmann’s equation
A process (µt)t>0 in S is a (measure) solution to the spatially
homogeneous Boltzmann equation if, for all bounded measurable
functions f of compact support in R3 and all t > 0

〈f , µt〉 = 〈f , µ0〉+

∫ t

0
〈f ,Q(µs , µs)〉ds.

Lu and Mouhot (2012) have shown that, for all µ0 ∈ S there is a
unique solution (µt)t>0 starting from µ0.

Remember that E|M f
t |2 6 32‖f ‖2∞t/N and compare with

〈f , µNt 〉 = 〈f , µN0 〉+ M f
t +

∫ t

0
〈f ,Q(µNs , µ

N
s )〉ds.

Can we use these equations to see that in the limit N →∞

µN0 → µ0 implies µNt → µt for all t > 0?
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Wasserstein distance

For functions f on R3 we will write ‖f ‖ for the smallest constant
such that, for all v , v ′,

|f̂ (v)| 6 ‖f ‖, |f̂ (v)− f̂ (v ′)| 6 ‖f ‖|v − v ′|.

where f̂ (v) = f (v)/(1 + |v |2).

We will use on S the distance function

W (µ, ν) = sup
‖f ‖=1

〈f , µ− ν〉.
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Theorem
Assume that 〈|v |p, µ0〉 <∞ for some p > 5. Set

α(p) = 1/(6 + 1/(p − 3)).

For all ε > 0 and all T <∞, there is a constant C <∞ such that,
for all N ∈ N and any Kac process (µNt )t>0 in SN , with probability
exceeding 1− ε, for all t ∈ [0,T ],

W (µNt , µt) 6 C (W (µN0 , µ0) + N−α(p)).

The constant C may be chosen to depend only on ε, λ, p and T ,
where λ is an upper bound for 〈|v |p, µ0〉 and 〈|v |p, µN0 〉.

A similar estimate, with a different formula for α(p) > 0 holds also
for p ∈ (3, 5).
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Moment estimates

It is known that for all p ∈ N there is a constant Cp depending
only on p such that, for all t > 0,

〈|v |p, µt〉 6 Cp〈1 + |v |p, µ0〉.

Indeed Cp may be chosen so that, for all t > 0 and all N ∈ N,

E
(

sup
s6t
〈|v |p, µNt 〉

)
6 Cp(1 + t)〈1 + |v |p, µN0 〉.

We will obtain some estimates in terms of the random variables

mp(t) = sup
s6t
〈1 + |v |p, µNs + µs〉.
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Towards a stability argument
Subtract the Boltzmann equation from the martingale
decomposition for Kac’s process to obtain, for suitable functions f
on R3 and ρt = µNt + µt ,

〈f , µNt − µt〉 = 〈f , µN0 − µ0〉+ M f
t +

∫ t

0
〈f ,Q(ρs , µ

N
s − µs)〉ds.

We will treat this as a driven linear equation for µNt − µt and
attempt to show stability around the undriven case.

Two immediate obstacles

I the process is infinite-dimensional (measure-valued),

I the Boltzmann operator Q(ρt , ·) is unbounded.

So

I we use a finite-dimensional approximation,

I we solve the linear equation explicitly, taking advantage of
good parts of the operator.
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Branching process
Condition on Kac’s process and introduce for s > 0 and v ∈ R3 an
auxiliary branching process of positive and negative particles
starting from a single positive particle at v at time s.

The branching rule is that each positive particle v , at rate

|v − v∗|(µNt + µt)(dv∗)dσdt,

dies and is replaced by two positive particles v ′ = v ′(v , v∗, σ) and
v ′∗ = v ′∗(v , v∗, σ) and one negative particle v∗, and a similar rule
holds for negative particles.

Write Λ±t for the un-normalized empirical measures of ± particles
at time t. Fix t > 0 and a function ft on R3. Define for s ∈ [0, t]

fs(v) = E(s,v)〈ft ,Λ+
t − Λ−t 〉.

