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V. B. El Director El doctorando





Contents

Introducción 9

1. Introduction 23

1.1. The coagulation-fragmentation equations . . . . . . . . . . . . . . . . 24
1.1.1. Existence of solutions . . . . . . . . . . . . . . . . . . . . . . . 28
1.1.2. Asymptotic behavior . . . . . . . . . . . . . . . . . . . . . . . 30
1.1.3. Numerical simulation and asymptotic approximation . . . . . 31

1.2. The Wigner-Poisson-Fokker-Planck equation . . . . . . . . . . . . . . 31

2. Preliminaries 37

2.1. Derivation of the equations . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2. Interpretation of the fragmentation term . . . . . . . . . . . . . . . . 40
2.3. Binary fragmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.4. Self-similar coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.5. Statistical mechanics for steady states . . . . . . . . . . . . . . . . . . 44

3. The fragmentation operator 49

3.1. Conditions for the definition of F . . . . . . . . . . . . . . . . . . . . 50
3.2. Some notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3. Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4. Adjoint of F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.5. Definition in L̇∞

M spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.6. Definition in spaces of measures . . . . . . . . . . . . . . . . . . . . . 58

4. The coagulation operator 61

4.1. Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2. Definition in L∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3. Weak form of the coagulation operator . . . . . . . . . . . . . . . . . 64

4.3.1. Weak conditions for the definition of C . . . . . . . . . . . . . 65
4.4. Definition in measures . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5. Existence of solutions 69

5.1. Concept of solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2. Solutions with bounded coefficients . . . . . . . . . . . . . . . . . . . 72

5



5.3. Positivity of the solution . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.4. Estimates for regular solutions . . . . . . . . . . . . . . . . . . . . . . 75

5.4.1. Estimates independent of the number of particles . . . . . . . 77
5.4.2. Estimates which depend on the number of particles . . . . . . 87
5.4.3. Weak continuity estimates . . . . . . . . . . . . . . . . . . . . 91
5.4.4. Regularization of moments of order less than 1 near y = 0 . . 93

5.5. Solutions with finite mass . . . . . . . . . . . . . . . . . . . . . . . . 103
5.5.1. Passing to the limit . . . . . . . . . . . . . . . . . . . . . . . . 104

5.6. Solutions with finite mass and number of particles . . . . . . . . . . . 112
5.7. Existence of measure solutions . . . . . . . . . . . . . . . . . . . . . . 116

5.7.1. Stability result . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.7.2. Measure solutions for nonsingular coagulation . . . . . . . . . 122
5.7.3. Measure solutions for singular coagulation . . . . . . . . . . . 124

6. Asymptotic behavior of solutions to the generalized Becker-Döring
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Introducción

Este trabajo trata principalmente el problema de la existencia de soluciones para
dos ecuaciones diferentes: las ecuaciones continuas de coagulación-fragmentación y
la ecuación de Wigner-Poisson-Fokker-Planck. Además, se estudian algunos aspec-
tos del comportamiento cualitativo de las ecuaciones de coagulación-fragmentación.
La tesis está organizada de la siguiente forma: en esta introducción presentamos
brevemente el contexto de ambas ecuaciones y los principales resultados obtenidos.
En los caṕıtulos 2–4 damos algunos resultados preliminares que son necesarios para
el tratamiento posterior de las ecuaciones continuas de coagulación-fragmentación;
en el caṕıtulo 5 se enuncian y demuestran los resultados de existencia mencionados,
y al mismo tiempo se recuperan algunos resultados ya conocidos sobre el tema, ya
que las técnicas involucradas son parecidas. En particular, la sección 5.7.3 contiene
resultados que muestran la interacción entre coeficientes de coagulación y fragmen-
tación singulares. El caṕıtulo 6 contiene un resultado nuevo sobre el comportamiento
asintótico del sistema de ecuaciones generalizado de Becker-Döring (que es un caso
particular de las ecuaciones discretas de coagulación-fragmentación, como se explica
a continuación), y el caṕıtulo 7 presenta una aproximación expĺıcita al comporta-
miento de las soluciones de las ecuaciones de Becker-Döring en un caso particu-
lar, junto con soluciones numéricas que respaldan la validez de la aproximación.
Finalmente, el caṕıtulo 8 contiene nuestro resultado sobre la ecuación de Wigner-
Poisson-Fokker-Planck, que consiste esencialmente en una teoŕıa de existencia en
L1. Se incluyen también algunos apéndices que contienen un resumen de algunos
resultados conocidos que son necesarios en el desarrollo de este trabajo. En el resto
de esta introducción se presenta más ampliamente cada uno de los temas tratados.
Por supuesto, una gran parte del contenido está aqúı gracias al trabajo de otras per-
sonas y ha sido hecho con su colaboración, y me gustaŕıa nombrarlos aqúı. Quiero
agradecer a Juan Soler su dirección y su ayuda con las ecuaciones de transporte y
en general en el tema de las ecuaciones de evolución, y también su trabajo en la
preparación de esta tesis. El trabajo recogido en los caṕıtulos 5 y 6 fue llevado a
cabo junto con Stéphane Mischler, y quiero agradecerle sus sugerencias y su ayuda;
el trabajo contenido en el caṕıtulo 6 fue publicado en [14]. Asimismo, me gustaŕıa
agradecer a Luis Bonilla y John Neu el darme la oportunidad de trabajar con ellos
en la solución numérica y el análisis asintótico del caso particular de las ecuacio-
nes recogido en el caṕıtulo 7, y que fue publicado en [73]. José Luis López y Juan
José Nieto me enseñaron sobre la ecuación de Wigner y me animaron a trabajar
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con ellos, y estoy muy agradecido por eso; los resultados obtenidos, recogidos en el
caṕıtulo 8, también han sido publicados en [13]. También quiero agradecer a P. E. Ja-
bin sus explicaciones y su ayuda sobre modelos de acoplamiento fluido-part́ıcula, y
a Magdalena Rodŕıguez por el diseño de las ilustraciones en los apéndices.

