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I. The single neuron,

I. 1. Excitable systems

I. 2. slow-fast dynamics,

I. 3. Integrate&Fire model, role of noise

I. 4. Distribution of neurons

II. Networks, examples

III. Networks, Leaky noisy I&F

IV. Networks, time elapsed models



Single neuron

Electrically active cells are described by an action potential V (t)

Models are well established

Hodgkin-Huxley

FitzHugh-Nagumo

Morris-Lecar

Mitchell-Schaeffer



Single neuron

The class of Morris-Lecar is typically
dV (t)
dt =

I∑
k=1

gk(t)(Vk − V (t)) + I (t),

dgk(t)

dt
=

Gk

(
V (t)

)
− gk(t)

τk
, gk(0) ≥ 0, k = 1, 2, ..., kM ,

The index k refers to ionic channels/conductances along the
nerve (Ca, K, Na, Cl...)

From J. Malmivuo and R. Plonsey, Principles and

Appl. of bioelectric and biomagnetic fields, OUP

1995



Single neuron

The class of Morris-Lecar is typically
dV (t)
dt =

I∑
k=1

gk(t)(Vk − V (t)) + I (t),

dgk(t)

dt
=

Gk

(
V (t)

)
− gk(t)

τk
, gk(0) ≥ 0, k = 1, 2, ..., kM ,

The index k refers to ionic channels/conductances along the
nerve (Ca, K, Na, Cl...)

The Vk are called the “reversal potentials” (Nernst-Planck
theory)

The leak VL is used to aggregate some of them

τk can be � 1

Sharp nonlinearities Gk (sigmoids)



Single neuron

The class of Morris-Lecar is typically
dV (t)
dt =

I∑
k=1

gk(t)(Vk − V (t)) + I (t),

dgk(t)

dt
=

Gk

(
V (t)

)
− gk(t)

τk
, gk(0) ≥ 0, k = 1, 2, ..., kM ,

↑ ↑Hyperpolarisation
spike



Single neuron

Solutions of Hodgkin-Huxley’s model and of FitzHugh-Nagumo’s model

these models are accurate

represent the property of excitability and hyperpolarization



Single neuron

Solutions of Hodgkin-Huxley’s model and of FitzHugh-Nagumo’s model

these models are accurate

represent the property of excitability

• A small perturbation generates a large trajectory

• Return to equilibrium

• The trajectory depends very little on the perturbation



Single neuron

Solutions of Hodgkin-Huxley’s model and of FitzHugh-Nagumo’s model

These models are accurate BUT

difficult to understand why they are excitable

expensive for large assemblies of neurones

do not explain properties of large assemblies

This motivates using simpler models



Single neuron : FHN

FitzHugh-Nagumo{
εv̇(t) = f (v(t))− w(t), v(t = 0) = v0,

ẇ(t) = v(t)− v∗ − αw(t) w(t = 0) = w0.

It can be derived from the Morris-Lecar model
dV (t)
dt =gL(VL − V (t))+GNa(V (t))(VNa − V (t))+gK (t)(VK − V (t))

dgK (t)

dt
=

GK

(
V (t)

)
− gK (t)

τK

VK < VL < VNa



Single neuron : FHN

FitzHugh-Nagumo{
εv̇(t) = f (v(t))− w(t), v(t = 0) = v0,

ẇ(t) = v(t)− v∗ − αw(t) w(t = 0) = w0.

It can be derived from the Morris-Lecar model
dV (t)
dt =gL(VL − V (t))+GNa(V (t))(VNa − V (t))+gK (t)(VK − V (t))

dgK (t)

dt
=

GK

(
V (t)

)
− gK (t)

τK

v(t) = ln(V (t)− VK )



Single neuron : FHN

FitzHugh-Nagumo{
εv̇(t) = f (v(t))− w(t), v(t = 0) = v0,

ẇ(t) = v(t)− v∗ − αw(t) w(t = 0) = w0.

