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Goodwin models


d
dt y0(t) + ay0(t) = φ

(
yI (t)

)
,

d
dt yi (t) = 1

τi

(
yi−1(t)− yi (t)

)
, i = 1, ..., I .

with a > 0, τi > 0, φ ∈ C 2(R+;R+)

Input y0 reacts to output yI

An inhibitory network is φ′(·) < 0, for instance

φ(y) =
b

1 + yk
, k > 0

Question : Will an inhibitory network bring the system to rest ?



Goodwin models


d
dt y0(t) + ay0(t) = φ

(
yI (t)

)
,

d
dt yi (t) = 1

τi

(
yi−1(t)− yi (t)

)
, i = 1, ..., I .

with a > 0, τi > 0, φ ∈ C 2(R+;R+)

Input y0 reacts to output yI

An inhibitory network is φ′(·) < 0, for instance

φ(y) =
b

1 + yk
, k > 0

Question : Will an inhibitory network bring the system to rest ?

Small network : With I = 2, yi (t)→ ȳi as t →∞.
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Goodwin models

Claim : A LARGE inhibitory network can generate activity
(patterns) !

d
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(
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)
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∂x = 0, 0 < x < L, t ≥ 0,
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(
u(L, t)

)
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Claim : An inhibitory network can generate activity (patterns) !
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Theorem
There is a constant steady state ū = φ(ū)

If φ′(ū) < −1 then ū is linearly unstable
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(
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)
.

Theorem There is a constant steady state ū = φ(ū)

If φ′(ū) < −1 then ū is linearly unstable

The linearized solution ū + δeλ(t−x) and the linearized boundary
condition :

eλt = eλ(t−L)φ′(ū), 1 = e−λLφ′(ū).
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∂u(x ,t)
∂t + ∂u(x ,t)

∂x = 0, 0 < x < L, t ≥ 0,

u(x = 0, t) = φ
(
u(L, t)

)
.

Theorem There is a constant steady state ū = φ(ū)

If φ′(ū) < −1 then ū is linearly unstable

The linearized solution ū + δeλ(t−x) and the linearized boundary
condition :

eλt = eλ(t−L)φ′(ū), 1 = e−λLφ′(ū).

With λ = λr + iλi this gives

eλrL = −φ′(ū) e iλiL = −1

This is possible with λr > 0 under the condition φ′(ū) < −1



Goodwin models

Question : Will an EXCITATORY network generate activity ?
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∂x = 0, 0 < x < L, t ≥ 0,

u(x = 0, t) = φ
(
u(L, t)

)
.

Theorem If −a < φ′(u) < a for some a ∈]0, 1[, there is a steady
state ū = φ(ū) which is globally attractive.



Goodwin models


∂u(x ,t)
∂t + ∂u(x ,t)

∂x = 0, 0 < x < L, t ≥ 0,

u(x = 0, t) = φ
(
u(L, t)

)
.

Theorem If −a < φ′(u) < a for some a ∈]0, 1[, there is a steady
state ū = φ(ū) which is globally attractive.

∂[u(x , t)− ū]

∂t
+
∂[u(x , t)− ū]

∂x
= 0,

∂|u(x , t)− ū|2

∂t
+
∂|u(x , t)− ū|2

∂x
= 0,

d
dt

∫ L
0 |u(x , t)− ū|2dx + |u(L, t)− ū|2 = |u(0, t)− ū|2

=
∣∣φ(u(L, t)

)
− φ(ū)

∣∣2
≤ a2|u(L, t)− ū|2.



Back to neurones

Chemical synapse. Neurotransmitters are released when spikes occur

Electrical synapse. Gap junctions directly exchange ions



Kuramoto models

The Kuramoto/Goodwin model. work on S1. The potential of the
neuron is

Vi (t) = Vref + Vnorm cos(θi (t))

dθi (t)
dt = ωi +

chemical synapses︷ ︸︸ ︷
bn
∑
j

h(Vi (t)) g(Vj(t))

+ bg (Vi (t))
∑
j

k(Vj(t)− Vi (t))︸ ︷︷ ︸
electric synapses

• gn stands for the neurotransmitter force (inhibitory)
• bg stands for gap junctions

For instance, the spike is when θ(t) = π + 2kπ.