Las ecuaciones de coagulación-fragmentación

Muchos fenómenos f́ısicos consisten en un gran número de part́ıculas pequeñas
que pueden unirse de alguna forma para formar unidades mayores. Por ejemplo,
cuando una sustancia cambia de la fase ĺıquida a la gaseosa, las moléculas del gas
empiezan a agruparse para formar gotas cada vez mayores de la fase ĺıquida; procesos
análogos ocurren en otros tipos de cambios de fase [59] y en el comportamiento de los
aerosoles (part́ıculas ĺıquidas o sólidas suspendidas en un gas) [27]. La cristalización
en coloides [39] y la separación de aleaciones binarias [60, 89, 65] son otros ejemplos
de esta situación. En bioloǵıa, la formación de cristales de protéınas de la fase cúbica
de membranas liṕıdicas [42] y la agregación de ciertos ĺıpidos formando agregados
esféricos (micelas) o bicapas liṕıdicas (membranas) siguen un proceso parecido. [73,
46]. Estos ejemplos son muy generales, pero el punto sorprendente es que en muchos
casos tienen caracteŕısticas que permiten una descripción común útil.

Merece la pena tener una buena comprensión de estos fenómenos, y se ha inten-
tado desde varios puntos de vista: la termodinámica y la mecánica estad́ıstica dan
información muy útil sobre las situaciones de equilibrio, pero no pueden decir mucho
fuera de ellas (ver la sección 2.5 y [46, 81]). Se han propuesto algunas ecuaciones
cinéticas como modelo para estos procesos, de las cuales damos a continuación un
breve resumen; referimos a los art́ıculos [58, 1, 27, 28] para más información sobre
el tema. Dichos modelos pueden clasificarse según la escala de la descripción que
intentan dar: las descripciones microscópicas intentan modelizar la evolución de un
conjunto finito de part́ıculas individuales, y normalmente suponen que los sucesos
por los que dos part́ıculas se unen ocurren al azar. El primer modelo de este ti-
po fue propuesto por Marian Smoluchowski [83, 84]; otro ejemplo es el proceso de
Marcus-Lushnikov [63, 64]. Las descripciones mesoscópicas o modelos de campo me-
dio tratan la evolución del número de part́ıculas de cada tamaño posible, y no la
de cada part́ıcula individual; estas descripciones son válidas cuando el número de
part́ıculas es suficientemente alto. Los modelos mesoscópicos pueden incluir o no la
distribución espacial de las part́ıculas. En este trabajo nos centraremos en este nivel
de descripción, aśı que algunos modelos de este tipo serán descritos en detalle más
adelante; en particular estudiaremos ampliamente algunos problemas matemáticos
relacionados con la ecuación de coagulación-fragmentación. Finalmente, los mode-
los macroscópicos describen la evolución de ciertas cantidades macroscópicas que
representan algún tipo de media de las propiedades microscópicas del sistema en
consideración (como el tamaño medio de las part́ıculas).

Entre los modelos de campo medio, probablemente el mejor conocido es el de las
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ecuaciones de coagulación de Smoluchowski, propuesto en 1917 por Smoluchowski
en su versión discreta [84], y extendidas al planteamiento continuo por Müller en
1928 [72]:

d

dt
ci =

i−1
∑

j=1

aj,i−jcjci−j −
∞
∑

j=1

aijcicj for i ≥ 1.

Aqúı los aij , para i, j ≥ 1 enteros, son números no negativos llamados coeficientes de
coagulación; el anterior es un sistema de infinitas ecuaciones diferenciales ordinarias
en las incógnitas ci = ci(t) para i ≥ 1, que representan las densidades de núcleos
(agregados de part́ıculas) de tamaño i, dependiendo del tiempo t. El supuesto básico
es que la frecuencia con la que tiene lugar la reacción de coagulación en la que
un núcleo de tamaño i y un núcleo de tamaño j se unen es proporcional a las
concentraciones ci, cj de núcleos de tamaño i y j; esto se conoce como la ley de acción
de masas. Aśı, el término positivo a la derecha de la ecuación anterior representa el
número de las reacciones de coagulación cuyo producto es un núcleo de tamaño i
que tienen lugar; el término negativo representa el número de reacciones en las que
un núcleo de tamaño i se une a algún otro núcleo, produciendo aśı un núcleo de
tamaño mayor que i. Una generalización de esta ecuación se describe con precisión
en el caṕıtulo 2, aśı que no nos extendemos aqúı sobre eso.

La ecuación de coagulación de Smoluchowski sólo tiene en cuenta las posibles re-
acciones de coagulación entre pares de núcleos, pero no incluye la posible fragmen-
tación de las part́ıculas. Por el contrario, las ecuaciones de Becker-Döring, dadas
por el siguiente sistema de ecuaciones, describen sucesos de fragmentación binaria
y coagulación, pero incluyen sólo aquéllos que involucran reacciones entre part́ıcu-
las individuales y otros núcleos (de forma que no tienen en cuenta, por ejemplo,
reacciones entre dos núcleos de tamaño tres):

d

dt
ci = Ji−1 − Ji, r ≥ 2 (1)

d

dt
c1 = −J1 −

∞
∑

i=1

Ji, (2)

donde Ji := aic1ci − bi+1ci+1 para i ≥ 1 y ai, bi son los coeficientes de coagulación y
fragmentación, respectivamente. (ai se corresponde con ai,1 en la ecuación de Smo-
luchowski, ya que ahora sólo consideramos reacciones que involucran una part́ıcula
individual y un núcleo de cualquier tamaño). Estas ecuaciones fueron propuestas
originalmente por Becker y Döring [6] en 1935; un resumen de los resultados princi-
pales sobre ellas puede encontrase en el art́ıculo de Slemrod [82]. Una generalización
directa tanto de las ecuaciones de Smoluchowski como de la de Becker-Döring son
las ecuaciones discretas de coagulación-fragmentación:

d

dt
ci =

1

2

i−1
∑

j=1

Wj,i−j −
∞
∑

j=1

Wij for i ≥ 1, (3)
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donde Wij := aijcicj − bijci+j. Las ecuaciones de Becker-Döring generalizadas son el
caso particular de este sistema en el que, para cierto N ∈ N, aij = bij = 0 siempre
que mı́n{i, j} ≥ N ; esto es, sólo consideramos las reacciones en las que al menos
una de las part́ıculas es de tamaño menos que N .

