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Plan of the course

I. The single neuron,

Il1. Networks, examples
Il' 1. Goodwin
Il 2. Kuramoto
1. 3. Wilson-Cowan
1. 4. LNIF (linear)

I1l. Networks, Leaky noisy 1&F

IV. Networks, time elapsed models



Goodwin models Jil

Sevo(t) + ayo(t) = 6 (yi(1)),

Svi(t) = £ (yia(t) — yi(1)), =11
with a> 0, 7, >0, ¢ € C?(R*;RT)
B Input yp reacts to output y,
B An inhibitory network is ¢/(-) < 0, for instance

b

o(y)

Question : Will an inhibitory network bring the system to rest?
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Question : Will an inhibitory network bring the system to rest?

Small network : With | =2, y;(t) — yi as t — 0.



Goodwin models

Sevo(t) + ayo(t) = 6 (yi(1)),

Svi(t) = £ (yia(t) — yi(1)), =11
with a> 0, 7, >0, ¢ € C?(R*;RT)
B Input yp reacts to output y,
B An inhibitory network is ¢/(-) < 0, for instance

b

:m, k>0

o(y)

Question : Will an inhibitory network bring the system to rest?

Claim : An inhibitory network can generate activity (patterns)!

JiL



Goodwin models

Claim : A LARGE inhibitory network can generate activity
(patterns) !

Svo(t) + ayo(t) = 6(i(1)),
{ %y,-(t) = Tli(y,-_l(t) —y;(t)), i=1,..,1.
Take the limit | — oo, 77 — 0
Quiet) L U — g Q< x< L, t>0,
L.

u(x =0,t) = ¢(u(L, t)).

JiL



Goodwin models

Claim : An inhibitory network can generate activity (patterns)!
Quet) L U _ g Q< x< L, t>0,

u(x =0,t) = ¢(u(L, t)).

Theorem
m There is a constant steady state i = ¢(1)

m If ¢'(0) < —1 then a is linearly unstable

JiL



Goodwin models Jil

Qubet) L U g Q< x<L, t>0,
u(x=0,t) = ¢(u(L, t)).
Theorem m There is a constant steady state & = ¢()
m If ¢/(7) < —1 then & is linearly unstable

The linearized solution & + §e*t—x)

condition :

and the linearized boundary

e)\t _ e)\(t—L)(b/(E), 1= e_’\LgZ)'(E).



Goodwin models Jil

Qubet) 4 ubet) _ o g<x< L, t>0,
u(x=0,t) = ¢(u(L, t)).
Theorem m There is a constant steady state & = ¢()
m If ¢/(7) < —1 then @ is linearly unstable

The linearized solution & + §e*t—x)

condition :

and the linearized boundary

e)\t _ e)\(t—L)(b/(E), 1= e_)\LQZb,(ﬁ).
With A = A, + i)\; this gives

e)\rL — _¢/(lj) ei)\,'L — _1

This is possible with A, > 0 under the condition ¢'(d) < —1



Goodwin models

Question : Will an EXCITATORY network generate activity ?

JiL



Goodwin models Jil

Question : Will an EXCITATORY network generate activity ?

au(xt)+<9U(Xt) 0, 0<x<lL, t>0,

u(x=0,t) = ¢(u(L, t)).

Theorem If —a < ¢/(u) < a for some a €]0, 1], there is a steady
state o = ¢(&) which is globally attractive.



Goodwin models Jil

{ Qubet) L U g Q< x<L, t>0,

u(x=0,t) = ¢(u(L, t)).

Theorem If —a < ¢/(u) < a for some a €]0, 1], there is a steady
state & = ¢(&) which is globally attractive.

u(x, t) — ] n u(x, t) — ]

ot Ox =0,
Au(x,t) —a*>  Olu(x,t)—al*
ot + x =0,
4 U lu(x, t) — @2dx + [u(L,t) — a> = [u(0,t) — af?
= ‘ (u(L t u)|

< a?|u(L,t) — af’.