Kuramoto models

Simplest example

dθi (t)

dt
= ωi +

K

N

N∑
j=1

sin(θi (t)− θj(t))

For ωi ≡ ω,

θ̄j =
2πj

N
.

desynchonised or incoherent state



Kuramoto models

Simplest example

dθi (t)

dt
= ωi +

K

N

N∑
j=1

sin(θi (t)− θj(t))

There are also stable synchonised or coherent states

νi +
K

N

N∑
j=1

sin(θ̄j − θ̄i ) = 0, i = 1, ..,N.

Strogatz, Carillo-Ha-Kang, Giacomin, Pakdaman...

Huygens



Wilson-Cowan models

Aim : Describe the activity of

an organ of the brain

a full brain

Physiological connectivity

Functional connectivity



Wilson-Cowan models

The Wilson-Cowan model (1972) describes the firing rates N(x , t)
of neuron assemblies located at position x through an integral
equation

d

dt
N(x , t) = −N(x , t) + σ

(∫
w(x , y)N(y , t)dy + s(x , t)

)
σ(·) = sigmoid
w(x , y) = connectivity matrix
s = source
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Not physiologically based
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Non-uniqueness is a desirable property : Interpretation of visual
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Wilson-Cowan models

The Wilson-Cowan model (1972) describes the firing rates N(t, x)
of neuron assemblies located at position x through an integral
equation

d

dt
N(x , t) = −N(x , t) + σ

(∫
w(x , y)N(y , t)dy + s(x , t)

)
Aim : large scale brain activity, visual hallucinations (Klüver, Oster,

Siegel...)



Wilson-Cowan : firing and rate models

The firing rate N(x , t) model

d

dt
N(x , t) = −N(x , t) + σ

(∫
w(x , y)N(y , t)dy + s(x , t)

)
The potential V (x , t) model

d

dt
V (x , t) = −V (x , t) +

∫
w(x , y)σ

(
V (y , t)

)
dy + I (x , t)



Wilson-Cowan : firing and rate models

The firing rate N(x , t) model

d

dt
N(x , t) = −N(x , t) + σ

(∫
w(x , y)N(y , t)dy + s(x , t)

)
The potential V (x , t) model

d

dt
V (x , t) = −V (x , t) +

∫
w(x , y)σ

(
V (y , t)

)
dy + I (x , t)

If w(x , y) is invertible as an operator, they are equivalent

V (x , t) =

∫
w(x , y)N(y , t)dy + s(x , t)



Wilson-Cowan : Amari’s analysis

Shun-Ichi Amari
Homogeneous nets of neuron-like elements, Biol. Cybernetics (1975)
Existence and stability of local excitations in homog.neural fields, J.

Math. Biol. (1979)

Theorem There are infinitely many solutions steady states, i.e.,

u(x) =

∫ ∞
−∞

w(x − y)σ
(
u(x)− h

)
dy ,

when σ(u) = 1I{u>0} and w is mexican-hat shaped



Wilson-Cowan : Amari’s analysis

Theorem There are infinitely many solutions steady states, i.e.,

u(x) =

∫ ∞
−∞

w(x − y)σ
(
u(x)− h

)
dy ,

when σ(u) = 1I{u>0} and w is mexican-hat shaped.

Proof. Find a ’one-bump’ solution

{ x , u(x) > h} = (−a, a)

Then we derive immediately the formula

ua(x) =

∫ a

−a
w(x − y)dy

Can one get both constraints ?



Wilson-Cowan : Amari’s analysis

{ x , u(x) > h} = (−a, a), ua(x) =

∫ a

−a
w(x − y)dy .

Lemma Assume that w satisfies

w(x) = w(−x), h =

∫ 2ā

0
w(z)dz for some ā > 0,

w(x + ā) ≤ w(x − ā), ∀x ≥ 0.