Parte de este trabajo trata algunos problemas en la teoŕıa matemática de la ver-
sión continua de las ecuaciones de coagulación-fragmentación, dada por la siguiente
ecuación integro-diferencial:

∂

∂t
f = C(f) + F (f), t, y ∈ (0,+∞) (4)

f(0, y) = f 0(y), y ∈ (0,+∞), (5)

donde los términos de coagulación y fragmentación están dados por

C(f) := C1(f) − C2(f)

F (f) := F1(f) − F2(f)

C1(f)(y) :=
1

2

∫ y

0

a(y′, y − y′)f(y′)f(y − y′) dy′

C2(f)(y) := f(y)

∫ ∞

0

a(y, y′)f(y′) dy′

F1(f)(y) :=

∫ ∞

y

b(y′, y − y′)f(y′) dy′

F2(f)(y) := f(y)
1

2

∫ y

0

b(y′, y − y′)dy′.

Observamos que este sistema es la versión continua de (3), lo cual se ve más fácil-
mente si uno escribe aijcicj − bijci+j en lugar de Wij en (3). De hecho, trabajaremos
con una forma más general que permite reacciones de fragmentación múltiple (en
las que un núcleo puede romperse en cualquier número de trozos, no únicamente
dos). Ver chapter 2 para una descripción más detallada de estas ecuaciones. Tam-
bién es posible incluir en este modelo una descripción de la distribución espacial
de las part́ıculas; entre los trabajos en esta dirección se cuentan los de Laurençot y
Mischler [54, 57], Herrero y Rodrigo [44] y Herrero, Velázquez y Wrzosek [45].

Un modelo obtenido por un acercamiento distinto es el de las ecuaciones de
Lifshitz-Slyozov (inicialmente deducidas in [60]):

∂tf + ∂x(V f) = 0, t, x ≥ 0

u(t) + A

∫ ∞

0

xf(t, x) dx = Q, t ≥ 0,

donde x ≥ 0 representa el volumen de las part́ıculas (que es una variable continua,
en lugar de una discreta como antes), t ≥ 0 es la variable temporal, Q es la super-
saturación inicial total, A > 0 es un parámetro y V = V (t, x) es la velocidad de
crecimiento de los núcleos, dada por

V (t, x) = k(x)u(t) − q(x).
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Aqúı, k y q son funciones reales que dependen del mecanismo de transferencia de ma-
sa entre los núcleos. En la evolución de los procesos de coagulación-fragmentación, es-
tas ecuaciones describen un estadio posterior al descrito por las ecuaciones de Becker-
Döring. De hecho, las conexión entre estos sistemas es conocida [78, 55, 19, 74]: bajo
condiciones apropiadas sobre los coeficientes de coagulación y fragmentación ai, bi
y las velocidades de crecimiento k, q, las soluciones de un reescalamiento de las
ecuaciones de Becker-Döring convergen para tiempos grandes hacia soluciones en
medidas de las ecuaciones de Lifshitz-Slyozov.

Hay también enfoques cinéticos a los fenómenos de coagulación y fragmentación,
que tienen en cuenta los efectos del movimiento y las trayectorias de las part́ıculas.
Un enfoque difusivo donde se considera un núcleo de tipo Fokker-Planck puede
encontrarse en el art́ıculo clásico de Caflisch y Papanicolau [11]. Un estudio del
ĺımite hidrodinámico de este modelo ha sido hecho recientemente por Goudon, Jabin
y Vasseur en [41, 40], y la interacción fluido-part́ıcula ha sido analizada por varios
autores (ver [49] y las referencias alĺı indicadas); en particular mencionamos aqúı el
caso en el que el fluido se rige por la ecuación de Stokes; para esto nos remitimos al
art́ıculo de Jabin y Otto [48]. Un estudio de modelos de núcleos de fragmentación
en un contexto cinético ha sido hecho por Jabin y Soler [49], los cuales tienen una
estructura similar a la que aparece en modelos biológicos de procesos multicelulares
en la competición de células inmunes en tumores [7]. Un resumen de algunos modelos
estad́ısticos en el contexto de la interacción fluido-part́ıcula puede encontrarse en el
art́ıculo de Lasheras, Eastwood, Mart́ınez-Bazán y Montañés [51].

Hay varios problemas relacionados con estas ecuaciones y los procesos para los
cuales sirven como modelo. Uno querŕıa saber, por ejemplo, si describen de forma
precisa cierto fenómeno dado, y para qué coeficientes de coagulación y fragmen-
tación, de forma que se pude predecir el comportamiento del objeto de estudio y
posiblemente inferir las caracteŕısticas microscópicas de las reacciones que tienen
lugar. Para esto es útil desarrollar una comprensión aproximada del comportamien-
to de las soluciones de las ecuaciones relevantes, como su convergencia o no a un
equilibrio; obtener aproximaciones asintóticas útiles de las soluciones en ĺımites apro-
piados, que sean más simples que las propias ecuaciones o den información nueva
sobre ellas; encontrar soluciones particulares; ser capaz de simular las soluciones
experimentales; y finalmente, alcanzar una comprensión matemática precisa de la
estructura de la ecuación que ayude en los problemas anteriores, y también como
manera de poner a prueba y desarrollar las herramientas usadas en el estudio de las
ecuaciones diferenciales.

Nuestro objeto de estudio en algunos de los caṕıtulos siguientes serán las ecua-
ciones de coagulación-fragmentación, ya sea en su versión discreta (3) o continua
(4). Este modelo incluye algunos otros que han sido ampliamente estudiados (como
el sistema de Becker-Döring presentado anteriormente) y es apropiado para el es-
tudio matemático que queremos llevar a cabo. A continuación detallamos nuestros
objetivos y algunas de las dificultades a superar.



