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Minimizing Free Energies

Aggregation for particles - Continuum Model

One particle attracted/repelled by a fixed location x = a

Ẋ = −∇U(X − a) U(x) = U(−x),U(0) = 0 ,U ∈ C1(Rd/{0},R)

Multiple particles attracted/repelled by one another

Ẋi = −
∑
j 6=i

mj ∇U(Xi − Xj)

ρ(t, x) = density of particle at time t

v(x) = −
∫
Rd
∇U(x− y) ρ(y)dy

So v = −∇U ∗ ρ : {
ρt + div (ρv) = 0
v = −∇U ∗ ρ
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Minimizing Free Energies

Aggregation-Diffusion Equation

{
ρt + div (ρv) = 0
v = −∇U ∗ ρ−∇P(ρ)

ρ(t, x) : density
v(t, x): velocity field
x ∈ Rd, t > 0

U : Rd → R
“interaction potential”

−∇U : Rd → Rd

“attracting/repelling field”

For which interaction repulsive/attractive potentials do we get convergence towards
some nontrivial steady states?

How can we characterize these stationary states and what are their qualitative and
stability properties?

If repulsion is modelled by diffusion, when does a balance between attraction and
diffusion happen?
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Minimizing Free Energies

Formal Gradient Flow
Basic Properties

1 Conservation of the center of mass.
2 Liapunov Functional: Gradient flow of

F [ρ] =
1
2

∫∫
U(x− y) ρ(x) ρ(y) dxdy +

∫
Rd

Φ(ρ(x)) dx

with respect to the Wasserstein distance W2.
(C., McCann, Villani; RMI 2003, ARMA 2006).

The macroscopic equation can be rewritten as

∂ρ

∂t
(t, x) = div

(
ρ(t, x)∇

[
δF
δρ

(t, x)

])
with δF

δρ
= U ∗ ρ+ Φ′(ρ), P′(ρ) = ρΦ′(ρ), and entropy dissipation:

d
dt
F [ρ(t)] = −

∫
R2
ρ(t, x)

∣∣∣∣∇δFδρ (t, x)

∣∣∣∣2 dx .
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Minimizing Free Energies

Free Energy Minimization: Stable Steady States
Minimization Problem

We want to find local minimizers of the total interaction energy

F [ρ] :=
1
2

∫∫
Rd×Rd

U(x− y)ρ(x)ρ(y) dxdy +

∫
Rd

Φ(ρ(x)) dx .

What is the right topology to talk about measures/densities being close?

When does a balance between attraction and repulsion (modelled either by
nonlocality or diffusion) happen?

Recurrent Question in many fields:

Statistical Mechanics & Crystallization: Typically very singular potentials at
zero: Lennard-Jones.

Semiconductors - Astrophysics - Chemotaxis: Macroscopic model obtained
from Vlasov Equation under certain limits. Newtonian Potential.

Economic Applications: Mean Field Games, Cournot-Nash Equilibria.

Fractional Diffusion: More singular than Newtonian repulsion but still locally
integrable potentials. Levy Flights.

Random Matrices: Eigenvalue distributions.
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Collective Behavior Models

Cell/Bacteria Movement by Chemotaxis

Movement and aggregation due to chemical signalling. Wikinut

J. Saragosti etal, PLoS Comput. Biol. 2010.

S. Volpe etal, PLoS One 2012.



∂n
∂t

= ∆Φ(n)− χ∇·(n∇c) x ∈ R2 , t > 0 ,

∂c
∂t
−∆c = n−αc x ∈ R2 , t > 0 ,

n(0, x) = n0 ≥ 0 x ∈ R2 .

Patlak (1953), Keller-Segel (1971), Nanjundiah (1973).
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Collective Behavior Models

Individual Based Models (Particle models)
Swarming = Aggregation of agents of similar size and body type generally moving in
a coordinated way.
Highly developed social organization: insects (locusts, ants, bees ...), fish, birds,
micro-organisms,... and artificial robots for unmanned vehicle operation.