Back to neurones Jil

Chemical synapse. Neurotransmitters are released when spikes occur

Cell 1 2 & Cell 2
S 7N

Electrical synapse. Gap junctions directly exchange ions



Ji

The Kuramoto/Goodwin model. work on S. The potential of the
neuron is

V,(t) = Vref + Vhorm COS(@,‘(t))

chemical synapses
7

doc,lgt) — w; + b, Z h(Vi(t)) g(V;(t))

electric synapses

e g, stands for the neurotransmitter force (inhibitory)
® by stands for gap junctions

For instance, the spike is when 6(t) = m + 2km.



Kuramoto models
Simplest example

JiL
do;(t) K &
=ity ;sin(ei(t) — 0(t))
J:
For w; = w, .~
— )
01 == W
desynchonised or incoherent state



Ji

Simplest example

do;
dgt - ,+NZS|n(0 —0,())

There are also stable synchonised or coherent states

Keh -~ -
yi+NZSin(9j—9i)207 i=1.,N.

Strogatz, Carillo-Ha-Kang, Giacomin, Pakdaman...

Huygens



Wilson-Cowan models Jil

Aim : Describe the activity of

M an organ of the brain

m a full brain

# brain region

20 40 60 80
# brain region

m Physiological connectivity

B Functional connectivity



Wilson-Cowan models

The Wilson-Cowan model (1972) describes the firing rates N(x, t)
of neuron assemblies located at position x through an integral
equation

%N(X, t)=—N(x,t)+0o </ w(x,y)N(y, t)dy + s(x, t)>

® o(-) = sigmoid
B w(x, y) = connectivity matrix
M s = source

# brain region

20 40 60 80
# brain region
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The Wilson-Cowan model (1972) describes the firing rates N(x, t)
of neuron assemblies located at position x through an integral
equation

%N(X, t)=—N(x,t)+0o </ w(x,y)N(y, t)dy + s(x, t)>

Model of information processing

Can be seen as a generic model of network
Not physiologically based
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Wilson-Cowan models Jil

Feature : multiple steady states and bifurcation theory (S. Amari,
Bressloff-Golubitsky, Chossat-Faugeras-Faye)

Non-uniqueness is a desirable property : Interpretation of visual
illusions




Wilson-Cowan models

The Wilson-Cowan model (1972) describes the firing rates N(t, x)
of neuron assemblies located at position x through an integral
equation

%N(X, t)=—N(x,t)+0o </ w(x,y)N(y, t)dy + s(x, t)>

Aim : large scale brain activity, visual hallucinations (Kliver, Oster,
Siegel...)




Wilson-Cowan : firing and rate models JiL

The firing rate N(x, t) model

%N(x, t)=—-N(x,t)+o (/ w(x,y)N(y, t)dy + s(x, t))

The potential V(x, t) model

%V(x, B = —V(x, )+ / w(x,y)o (Viy, ) dy + 1(x, 1)



Wilson-Cowan : firing and rate models

The firing rate N(x, t) model

%N(X, t)=—-N(x,t)+o (/ w(x,y)N(y, t)dy + s(x, t))

The potential V(x, t) model
d
GV = Vit + [ wln)o(Viy, 0)dy + 1x.1)

If w(x, y) is invertible as an operator, they are equivalent

V(x,t) = / w(x, y)N(y, t)dy + s(x, t)

JiL



Wilson-Cowan : Amari’s analysis Jil

Shun-lchi Amari

B Homogeneous nets of neuron-like elements, Biol. Cybernetics (1975)
B Existence and stability of local excitations in homog.neural fields, J.

Math. Biol. (1979)

Theorem There are infinitely many solutions steady states, i.e.,

) = [ =)o () = W)y,

—00

when o(u) = 1,50y and w is mexican-hat shaped
1 T i ; T :

05

205 I i i I




Wilson-Cowan : Amari’s analysis

Theorem There are infinitely many solutions steady states, i.e.,

) = [ =)o () = W)y,

—00
when o(u) = 1,50y and w is mexican-hat shaped.

Proof. Find a 'one-bump’ solution

{ x, u(x) > h} =(—a,a)

Then we derive immediately the formula

) = [ wl—y)ay

—a

Can one get both constraints?



Wilson-Cowan : Amari’s analysis Jil

(% u()> b = (=a,2),  us(x) :/a w(x — y)dy.