It can be derived from the Morris-Lecar model
dV (t)
dt =gL(VL − V (t))+GNa(V (t))(VNa − V (t))+gK (t)(VK − V (t))

dgK (t)

dt
=

GK

(
V (t)

)
− gK (t)

τK

dv(t)

dt
=

gL(VL − V (t)) + GNa(V (t))(VNa − V (t))

V (t)− VK︸ ︷︷ ︸
:=F (v(t))

−gK (t)



Single neuron : FHN

FitzHugh-Nagumo{
εv̇(t) = f (v(t))− w(t), v(t = 0) = v0,

ẇ(t) = v(t)− v∗ w(t = 0) = w0.

v∗

v
.

w
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Single neuron : FHN

FitzHugh-Nagumo{
εv̇(t) = f (v(t))− w(t), v(t = 0) = v0,

ẇ(t) = v(t)− v∗ w(t = 0) = w0.

v∗

v
.

w



Single neuron : Role of noise


dv(t)
dt = f (v(t))− w(t),

dw(t)
dt = v(t)− v∗ + σ dB(t)

dt .



Single neuron : S-F dynamics

Slow-fast dynamics{
εv̇ε(t) = f (vε(t))− wε(t), vε(t = 0) = v0,

ẇε(t) = vε(t)− v∗ wε(t = 0) = w0.

Theorem As ε→ 0, we have
vε(t)→ v(t) a.e.,
wε(t)→ w(t) uniformly (locally)

dw(t)

dt
= Q±

(
w(t)

)
− v∗, v(t) = Q±

(
w(t)

)
⇔ f (v) = w



Single neuron : S-F dynamics

Slow-fast dynamics{
εv̇ε(t) = f (vε(t))− wε(t), vε(t = 0) = v0,

ẇε(t) = vε(t)− v∗ wε(t = 0) = w0.

Theorem As ε→ 0, we have
vε(t)→ v(t) a.e.,
wε(t)→ w(t) uniformly (locally)

dw(t)
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(
w(t)

)
− v∗, v(t) = Q±

(
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)
⇔ f (v) = w

v

.

w



Single neuron : S-F dynamics{
εv̇ε(t) = f (vε(t))− wε(t), vε(t = 0) = v0,

ẇε(t) = vε(t)− v∗ wε(t = 0) = w0.

Proof (1)

|f (vε(t))− wε(t)|2 = εv̇ε(t)[f (vε(t))− wε(t)]

= ε d
dt [F (vε(t))− vε(t)wε(t)] + εvε

dwε
dt

with F ′ = f



Single neuron : S-F dynamics{
εv̇ε(t) = f (vε(t))− wε(t), vε(t = 0) = v0,

ẇε(t) = vε(t)− v∗ wε(t = 0) = w0.

Proof (1)

|f (vε(t))− wε(t)|2 = εv̇ε(t)[f (vε(t))− wε(t)]

= ε d
dt [F (vε(t))− vε(t)wε(t)] + εvε

dwε
dt

1

ε

∫ T

0
|f (vε(t))− wε(t)|2dt = F (vε)− vεwε|T0 +

∫ T

0
vε(vε − v∗)dt

and this is bounded (assuming solutions are bounded).



Single neuron : S-F dynamics{
εv̇ε(t) = f (vε(t))− wε(t), vε(t = 0) = v0,

ẇε(t) = vε(t)− v∗ wε(t = 0) = w0.

Proof (2)

1
2

d
dt

∫ vε(t)
0 |f (z)− wε(t)|2dz = v̇ε(t)|f (vε(t))− wε(t)|2 + Bdd

= εv̇ε(t)︸ ︷︷ ︸
bounded

|f (vε(t))− wε(t)|2

ε︸ ︷︷ ︸
step 1

+Bdd

Which means that, afer extraction∫ vε(t)

0
|f (z)− wε(t)|2dz

converges a.e.