14

Existencia de soluciones

Desde el punto de vista matemático, una de las primeras preguntas en el estu-
dio de cualquier ecuación es la de la existencia de soluciones. Para las ecuaciones
de coagulación-fragmentación esto se ha estudiado en varios trabajos, que dan un
conocimiento bastante preciso de las condiciones bajo las cuales la ecuación de coa-
gulación-fragmentación está bien planteada, ya sea en la forma discreta o continua;
las condiciones usuales incluyen el requerimiento básico de que la función de distri-
bución inicial f 0 tenga masa finita

∫∞
0
y f 0(y) dy y que el número total de part́ıculas

∫∞
0
f 0(y) dy sea también finite, aśı como algunas cotas sobre los coeficientes. Mel-

zak y McLeod fueron los primeros en estudiar el problema [69, 66, 67, 68]; Galkin,
Dubovskii y Stewart extendieron sus resultados en [38, 29] usando técnicas de com-
pacidad en el espacio de funciones continuas en las condiciones anteriores. Ball, Carr,
Penrose y Spouge estudiaron el sistema discreto de ecuaciones [5, 4, 85], y Stewart,
Escobedo, Laurençot, Mischler y Perthame [86, 33, 35, 52, 56] trataron las ecuaciones
continuas usando métodos de compacidad en el espacio de funciones integrables. Sus
resultados para las ecuaciones continuas pueden enunciarse aproximadamente como
sigue: definimos una solución débil de las ecuaciones de coagulación-fragmentación
como una función f : (0,+∞)× [0, T ) → R tal que (4) es cierta en el sentido de las
distribuciones (ver la sección 5.1 para una definición precisa); entonces, el sistema
tiene una solución débil no negativa cuando el coeficiente de coagulación a es menor
que un múltiplo constante de 1 + y+ y′, el coeficiente de fragmentación b está local-
mente acotado en [0,+∞) × [0,+∞) y el dato inicial f 0 es una función integrable
no negativa con momento de orden 1 finito; es decir,

∫ ∞

0

(1 + y) f 0(y) dy < +∞.

Una motivación del interés en extender estos resultados viene dada por lo siguiente:
teniendo en cuenta que tanto las reacciones de coagulación como las de fragmenta-
ción conservan la masa total del sistema, una propiedad natural del comportamiento
de las soluciones es la conservación de la masa: la masa total, dada por

∫∞
0
y f(y) dy,

se mantiene constante a lo largo de la evolución temporal. Se sabe que esta propie-
dad no se cumple bajo ciertas condiciones sobre el tamaño de los coeficientes: por
ejemplo, si el coeficiente de coagulación crece demasiado rápido con el tamaño de los
núcleos y las fragmentación no contrarresta esto, entonces la solución de las ecuacio-
nes conserva la masa sólo hasta un tiempo cŕıtica después del cual la masa es menor
que la inicial; este fenómeno se conoce como gelación (ver los art́ıculos [33, 35] de
Escobedo, Laurençot, Mischler y Perthame), y puede interpretarse como la aparición
de “part́ıculas de tamaño infinito”. De forma parecida, cuando la fragmentación es
demasiado fuerte para núcleos de tamaño cercano a 0 (en el caso continuo), la masa
puede también perderse; este fenómeno se conoce como pulverización (shattering) y
puede pensarse causado por la creación de “part́ıculas de tamaño 0”. Sin embargo,
este fenómeno no ocurre a no ser que se permita un coeficiente de fragmentación
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b(y, y′) no acotado cerca de y′ = y = 0, de forma que deben extenderse las con-
diciones sobre los coeficientes para poder estudiarlo. La gelación y la pulverización
son efectos matemáticos, interesantes por derecho propio, de los que merece la pena
tener una mejor comprensión.

En este trabajo extendemos los resultados conocidos para incluir datos iniciales
que no necesariamente satisfacen

∫∞
0
f 0(y) dy < +∞, y coeficientes de coagulación

y fragmentación que pueden ser no acotados para part́ıculas pequeñas. Cuando sólo
se tienen en cuenta efectos de coagulación, esto ha sido hecho por Escobedo y Mis-
chler [34]; aqúı incluimos la fragmentación en esta teoŕıa de existencia, de forma que
la interacción de ambos efectos puede estudiarse. En particular, demostramos que
cuando la coagulación es suficientemente fuerte para part́ıculas pequeñas en compa-
ración con la fragmentación, la pulverización no puede ocurrir y la masa se conserva,
mientras que puede haber pulverización cuando la fragmentación es más fuerte. Es-
tos resultados se han obtenido en colaboración con Stéphane Mischler. Para dar un
enunciado concreto y sencillo, demostramos lo siguiente:

Teorema 1. Supongamos que:

1. Para algún γ ∈ R, 0 < k0 < 1,y C > 0, el coeficiente de fragmentación b
está dado por

b(y, y′) = C φγ(y)
1

y

(

y′

y

)−1−k0

para todo 0 < y′ < y, donde para y > 0 definimos

φγ(y) = yγ if γ ≤ 0,

φγ(y) = mı́n{yγ, y−l} if γ > 0,

para algún número l > 0.

2. Para algún α < β ∈ R, el coeficiente de coagulación a : (0,+∞)× (0,+∞) →
[0,+∞) está dado por

a(y, y′) = C(yα(y′)β + (y′)αyβ)

para todo y, y′ > 0. Suponemos que

α < β < 1

0 < λ := α+ β < 1

β − α < 1.

Si, además,

γ < λ− 1 o
λ− 1

2
< γ,

entonces para todo 0 < T ≤ +∞ hay una solución en medidas f de las ecuaciones
de coagulación-fragmentación (descritas en el caṕıtulo 2) con dato inicial f 0, y tal
que f ∈ L∞([0, T ), Ṁ1). En el caso λ−1

2
< γ, la masa total se conserva.
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De hecho, demostramos este resultado para un tipo más general de coeficientes
de coagulación y fragmentación, a saber, coeficientes que están acotados superior e
inferiormente por funciones de la forma anterior.