Interaction regions between individualsa

aAoki, Helmerijk et al., Barbaro, Birnir et al.

Repulsion Region: Rk.

Attraction Region: Ak.

Orientation Region: Ok.
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Collective Behavior Models

Example: Aggregation with degenerate diffusion in 1D 1

ρt = (ρ(νρm−1)x)x + (ρ(U ∗ ρ)x)x with U(x) = −G(x) = − 1
2π

e−|x|
2/2.
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1J. A. Carrillo, A. Chertock, Y. Huang, CICP 2015


metasol.avi
Media File (video/avi)
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Collective Behavior Models

Example: Aggregation with degenerate diffusion in 1D

During the metastable stage, the solution to

ρt = (ρ(νρm−1)x)x − (ρ(G ∗ ρ)x)x

is almost steady on the support, or ξ = ννρm−1 − G ∗ ρ is close to a constant.
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Collective Behavior Models

Example: Aggregation with degenerate diffusion in 2D

ρt = ν∆ρm −∇ · (ρ∇G ∗ ρ).


aggdiff2d.avi
Media File (video/avi)
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Balance between Diffusion and Attraction

Different Regimes

Homogeneous Aggregation-Diffusion

∂ρ

∂t
= ∇ ·

(
ρ∇(ρm−1 + U ∗ ρ)

)
Here, U(x) = |x|a/a with −d < a, |x|0/0 = log(x) by convention.

By scaling considerations, one can find 3 different regimes:

Diffusion-dominated regime: m > (d − a)/d. Here, the intuition is that
solutions exist globally in time and the aggregation effect only shows in the
long-time behavior where we numerically observe nontrivial compactly
supported stationary states (Sugiyama 2006, C.-Calvez 2006).

Aggregation-dominated regime: m < (d − a)/d. Blow-up and diffusive
behavior coexist for all values of the mass depending on the initial
concentration (Sugiyama 2006, Chen-Liu-Wang 2014).

Fair-Competition regime: m = (d − a)/d. Here the mass of the system is the
critical quantity. There is a critical mass, separating the diffusive behavior from
the blow-up behavior (Blanchet-C.-Laurençot).
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Balance between Diffusion and Attraction

Diffusion-Dominated Regime in R2

Classical Keller-Segel with nonlinear diffusion m > 1

∂ρ

∂t
= ∆ρm + 1

2π∇ · (ρ(∇ log |x| ∗ ρ)) in R2

Calvez-C. (JMPA, 2006) proved that solutions exist globally with uniform bounds.
What are the long time asymptotics?
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Figure: (a) The evolution of the solution with m = 1.6, a = −0.5 and total mass
M = 0.57. (b) The steady state ρ∞ and the corresponding ξ = ρm−1

∞ + W ∗ ρ∞.
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Global minimizers in R2

Minimization of the free energy functional
Free energy functional

G[ρ] :=
1

m− 1

∫
R2
ρm dx +

1
4π

∫
R2

∫
R2

log |x− y| ρ(x)ρ(y) dx dy .

Our goal is to minimize the functional G[ρ] defined on

YM :=

{
ρ ∈ L1

+(R2) ∩ Lm(R2) : ‖ρ‖1 = M,
∫
R2

xρ(x) dx = 0
}

Let ρ# be the spherical decreasing rearrangement of ρ and define the class of radial
densities as

Y rad
M :=

{
ρ ∈ L1

+(R2) ∩ Lm(R2) : ‖ρ‖1 = M, ρ = ρ#
}
,

Existence & Uniqueness of radial global minimizer
a For any positive mass M, there exists a unique global radial minimizer ρ∞ ∈ Y rad

M

of the free energy functional G in YM .

aJ. A. Carrillo, D. Castorina, B. Volzone, SIAM J. Math. Anal., 2015
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Global minimizers in R2

Uniqueness & Symmetry

Uniqueness

There is a unique radial global minimizer of the free energy functional G in YM .