Single neuron : I&F

(FitzHugh-Nagumo, fast discharge) solution of a variant of the FitzHugh-Nagumo system{
dv(t)
dt = h(v(t)) + I (t), τi ≤ t < τi+1,

v(τ+
i ) = VR , limt→τi+1 v(t) = v(τ−i+1) = VF .

Solution of the integrate-and-fire system



Single neuron : I&F

Solution of the integrate-and-fire system{
dV (t)
dt = h(V (t)) + I (t), τi ≤ t < τi+1,

V (τ+
i ) = VR , limt→τi+1 V (t) = V (τ−i+1) = VF .

With h ≤ 0

When I (t) = 0. V (t)→ VR (relaxation)

When I (t)� 1 periodic solutions appear



Voltage-conductance- Eulerian

Vlasov type equation

∂

∂t
p(v , g , t) +

∂

∂v

[(
gL(VL − v) + g(VE − v)

)
p(v , g , t)

]
+
∂

∂g

[G (v , t)− g

σE
p(v , g , t)

]
− a

σE

∂2

∂g2
p(v , g , t) = 0,

v ∈ (VL,VE ), g ≥ 0,

Boundary conditions :

Zero flux at VL < VE

No flux condition at g = 0

Mathematical interest : Sub-elliptic fluxes



Voltage-conductance- Eulerian

Similar to the Kinetic Fokker-Plack model of interacting particles

∂

∂t
p(x , v , t) + v .∇xp − divv (vp)−∆vp = 0

Regularizing effects, time decay M = exp(−|v |2/2), u = p/M

1

2

d

dt

∫
M|∂vu + ∂xu|2 ≤ −

∫
M|∂vu + ∂xu|2.

Bouchut, Desvillettes, Villani, Hérau

Dolbeault, Mouhot, Schmeiser, Herda, Arnold

Càceres, Carrillo, Goudon

Liu Liu and S. Jin



I&F- Eulerian{
dv(t)
dt = h(v(t)) + I (t), τi ≤ t < τi+1,

v(τ+
i ) = VR , limt→τi+1 v(t) = v(τ−i+1) = VF .

∂

∂t
p(v , t) +

∂

∂v
[(h(v) + I )p(v , , t) = 0, 0 < VR < VF ,

(h(VR) + I )p(vR , t) = N(t) := (h(VF ) + I )p(vF , t)

Assuming (h(VR) + I ) > 0,

(h(VF ) + I ) > 0



Voltage-conductance I&F

∂

∂t
p(v , g , t) +

∂

∂v

[(
− gL(VL − v) + g(VE − v)

)
p(v , g , t)

]
+
∂

∂g

[G (t)− g

σE
p(v , g , t)

]
− a

σE

∂2

∂g2
p(v , g , t) = 0,

v ∈ (VL,VF ), g ≥ 0,

Boundary conditions :
outgoing Flux N(g , t) at VF < VE enters at v = VL

No flux condition at g = 0
G (t) = G

(∫
N(g , t)dg

)
D. Cai, Shelley, McLaughlin, Rangan, L. Tao, Kovacic, Ly,
Trnachina...



Voltage-conductance I&F

∂

∂t
p(v , g , t) +

∂

∂v

[(
− gL(VL − v) + g(VE − v)

)
p(v , g , t)

]
+
∂

∂g

[G (t)− g

σE
p(v , g , t)

]
− a

σE

∂2

∂g2
p(v , g , t) = 0,

v ∈ (VL,VF ), g ≥ 0,

Boundary conditions :
outgoing Flux N(g , t) at VF < VE enters at v = VL

No flux condition at g = 0
G (t) = G

(∫
N(g , t)dg

)
Theorem (D. Salort, BP)

Stationary solutions belong to L
8
7

−

Evolution solutions are globally bounded in Lp (no blow-up)

Open questions : Long time asymptotic, regularity



CONCLUSION

Single neurone models are numerous and complex

They share the property to describe excitability

The I&F model is derived has a double Slow-Fast limit

PDEs come as Eulerian versions