Comportamiento asintótico

Bajo la condición de balance detallado (una condición f́ısica motivada por el re-
querimiento de que las reacciones microscópicas deben ser reversibles; ver el caṕıtulo
6) y condiciones adicionales que aseguran que la masa se conserva, se conoce desde
hace tiempo que las ecuaciones de Becker-Döring muestran el siguiente comporta-
miento: cuando la masa inicial total es menor que cierto valor cŕıtico ρs, todas las
soluciones convergen de forma fuerte a una solución de equilibrio con la misma masa
total, la cual es también el único equilibrio con esa masa. Por otra parte, cuando
la masa inicial está por encima de ese valor cŕıtico, entonces todas las soluciones
convergen en un sentido débil al único equilibrio cuya masa es igual a la cŕıtica,
mientras que el exceso de masa ρ − ρs se concentra en núcleos cada vez mayores
según pasa el tiempo. Esto fue demostrado por Ball, Carr y Penrose en [5, 3], y
ha habido intentos de extender este importante resultado a modelos más generales:
Carr y da Costa [16] lo probaron para las ecuaciones de Becker-Döring generali-
zadas cuando el dato inicial decrece suficientemente rápido para tamaños grandes
de las part́ıculas; da Costa [20] demostró lo mismo para datos iniciales suficiente-
mente pequeños. Se esperaba que estas condiciones adicionales sobre el dato inicial
pudieran eliminarse, y se espera que el mismo resultado sea cierto en condiciones
generales para las ecuaciones de coagulación-fragmentación, pero esto es todav́ıa na
conjetura. En el caṕıtulo 6 extendemos los resultados de Carr y da Costa probando
que las restricciones sobre el dato inicial no son necesarias para las ecuaciones de
Becker-Döring generalizadas. Nuestro principal resultado es el siguiente:

Teorema 2. Supongamos las hipótesis 6.2.6-6.2.12 del caṕıtulo 6, y sea c = {cj}j≥1

una solución admisible de las ecuaciones de Becker-Döring generalizadas (3) (las
hipótesis consisten esencialmente en suponer una hipótesis de balance detallado y
condicions suficientes para asegurar que se conserva la masa; recordemos que las
ecuaciones generalizadas de Becker-Döring son un caso particular de las ecuacio-
nes de Becker-Döring en el que sólo se consideran reacciones en las que uno de
los núcleos implicados tiene tamaño menos que un cierto N), Llamemos ρ0 :=
∑∞

j=1 jcj(0), la densidad inicial.

1. Si 0 ≤ ρ0 ≤ ρs entonces c converge fuertemente al equilibrio con densidad ρ0.

2. Si ρs < ρ0 entonces c converge débilmente al equilibrio con densidad ρs.

Una descripción más precisa de la convergencia de las soluciones se da en el
caṕıtulo 6. La demostración de este resultado se apoya en una cuidadosa estima-
ción del tamaño de la cola de una solución, la cual está inspirada en un método
inicialmente usado por Laurençot y Mischler en [55] para probar la unicidad de
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las soluciones. La estimación en śı es interesante porque es posible que pueda ser
mejorada para obtener información adicional sobre el comportamiento de las solu-
ciones; tal como está, depende fuertemente del hecho de que no ocurren reacciones
en las que los dos núcleos son de más de un cierto tamaño N , aśı que no puede ge-
neralizarse directamente para dar una demostración del resultado correspondiente
para las ecuaciones generales de coagulación-fragmentación. Sin embargo, propor-
ciona una nueva técnica para atacar el problema y podŕıa ayudar a encontrar una
generalización de nuestros resultados.

Simulación numérica y aproximación asintótica

Existen grandes dificultades para simular numéricamente las ecuaciones de coa-
gulación-fragmentación debido al enorme número de variables necesarias y las escalas
de tiempo tan distintas que influyen en la evolución de las soluciones; se necesita una
comprensión previa del comportamiento esperado. En el caṕıtulo 7 damos una apro-
ximación asintótica de la soluciones de las ecuaciones de Becker-Döring n un caso en
el que la forma de los coeficientes de coagulación y fragmentación es suficientemente
sencilla como para que se pueda presentar una teoŕıa limpia del comportamiento de
las soluciones y ésta pueda compararse a una solución numérica de las ecuaciones.
Se espera que el método sea aplicable a situaciones más complejas, y de hecho ha
sido usado posteriormente por Bonilla, Carpio y Neu [8] para estudiar el caso en el
que hay una densidad cŕıtica, de forma que la nucleación y el “coarsening” tienen
lugar.

El modelo concreto que usamos es el caso en el que la enerǵıa de enlace de
los núcleos, una cantidad relacionada con la proporción entre los coeficientes de
coagulación y fragmentación (ver la sección 2.5), depende linealmente del tamaño
del núcleo, y donde suponemos que la fragmentación no depende del tamaño del
núcleo; esto es, estamos suponiendo que todos los núcleos tienen la misma tendencia
a desprenderse de una part́ıcula, la cual es independiente de su tamaño. Se piensa que
este caso es un modelo adecuado para la agregación de ĺıpidos en disolución acuosa
formando micelas ciĺındricas, que se forman debido al hecho de que las moléculas de
los ĺıpidos implicadas tienen una parte hidrófoba (“cola”) y una hidrófila (“cabeza”),
de manera que tienen tendencia a mantenerse cerca de forma tal que las colas están
juntas y alejadas del agua, mientras que las cabezas apuntan hacia el agua. Debido
al tamaño de la molécula concreta de la que se trate, los ĺıpidos pueden agruparse en
núcleos esféricos, ciĺındricos o en membranas; cada forma de agrupación tiene una
enerǵıa de enlace distinta, y parece que una dependencia lineal del tamaño es una
buena aproximación para las micelas ciĺındricas [46, chapter 15].

Desarrollamos una aproximación anaĺıtica para el comportamiento de la solución
en el ĺımite en el cual la concentración inicial es mucho mayor que la concentración
micelar cŕıtica (ver caṕıtulo 7 para más detalles) mediante el método de expansiones
asintóticas acopladas (“matched asymptotic expansions”). Mostramos que durante
la evolución de la solución aparecen tres partes distinguidas o “eras”, en las cuales
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las escalas temporales son muy distintas: durante la primera parte, el número de
monómeros (part́ıculas individuales) decrece muy rápidamente y se crea un gran
número de núcleos pequeños, de forma que la distribución de tamaños comienza a
parecerse a una función continua; durante la segunda parte, esta función evoluciona
como una solución de la ecuación del calor; finalmente, la solución se aproxima len-
tamente a una distribución de equilibrio en la que núcleos de tamaños muy distintos
coexisten. Estos resultados se comparan a una solución numérica y mostramos que
coinciden bien con ella.