Idea: Mass comparison in radial coordinates.

Symmetry

Let ρ ∈ YM be any nonnegative compactly supported stationary state. Then ρ is
radially symmetric upto translations.

Idea: non-standard Moving Plane type argument for the potential.

Open Problems at this point: Stationary Solutions & Long Time asymptotics

We did not know how to disregard the existence of non compactly supported
steady solutions. This is common to all diffusion-dominated problems.

We lacked an understanding of the confinement of mass for the evolution
problem.
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Radial Symmetry for Steady States in Rd

Conditions on Stationary Solutions and Potentials

General Aggregation-Diffusion Equation in the diffusion-dominated regime:

∂ρ

∂t
= ∆ρm +∇ · (ρ(∇U ∗ ρ)) in Rd, m > 2− 2

d

Here, U satisfies the following four assumptions:

(K1) U is attracting, i.e., U(x) ∈ C1(Rd \ {0}) is radially symmetric U(x) = ω(r)
and ω′(r) > 0 for all r > 0 with ω(1) = 0.

(K2) U is no more singular than the Newtonian kernel in Rd at the origin, i.e., there
exists some Cw > 0 such that ω′(r) ≤ Cwr1−d for r ≤ 1.

(K3) There exists some Cw > 0 such that ω′(r) ≤ Cw for all r > 1.

(K4) Either ω(r) is bounded for r ≥ 1 or there exists Cw > 0 such that for all a, b ≥ 0:

ω+(a + b) ≤ Cw(1 + ω(1 + a) + ω(1 + b)) .

This includes the Newtonian potentials in any dimension.
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Radial Symmetry for Steady States in Rd

Symmetry result

Stationary States

Given ρs ∈ L1
+(Rd) ∩ L∞(Rd) we call it a stationary state if ρm

s ∈ H1
loc(Rd),

∇ψs := ∇U ∗ ρs ∈ L1
loc(Rd), and it satisfies

∇ρm
s = −ρs∇ψs in Rd

in the sense of distributions in Rd.

One can show under the assumptions on the potential U that any stationary solution
ρs in the sense above satisfies

m
m− 1

ρm−1
s + U ∗ ρs = Ci

in each connected component of {ρs > 0}. (Ci can differ in different components).

Radial Symmetry of Stationary States
a Let ρs be a stationary solution in the above sense. Then ρs must be radially
decreasing up to a translation.

aC.-Hittmeir-Volzone-Yao, preprint
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Radial Symmetry for Steady States in Rd

Sketch of the proof

A crucial tool is again the gradient flow structure given by the free energy functional

E [ρ] :=
1

m− 1

∫
Rd
ρm dx +

1
2

∫
Rd

∫
Rd

U(x− y) ρ(x)ρ(y) dx dy .

1 Assume there exists a stationary solution ρs that is NOT radially decreasing
after any translation.

2 Then there exists a (d − 1)-dimension hyperplane H ⊂ Rd, such that H splits
the mass of ρs into half and half, but ρs is not symmetric decreasing about H.
WLOG set H = {x1 = 0}.

3 We will construct a family of function ρε that are perturbations around ρs, such
that

E [ρε]− E [ρs] < −cε for all sufficiently small ε > 0,

where c > 0 depending on ρs and K.

4 ρε is constructed as the continuous Steiner symmetrization of ρs about H.
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Radial Symmetry for Steady States in Rd

Properties of continuous Steiner symmetrization

µ0
Stµ0

x1

ρε satisfies the following:

‖ρε‖m = ‖ρs‖m.

Since U is increasing in |x| and ρs is not symmetric decreasing about H, one
can show that

∫
ρε(ρε ∗ U)dx <

∫
ρs(ρs ∗ U)dx.