Then

〈ft , µNt − µt〉 = 〈f0, µN0 − µ0〉+

∫
(0,t]×R3

fs(v)M(ds, dv).
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Outline of the proof

We assume that ‖ft‖ 6 1 and use the equation

〈ft , µNt − µt〉 = 〈f0, µN0 − µ0〉+

∫
(0,t]×R3

fs(v)M(ds, dv).

to find a set Ω0 of high probability and a small bound δ,
independent of t ∈ [0,T ] and ft , such that, on Ω0,

〈ft , µNt − µt〉 6 δ.

Then, on Ω0,
sup
t6T

W (µNt , µt) 6 δ.



Lemma
For all functions ft on R3, the function

fs(v) = E(s,v)〈ft ,Λ+
t − Λ−t 〉

satisfies, for all s, s ′ 6 t and all v ∈ R3,

‖fs‖ 6 C (T )‖ft‖, |fs(v)− fs′(v)| 6 C (T )(1 + |v |3)|s − s ′|‖ft‖.

Here

C (T ) = 6(T + 1)e4Tm3(T ), m3(T ) = sup
t6T
〈1 + |v |3, µt + µNt 〉.

This allows us to estimate the first term when ‖ft‖ 6 1

〈f0, µN0 − µ0〉 6 C (T )W (µN0 , µ0), t 6 T .
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We aim to show for the second term an estimate valid with high
probability of the form∫

(0,t]×R3

fs(v)M(ds, dv) 6 CN−α, t 6 T .

The integrand fs(v) depends implicitly on t and is not adapted in
the filtration of M.

We seek an estimate uniform in t 6 T and ‖ft‖ 6 1.
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Consider the function f on [0,T ]× R3 given by f (s, v) = fs∧t(v).

Cover the set (0,T ]× (−R,R]3 by n = (T/r)× (R/r)3 disjoint
boxes B1, . . . ,Bn, each a translated copy of (0, r ]× (−r , r ]3.

Write

f =
n∑

k=1

ak1Bk
+ g

where ak is the average value of f on Bk .

By the lemma,
|ak | 6 2C (T )(1 + R2)

and, for any k > 0,

|g(s, v)| 6 4C (T )(1 + |v |3)r + 2C (T )(1 + |v |p)R2−p.
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Now

f =
n∑

k=1

ak1Bk
+ g

so∫
(0,t]×R3

fs(v)M(ds, dv) =
n∑

k=1

akM
(k)
t +

∫
(0,t]×R3

g(s, v)M(ds, dv)

where

M
(k)
t =

∫ t

0
〈1Bk

(s, ·), dMs〉.

We estimate

n∑
k=1

akM
(k)
t 6 2C (T )(1 + R2)

√
nQt

where Qt =
∑n

k=1 |M
(k)
t |2.



Write

∆k(s, v , v∗, σ) = 1Bk
(s, v ′) + 1Bk

(s, v ′∗)− 1Bk
(s, v)− 1Bk

(s, v∗).

Then

n∑
k=1

∆k(s, v , v∗, σ)2

6 4
n∑

k=1

{1Bk
(s, v ′) + 1Bk

(s, v ′∗) + 1Bk
(s, v) + 1Bk

(s, v∗)} 6 16.

So, by Doob’s L2-inequality,

E
(

sup
s6t

Qs

)
6

4

N

n∑
k=1

∫
E

∆k(s, v , v∗, σ)21(0,t](s)dm̄ 6
128t

N
.

We estimate the final term
∫
(0,t]×R3 g(s, v)M(ds, dv) absolutely.

The main estimate now follows by optimizing over r and R.
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Theorem
Assume that 〈|v |p, µ0〉 <∞ for some p > 5. Set

α(p) = 1/(6 + 1/(p − 3)).

For all ε > 0 and all T <∞, there is a constant C <∞ such that,
for all N ∈ N and any Kac process (µNt )t>0 in SN , with probability
exceeding 1− ε, for all t ∈ [0,T ],

W (µNt , µt) 6 C (W (µN0 , µ0) + N−α(p)).

The constant C may be chosen to depend only on ε, λ, p and T ,
where λ is an upper bound for 〈|v |p, µ0〉 and 〈|v |p, µN0 〉.