La ecuación de Wigner-Poisson-Fokker-Planck

La modelización de la difusión cuántica es uno de los campos de interés matemáti-
cos en mecánica cuántica que no está bien entendido por completo actualmente.
Algunos trabajos destacados que apuntan a un análisis de correcciones difusivas en
modelos surgidos de la cinética cuántica se deben a Caldeira y Leggett [12], Diósi
[24, 25] y Diósi et al. [26]. El contexto apropiado para este tipo de modelos difusivos
es el de sistemas cuánticos abiertos, esto es, un conjunto de electrones interactuan-
do con un baño térmico (un conjunto infinito de osciladores armónicos en equilibrio
termodinámico) y que pueden intercambiar masa con su entorno (ver [12], [21], [37],
[18]).

La ecuación de Wigner-Fokker-Planck es:

∂W

∂t
+ (ξ · ∇x)W + Θ[V ]W

=
Dpp

m2
∆ξW + 2λdivξ(ξW ) + 2

Dpq

m
divx(∇ξW ) +Dqq∆xW , (6)

dondeW es la distibución de (quasi)-probabilidad, Dpp,Dpq,Dqq,m y λ son constan-
tes f́ısicas y Θ[V ]W es el término cuadrático no lineal asociado con el potencial au-
toconsistente de Hartree en 3D (ver (1.12) más abajo). En un art́ıculo reciente [2] se
estudia el buen planteamiento del sistema conocido como de Wigner-Poisson-Fokker-
Planck (WPFP) en el enfoque Markoviano más sencillo para el caso (a temperatura
alta) sin fricción (λ = 0). Éste es un modelo cinético-cuántico (en la representación
de Wigner) con mecanismo disipativo de Fokker-Planck sólo en la dirección ξ (es
decir, Dpq = Dqq = 0):

∂W

∂t
+ (ξ · ∇x)W + Θ[V ]W =

Dpp

m2
∆ξW, x, ξ ∈ R

3, t > 0 . (7)

La forma de Lindblad [61] de este operador cinético a nivel de la matriz de den-
sidad implica que el problema es matemáticamente consistente, en el sentido de
que la ecuación preserva la positividad de la matriz de densidad inicial. Los proble-
mas de existencia local, unicidad, estabilidad, regularidad y comportamiento para
tiempos grandes (en el caso de soluciones globales) de soluciones “mild” de (7) se
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atacan también en [2]. En [18], los autores llevan a cabo una deducción matemáti-
camente rigurosa de la ecuación de Fokker-Planck sin fricción a partir del modelo
de Caldeira-Leggett presentado en [12]. Además, investigan otras ecuaciones de tipo
Fokker-Planck obtenidas del Hamiltoniano de Caldeira-Leggett mediante diferentes
mecanismos de difusión y reescalamientos (temperatura fija y ĺımite para tiempos
grandes), especialmente una ecuación del calor con un término de fricción para el
proceso radial en el espacio de fases. Asimismo, la velocidad de decrecimiento en
tiempo de las soluciones al modelo hidrodinámico con viscosidad (esto es, las ecua-
ciones de momentos para las densidades de carga y corriente acopladas a la ecuación
de Poisson para el potencial eletrostático) asociadas a la ecuación de WPFP en 1D
se estudian en a través del método de disipación de la entroṕıa.

El caṕıtulo 8 está dedicado a demostrar existencia de soluciones globales de tipo
“mild” (esto es, soluciones de la ecuación de WPFP escrita en una forma integral
equivalente, definidas en [0,∞)) para el tipo más general de modelos de WPFP f́ısica-
mente relevantes (sólo requerimos Dpq = 0). Se basa en los resultados de J. L. López,
Juan José Nieto y el autor que han sido publicados en [13]. Tratamos el análisis del
siguiente problema de valores iniciales:

∂W

∂t
+ (ξ · ∇x)W + Θ[V ]W =

Dpp

m2
∆ξW + 2λdivξ(ξW ) +Dqq∆xW (8)

W (x, ξ, 0) = W0(x, ξ) , (9)

acoplado a la ecuación de Poisson para la determinación del potencial electrostático
autoconsistente:

V (x, t) =
1

4π

∫

R3
y

n(y, t)

|x− y| dy , (10)

con

n(x, t) =

∫

R3
ξ

W (x, ξ, t) dξ . (11)

Aqúı, Θ[V ] representa el operador pseudo-diferencial

Θ[V ]W (x, ξ, t) =
i

(2π)3

∫

R3
η

∫

R3

ξ′

V (x+ ~

2m
η, t) − V (x− ~

2m
η, t)

~

×W (x, ξ′, t)e−i(ξ−ξ′)·η dξ′ dη , (12)

donde ~ denota la constante de Planck reducida y m la masa efectiva de las part́ıcu-
las, con λ,Dpp, Dqq constantes positivas relacionadas con las interacciones entre las
part́ıculas y el baño térmico (ver [24]):

λ =
η

2m
, Dpp = ηkBT , Dqq =

η~2

12m2kBT
, (13)

donde η > 0 es la constante de acoplamiento (amortiguamiento) del baño, kB la
constante de Boltzmann y T la temperatura del baño. Asimismo,

Q =

∫

R3
x

∫

R3
ξ

W (x, ξ, t) dξ dx
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es la carga total del sistema, que se conserva durante la evolución. Esta ecuación
es la aproximación Markoviana más simple que tiene en cuenta efectos de fricción y
disipación, tal que la correspondiente ecuación maestra para la matriz de densidad
del conjunto de part́ıculas pertenece a la clase de Lindblad (como se demuestra en
[25]), asegurando la conservación de la positividad para todas las condiciones iniciales
y todo tiempo. De hecho, si se quita el término eĺıptico que involucra ∆xW en la
ecuación (8), entonces el núcleo de colisión de Fokker-Planck sobrante (que tiene en
cuenta sólo fricción y efectos de difusión en ξ) impide que la ecuación pertenezca
a la familia de Lindblad. Aśı, es este caso el problema no seŕıa matemáticamente
consistente ni significativo en un contexto f́ısico.

