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Consider N ‘locusts’. Each locust adjusts its behaviour according
to the behaviour of neighbours found less than a distance R (the
interaction radius) from it. Locust i’s behaviour is described by
its position, x ≡ x (t), and velocity, u ≡ u (t), i = 1, . . . ,N. On a

Collective motion Individual-based model

its position, xi ≡ xi(t), and velocity, ui ≡ ui(t), i = 1, . . . ,N. On a
one-dimensional domain (with periodic boundary conditions) the
position and velocity evolve according to:

where Δt is the time step between successive position and 
velocity updates. ΔQ is a random variable uniformly distributed 
in where ω is the (constant) system noise
amplitude. is the mean of the velocities of the particles local

Fig. 1: (a) Starlings flocking and (b) fish schooling.

Often we need only look out of the window to see the principles
of collective behaviour at work. Behaviours which capture our
imaginations are bird flocks, fish schools, locust plagues and amplitude. is the mean of the velocities of the particles local

to (inside interaction radius, R, of) particle i and the function
imaginations are bird flocks, fish schools, locust plagues and
bee swarms. As well as the aesthetically pleasing aspect of
watching a swarm in motion, studying collective behaviour has
practical applications: understanding fish schooling can lead to
more well developed fishing strategies; a knowledge of the way

is chosen to be

more well developed fishing strategies; a knowledge of the way
locusts interact and stay together in devastatingly large,
coherent groups may shed light on possible strategies which
may be used to disrupt these groups and halt the swarm’s
destructive progress [1,2]. This last scenario is of particular
interest for this work.

where β is a positive constant and
initially, so the local

average velocity measured does not
influence the size of the noise.interest for this work.

Experimental setup

Fig. 3: Average velocity, U, of 30 simulated locusts looks
qualitatively similar to the experimental switching behaviour.

influence the size of the noise.

Experimental setup
Groups of (between 5 and 100) locust nymphs were placed
in a ring-shaped arena (see Fig 2 (a)) and their movements
recorded [3]. Low density (~20 individuals) groups aligned
and marched in one direction around the ring for up to 2 or 3

Effective SDE for average velocity
Qualitatively, the above model reproduces the switching
behaviour seen in the data (compare Fig. 2 (b) and Fig. 3).and marched in one direction around the ring for up to 2 or 3

hours, before spontaneously switching direction in the space
of only a few minutes.

behaviour seen in the data (compare Fig. 2 (b) and Fig. 3).
Switching behaviour of this type can also be reproduced using

a Stochastic Differential Equation (SDE) describing a diffusion
process in a two-welled potential:

where F(U) is the drift coefficient, D(U) is the diffusion
coefficient and dW(t) is the standard Wiener process.

By considering lots of small bursts of simulation or small data
time-courses we extract the coefficients of the coarse-grained

The group property of average velocity, U, characterises the
locusts switching behaviour. |U |~1 indicates the locusts are

Fig. 2 (a): The ring-shaped
experimental arena (from above).

Fig. 2 (b): Average velocity, U,
of 30 locusts over 8 hours.

time-courses we extract the coefficients of the coarse-grained
SDE numerically [1,4] . Initialising the model with a desired
value of U and running the simulation for a short time, we can
find the coefficients using,

locusts switching behaviour. |U |~1 indicates the locusts are
aligned and marching in the same direction. Fig. 2 (b) gives
an example of spontaneous switching.

This is me. I look a bit like this. If I'm not standing here and you want to speak
to me about this work then please come and find me at some point during the
meeting and I'll be happy to talk to you about it. Or you can email me at
yatesc@maths.ox.ac.uk or visit my website
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ConclusionsRefining the model Conclusions
We used our experimental observations to guide our modelling,
changing the noise term for individual locusts so that it
becomes larger when its perceived local alignment is smaller.
This allowed us to match the diffusion coefficients of SDEs

Refining the model
The drift coefficients for the model and the experimental
data (see Fig. 4 (a) and (b) respectively) compare well
qualitatively. The diffusion coefficients, however, differ
significantly. For the experimental data the diffusion This allowed us to match the diffusion coefficients of SDEs

assumed to underlie the data and the model more accurately.
This result indicates that the individuals move more

randomly in locust groups with low alignment. This appears to
enable the group to find (and remain in) a highly aligned state

significantly. For the experimental data the diffusion
coefficient appears to have a quadratic shape, with its
maximum at zero average velocity.

The increase in the diffusion coefficient when group
alignment is low indicates that the locusts might respond to enable the group to find (and remain in) a highly aligned state

more easily. This may have important implications regarding
attempts to control the motion of locust swarms.

alignment is low indicates that the locusts might respond to
low group alignment by increasing the noisiness of their
motion. To test this hypothesis we refined the model. Instead of
taking the function η (multiplying the uniform random
variable, ΔQ, in the velocity update Eq. (2)) to be unity, we 
chose it to be a nontrivial function of the local mean velocity, Cannibalismchose it to be a nontrivial function of the local mean velocity,

, specifically: Cannibalism

where is the maximum of the absolute value of the
mean local velocity. In Fig. 5 (c) the quadratic nature of the
effective diffusion coefficient displayed in the experimental
data (see Fig. 5 (b)) is recovered by the refined model.

Fig. 5: Cannibalism in locusts. Cannibalism is a possible explanation

Comparing SDE coefficients

Fig. 5: Cannibalism in locusts. Cannibalism is a possible explanation
for why individual locusts might increase their randomness when they
find themselves in an unaligned state.

Recent findings about cannibalistic interactions between
marching locusts [5] may provide a rationalization for theComparing SDE coefficients
observation of apparently increased individual randomness
in response to a loss of alignment at the group level: given
the risk of exposing the rear of the abdomen to oncoming
insects [5], there may be selection pressure on an individual
to minimize the time spent in the disordered phase.
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to minimize the time spent in the disordered phase.
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