—a

Lemma Assume that w satisfies
25
w(x) = w(—x), h= / w(z)dz for some 3> 0,
0

w(x +3) < w(x —3), Vx>0.
Then,
u, is even, us(3) =h
usz is increasing for x < 0 and decreasing for x > 0

Consequently, uz is an even, 'one-bump’ solution



Integrate & Fire JiL

Goals :

B understand physiologically based models of information
processing

B ‘small homogeneous’ neural networks

B Recover properties as synchronization



Leaky Integrate & Fire (linear) JiL

The Leaky Integrate & Fire model is simpler
dV(t) = (= V(t) + I(t))dt + odW(t), V(t) < Viiring

V(t—) = VFiring — V(t—I—) = VReset
0< Vg < VE
The idea was introduced by L. Lapicque (1907)

m /(t) input current

® Noise or not

® Much simpler that Hodgkin-Huxley/FitzHugh-Nagumo models
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Leaky Integrate & Fire (linear) JiL

The Leaky Integrate & Fire model is simpler
dV(t) = (= V(t) + I(t))dt + odW(t), V(t) < Viiring

V(t—) = VFiring — V(t—I—) = VReset
0< Vg < VE
The idea was introduced by L. Lapicque (1907)

m /(t) input current

® Noise or not

® Much simpler that Hodgkin-Huxley/FitzHugh-Nagumo models



Leaky Integrate & Fire (linear) JiL

3.

2.5+

B M
0.0
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Solution to the LIF model

2.0

m N. Brunel and V. Hakim, R. Brette, W. Gerstner and W. Kistler,
Omurtag, Knight and Sirovich, Cai and Tao...

®m Fit to measurements

B Use more realistic dynamics in place of —v



Leaky Integrate & Fire (linear)

00 e

JiL

From C. Rossant et al, Frontiers in Neuroscience (2011)




Leaky Integrate & Fire (linear) JiL

Observation :

The Integrate and Fire model is an approximation of the FHN
system.

u]
o)
I

i
it




Leaky Integrate & Fire (linear) JiL

The probability n(v, t) to find a neuron at the potential v solves
the Fokker-Planck Eq. on the half line

( Noise
leak+external currents —_—N— neurons reset

n(v T h 82 7t AV TEEVA
nlvt) 1 O (— v+ I(t)) (v, t)] - a% =N(t) §(v = Vg).
v < VF,

n(Ve,t) =0, n(—oo,t) =0,

L N(t) = —aw >0, (flux of neurons firing at V)



Leaky Integrate & Fire (linear) JiL

The probability n(v, t) to find a neuron at the potential v solves
the Fokker-Planck Eq. on the half line

leak+external currents /_2N(,)i\s; neurons reset
on(v, - A #n(v,t) ——""——
08) 4 O T( v 1(t))n(v, t)] — a=p 3 = N(t) (v = Vg).
v < VF,
n(Ve,t) =0, n(—oo,t) =0,
L N(t) = —aw >0, (flux of neurons firing at V)

N(t) is also a Lagrange multiplier for the constraint

Ve
/ n(v, t)dv = 1.

o0



Leaky Integrate & Fire (linear) JiL

8 - 2 [(— v+ 1) n(v, )] — aZ2%D = N() 6(v = v,\;,/)
v<VF

n(Ve,t) =0, n(—oo,t) =0
o 8"(\/[:,1“) ..
N(t) == —a==5 >0, (flux of firing neurons at V)

Properties (Caceres, Carrillo, BP) For /(t) = 0 the solutions
satisfy

mn>0, f_VOFO n(v, t)dv =1,
mn(v,t) b P(v) the unique steady state (probability density)
oo

B The convergence rate is exponential

Conclusion : Total desynchronization




Leaky Integrate & Fire (linear)

The proof uses

m the Relative Entropy. For H(:) convex,

d [VF n(v,t)
. P(v)H( Pv)

)dV = —Dgir — Djumpy

m Hardy/Poincaré inequality, Daise

-~

Ve Ve
/_ P(v)|u(v)Pdv < c/_ P(V)[Vu(v)?dv,

o0

when /_VF P(v)u(v)dv =0,  P(Ve)=0

[e.9]

See : Ledoux, Barthe and Roberto (2006)

JiL