La ecuación de WPFP (8) surge del siguiente modelo de evolución (ver [2]) para
la matriz de densidad ρ(x, y, t) ∈ L2(R3

x × R
3
y):

∂ρ

∂t
= − i

~
(Hx −Hy)ρ− λ(x− y) · (∇x −∇y)ρ

+
(

Dqq|∇x + ∇y|2 −
Dpp

~2
|x− y|2

)

ρ ,

donde Hx y Hy son copias del Hamiltoniano del electrón

Hz = − ~
2

2m
∆z + V (z, t)

actuando sobre las variables x e y, respectivamente. De hecho, teniendo en cuenta
que la función de Wigner del conjunto de elctrones W : R

3
x × R

3
ξ × [0,∞) → R

está definida por

W (x, ξ, t) =
1

(2π)3

∫

R3
η

ρ
(

x+
~

2m
η, x− ~

2m
η, t
)

e−iξ·η dη ,

se puede deducir fácilmente que la ley de evolución para W (x, ξ, t) está descrita por
la ecuación (8). La positividad del operador de matriz de densidad

[R(t)f ](x) =

∫

R3
y

f(y)ρ(x, y, t) dy ∈ L2(R3)

(garantizada por la condición de Lindblad) implica que la transformada de Husi-
mi, definida por la siguiente convolución de la función de Wigner con un núcleo
Gaussiano

WH(x, ξ, t) = W (x, ξ, t) ∗x,ξ

(m

~π

)3

exp
{

−m
~

(

|x|2 + |ξ|2
)}

, (14)

es no negativa en cada punto en R
3
x ×R

3
ξ . Asimismo, la condición de Lindblad y una

fricción no nula (λ > 0) implican que el operador de Fokker-Planck es uniformemente
eĺıptico en R

3
x × R

3
ξ .
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Contrariamente a las técnicas comunes que conducen a la existencia global, regu-
laridad y comportamiento asintótico de las soluciones a sistemas clásicos de (Vlasov)-
Fokker-Planck, nuestras técnicas evitan el uso expĺıcito de normas Sp (ver [17, 9, 76]
por ejemplo) para controlar la función de distribución. En realidad, nuestra demos-
tración no requiere más regularidad que L1(R3

x×R
3
ξ)∩L1(R3

ξ;L
2(R3

x)) y el control de
la enerǵıa cinética de la función de Wigner inicial. Notemos también que el espacio
natural donde vive la función de Wigner es L2(R3

x×R
3
ξ), lo cual puede verse a partir

de la formulación original con la matriz de densidad en el contexto más amplio de
los problemas de Wigner. De hecho, multiplicando formalmente la ecuación (8) por
W e integrando en x y ξ tenemos

‖W (t)‖L2(R3
x×R3

ξ
) ≤ ‖W0‖L2(R3

x×R3
ξ
) e

6λt .

Sin embargo, la presencia de un núcleo de regularización de Fokker-Planck en el
modelo a estudiar nos permite desarrollar una teoŕıa en L1 para la ecuación de
WPFP y explotar las propiedades de regularización del operador de Fokker-Planck
para obtener soluciones regulares. El hecho de que no se dispone de un principio del
máximo para ecuaciones del tipo Wigner es significativo, de forma que en general la
función de Wigner cambia de signo incluso si empezamos con un dato inicial positivo.
Éste es el motivo de que la función de Husimi (14), junto con la regularización eĺıptica
en la variable x, tengan un papel esencial en nuestro análisis.

En el caṕıtulo 8 demostramos el siguiente resultado de existencia global en tiem-
po:

Teorema 3. Sea W0 ∈ L1(R3
x × R

3
ξ) ∩ L1(R3

ξ;L
2(R3

x)) tal que

∫

R3
x

∫

R3
ξ

|ξ|2W0(x, ξ) dξ dx <∞.

Entonces, la ecuación de the Wigner-Poisson-Fokker-Planck equation (8)–(13) ad-
mite una única solución global de tipo “mild”

W ∈ C([0,∞);L1(R3
x × R

3
ξ)) ∩ C([0,∞);L1(R3

ξ;L
2(R3

x))) .

Además,
W ∈ C((0,∞);W 1,1 ∩W 1,∞(R3

x × R
3
ξ)) .

Asimismo, la densidad de carga (11) y el potencial eléctrico (10) satisfacen las si-
guiente propiedades de regularidad de tipo Hölder: para todo t > 0,

n(·, t) ∈ C0,α(R3
x) con 0 < α <

1

2
, V (·, t) ∈ C1,β(R3

x) con 0 < β <
1

3
.
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Chapter 1

Introduction

This work treats mainly the problem of existence of solutions for two different
equations: the continuous coagulation-fragmentation equations and the Wigner-
Poisson-Fokker-Planck equation. In addition, some aspects of the qualitative behav-
ior of the coagulation-fragmentation equations are studied. The thesis is organized
as follows: in this introduction we briefly present the context of both equations
and the main results obtained. In chapters 2–4 we give some preliminar results
and background which is needed for the later treatment of the continuous coa-
gulation-fragmentation system of equations; in chapter 5 we state and prove our
existence results, and on the way we rederive some of the already known results
on the topic, as the techniques involved are similar. In particular, section 5.7.3
contains results which show the interplay between singular coagulation and frag-
mentation coefficients. Chapter 6 contains a new result on the asymptotic behavior
of the generalized Becker-Döring system of equations (which is a particular case of
the discrete coagulation-fragmentation equations, as explained below), and chapter
7 shows an explicit approximation to the behavior of solutions of the Becker-Döring
equations in a particular case, together with numerical solutions that back up the
validity of the approximation. Finally, chapter 8 contains our result on the Wigner-
Poisson-Fokker-Planck equation, which essentially consists of an existence theory in
L1. Some appendices are given which contain a summary of known results which
are necessary in the development of the rest of this work. Below we give a short
introduction to each of the topics treated. Of course, a good part of the content is
here thanks to the work of other people and has been done with their collaboration,
and I would like to name them here. I want to thank Juan Soler for his guidance
and help on the topic of transport and evolution equations in general, and for his
work on the preparation of this thesis. The work gathered in chapters 5 and 6 was
carried out together with Stéphane Mischler, and I wish to thank him for his sugges-
tions and help; that in chapter 6 was published in [14]. Also, I would like to thank
Luis Bonilla and John Neu for giving me the opportunity to work with them on the
numerical solution and asymptotic analysis of the particular case of the equations
which is collected in chapter 7, and which was published in [73]. José Luis López
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and Juan José Nieto taught me about the Wigner equation and encouraged me to
work with them, and I’m very grateful for that; the results obtained, gathered in
chapter 8, have also been published in [13]. I also want to thank P. E. Jabin for his
explanations and help on the modelling of particle-fluid coupling, and Magdalena
Rodŕıguez for the design of the figures in the appendices.