It requires some messy work to prove∫
ρε(ρε ∗ U)dx−

∫
ρs(ρs ∗ U)dx < −cε

for some c > 0 (independent of ε) for all sufficiently small ε > 0, but it can be
quantitatively done.
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Radial Symmetry for Steady States in Rd

Working towards a contradiction - Consequences

With some extra work, one can modify ρε into µε, such that for all sufficiently
small ε > 0, in addition to

E [µε]− E [ρs] < −cε for all sufficiently small ε > 0,

we also have:

|µε(x)− ρs(x)| ≤ Cε|ρs(x)| for all sufficiently small ε > 0.

Combining the above pointwise estimate with the assumption that ρs is
stationary, we have |E [µε]− E [ρs]| < Cε2, contradicting the first inequality if
ε > 0 is sufficiently small. So there cannot be such a ρs!
Uniqueness of stationary solutions upto translations and mass normalization is
reduced to uniqueness of radially decreasing stationary solutions.

Characterization of Stationary States for Newtonian potential

Let ρs be a stationary solution in the above sense for Newtonian potentials. Then ρs

must be radially decreasing up to a translation and given by the unique global
minimizer ρ∞ of the free energy functional upto translations (Lieb-Yau 1987,
Kim-Yao 2012, C.-Castorina-Volzone 2015, C.-Sugiyama in preparation).
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Long-time asymptotics in R2

Convergence for large time in 2D: Sketch of the proof

Assume ρ0 ∈ L1
+(R2, (1 + |x|2)dx) ∩ L∞(R2).

E [ρ(t, ·)] ≤ E [ρ0] implies
∫∫

ρ(t, x)ρ(t, y) log |x− y|dxdy is uniformly bounded
in time, which implies

∫
ρ(t, x) log(1 + |x|)dx is uniformly bounded in time.

By looking at the time evolution of the second moment
∫
ρ(t, x)|x|2dx:

M2[ρ(t, ·)]−M2[ρ(0, ·)] = 4
∫ t

0

∫
R2
ρm(t, x)dx dt − tM2

2π

we can show it is uniformly bounded for all time.
This argument works for 2D only! It uses radially decreasing rearrangement
comparison and the fact that the attractive contribution on the second moment
only depends on the total mass in 2D.

For any tn →∞, the weak lower semicontinuity of the entropy dissipation,
similar to Bian-Liu ’13, gives that ‖ρ(tnk , ·)− ρ∞‖L1 → 0 for some ρ̃ along a
subsequence tnk →∞, where ρ̃ is some stationary solution.

Since the center of mass of ρ(t, ·) is preserved, for any subsequence, ρ̃ must be
the unique stationary solution with the same center of mass as ρ0 given by ρ∞
upto translations.
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Long-time asymptotics in R2

Convergence for large time in 2D

Theorem (Large time asymptotics for the diffusion dominated Keller-Segel model in
R2)
a For any ρ0 ∈ L1

+(R2, (1 + |x|2)dx) ∩ L∞(R2), we have

lim
t→∞
‖ρ(·, t)− ρs‖Lq = 0 for any 1 ≤ q <∞,

where ρs is the (unique) stationary solution with the same mass and same center of
mass as ρ0 whose profile is given by the global minimizer of the free energy ρ∞.

aC.-Hittmeir-Volzone-Yao, preprint

However, we are not able to obtain any convergence rates, since the convergence is
obtained by a compactness argument.
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Conclusions

Different regimes identified for aggregation-diffusion with homegenous
pressure and kernels.

Diffusion-Dominated regimes lead to Stationary States of each given mass.

All stationary solutions of aggregation-diffusion problems under reasonable
conditions on the potential and on the regularity are radially decreasing
functions upto translations.

Long time asymptotics is fine for the 2D classical degenerate Keller-Segel
model. New confinement result.

Long time asymptotics are still an open problem for the degenerate
Keller-Segel model with N ≥ 3 since confinement is challenging.

References:

1 C.-Castorina-Volzone (SIMA 2015).
2 C.-Chertock-Huang (CICP 2015).
3 C.-Hittmeir-Volzone-Yao (Preprint 2016).
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