Then,
ua is even, uā(ā) = h
uā is increasing for x < 0 and decreasing for x > 0

Consequently, uā is an even, ’one-bump’ solution



Integrate & Fire

Goals :

understand physiologically based models of information
processing

‘small homogeneous’ neural networks

Recover properties as synchronization



Leaky Integrate & Fire (linear)

The Leaky Integrate & Fire model is simpler

dV (t) =
(
− V (t) + I (t)

)
dt + σdW (t), V (t) < VFiring

V (t−) = VFiring =⇒ V (t+) = VReset

0 < VR < VF

The idea was introduced by L. Lapicque (1907)

I (t) input current

Noise or not

Much simpler that Hodgkin-Huxley/FitzHugh-Nagumo models



A short break

Brother of Charles Lapicque
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Leaky Integrate & Fire (linear)
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Solution to the LIF model

N. Brunel and V. Hakim, R. Brette, W. Gerstner and W. Kistler,
Omurtag, Knight and Sirovich, Cai and Tao...

Fit to measurements

Use more realistic dynamics in place of − v



Leaky Integrate & Fire (linear)

From C. Rossant et al, Frontiers in Neuroscience (2011)



Leaky Integrate & Fire (linear)

Observation :

The Integrate and Fire model is an approximation of the FHN
system.



Leaky Integrate & Fire (linear)

The probability n(v , t) to find a neuron at the potential v solves
the Fokker-Planck Eq. on the half line

∂n(v ,t)
∂t + ∂

∂v

leak+external currents︷ ︸︸ ︷[(
− v + I (t)

)
n(v , t)

]
−

Noise︷ ︸︸ ︷
a
∂2n(v , t)

∂v2
=

neurons reset︷ ︸︸ ︷
N(t) δ(v = VR),

v ≤ VF ,

n(VF , t) = 0, n(−∞, t) = 0,

N(t) := −a∂n(VF ,t)
∂v ≥ 0, (flux of neurons firing at VF )
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The probability n(v , t) to find a neuron at the potential v solves
the Fokker-Planck Eq. on the half line

∂n(v ,t)
∂t + ∂

∂v

leak+external currents︷ ︸︸ ︷[(
− v + I (t)

)
n(v , t)

]
−

Noise︷ ︸︸ ︷
a
∂2n(v , t)

∂v2
=

neurons reset︷ ︸︸ ︷
N(t) δ(v = VR),

v ≤ VF ,

n(VF , t) = 0, n(−∞, t) = 0,

N(t) := −a∂n(VF ,t)
∂v ≥ 0, (flux of neurons firing at VF )

N(t) is also a Lagrange multiplier for the constraint∫ VF

−∞
n(v , t)dv = 1.



Leaky Integrate & Fire (linear)
∂n(v ,t)
∂t + ∂

∂v

[(
− v + I (t)

)
n(v , t)

]
− a∂

2n(v ,t)
∂v2 = N(t) δ(v = VR),

v ≤ VF

n(VF , t) = 0, n(−∞, t) = 0

N(t) := −a∂n(VF ,t)
∂v ≥ 0, (flux of firing neurons at VF )

Properties (Cáceres, Carrillo, BP) For I (t) ≡ 0 the solutions
satisfy

n ≥ 0,
∫ VF

−∞ n(v , t)dv = 1,

n(v , t) −→
t→∞

P(v) the unique steady state (probability density)

The convergence rate is exponential

Conclusion : Total desynchronization



Leaky Integrate & Fire (linear)

The proof uses

the Relative Entropy. For H(·) convex,

d

dt

∫ VF

−∞
P(v)H

(n(v , t)

P(v)

)
dv = −Ddiff − Djump,

Hardy/Poincaré inequality,∫ VF

−∞
P(v)|u(v)|2dv ≤ C

Ddiff︷ ︸︸ ︷∫ VF

−∞
P(v)|∇u(v)|2dv ,

when

∫ VF

−∞
P(v)u(v)dv = 0, P(VF ) = 0

See : Ledoux, Barthe and Roberto (2006)