1.1. The coagulation-fragmentation equations

Many physical phenomena consist of a great number of small particles that can
stick together in some way to form larger units. For example, when a substance
changes from its gas phase to a liquid phase, the molecules in the gas start to come
together to form larger and larger droplets of the liquid phase; analogous processes
occur in other kinds of phase changes [59] and in the behavior of aerosols (liquid
or solid particles suspended in a gas) [27]. Crystallization in colloids [39] and the
segregation of binary alloys [60, 89, 65] are other examples of this situation. In
biology, the formation of protein crystals from the lipidic cubic phase of membranes
[42] and the aggregation of certain lipids to form spherical clusters (micelles) or
lipid bilayers (membranes) follow a similar process [73, 46]. These examples are very
general, but the surprising point is that in many cases they have characteristics that
allow a useful common description.

A good understanding of these phenomena is worth having, and it has been
attempted from several standpoints: thermodynamics and statistical mechanics give
very useful information on equilibrium situations, but can say little away from them
(see section 2.5 and [46, 81]). Some kinetic equations have been proposed as a
model for these processes, of which we give next a short account; we can refer to
the reviews [58, 1, 27, 28] for more information on the topic. The models can be
classified according to the scale of the description they intend to give: microscopic
descriptions try to model the evolution of a finite set of individual particles, and
usually suppose that events in which two particles stick together occur in a random
way. The first model of this kind was proposed by Marian Smoluchowski [83, 84];
another example is the Marcus-Lushnikov process [63, 64]. Mesoscopic descriptions
or mean-field models are concerned with the evolution of the number of particles of
each possible size, and not that of the individual particles; these descriptions are
valid when the number of particles is sufficiently high. Mesoscopic models may or
may not include the spatial distribution of the particles. In the present work we
will focus on this level of description, so some models of this type will be described
later in detail; in particular we will study mathematical issues related to the coagu-
lation-fragmentation equation at length. Finally, macroscopic models describe the
evolution of some macroscopic quantities, which represent some kind of average of
the microscopic properties of the system (such as the mean cluster size).

Among the mean-field models, probably the best-known are the Smoluchowski
coagulation equations, proposed in 1917 by Smoluchowski in their discrete version
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[84], and extended to the continuous setting by Müller in 1928 [72]:

d

dt
ci =

i−1
∑

j=1

aj,i−jcjci−j −
∞
∑

j=1

aijcicj for i ≥ 1.

Here the aij for integers i, j ≥ 1 are nonnegative numbers called coagulation coeffi-
cients ; this is an infinite system of ordinary differential equations in the unknowns
ci = ci(t) for i ≥ 1, which represent the densities of clusters (aggregates of parti-
cles) of size i depending on the time t. The basic assumption is that the rate of
occurrence of the coagulation reaction where a cluster of size i joins a cluster of
size j is proportional to both the concentrations ci, cj of i- and j-clusters; this is
known as the law of mass action. Then, the positive term on the right hand side of
the above equation represents the number of coagulation reactions taking place that
have a cluster of size i as their product; the negative term represents the number of
reactions in which a cluster of size i joins some other cluster, thus giving a cluster
of size greater than i. A generalization of this equation will be carefully described
in chapter 2, so we do not extend here on the matter.

The Smoluchowski coagulation equation only takes into account all possible co-
agulation reactions between pairs of clusters but does not include the possible frag-
mentation of clusters. In turn, the Becker-Döring cluster equations, which are given
by the following infinite set of equations, describe coagulation and binary fragmenta-
tion events, but include only those that involve reactions between individual particles
and other clusters (so they do not take into account, for example, reactions between
two clusters of size three):

d

dt
ci = Ji−1 − Ji, r ≥ 2 (1.1)

d

dt
c1 = −J1 −

∞
∑

i=1

Ji, (1.2)

where Ji := aic1ci−bi+1ci+1 for i ≥ 1 and ai, bi are the coagulation and fragmentation
coefficients, respectively (ai corresponds to ai,1 in the Smoluchowski equation, as now
we only consider reactions involving an individual particle and a cluster of arbitrary
size). These equations were originally proposed by Becker and Döring [6] in 1935;
a review by M. Slemrod can be found in [82]. A straightforward generalization of
both the Smoluchowski and Becker-Döring equations are the discrete coagulation-
fragmentation equations:

d

dt
ci =

1

2

i−1
∑

j=1

Wj,i−j −
∞
∑

j=1

Wij for i ≥ 1, (1.3)

where Wij := aijcicj − bijci+j . The generalized Becker-Döring equations are the
particular case of this system where, for some N ∈ N, aij = bij = 0 whenever
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min{i, j} ≥ N ; this is to say that we only consider reactions in which at least one
of the involved clusters has a size less than N .

Part of our work deals with some issues related to the mathematical theory of
the continuous version of the coagulation-fragmentation equations, given by the
following integro-differential equation:

∂

∂t
f = C(f) + F (f), t, y ∈ (0,+∞) (1.4)

f(0, y) = f 0(y), y ∈ (0,+∞), (1.5)

where the coagulation and fragmentation terms are given by:

C(f) := C1(f) − C2(f)

F (f) := F1(f) − F2(f)

C1(f)(y) :=
1

2

∫ y

0

a(y′, y − y′)f(y′)f(y − y′) dy′

C2(f)(y) := f(y)

∫ ∞

0

a(y, y′)f(y′) dy′

F1(f)(y) :=

∫ ∞

y

b(y′, y − y′)f(y′) dy′

F2(f)(y) := f(y)
1

2

∫ y

0

b(y′, y − y′)dy′.

Note that this system is the continuous version of (1.3), which is seen more easily
if one writes aijcicj − bijci+j instead of Wij in (1.3). Actually, we will work with
a more general form that allows multiple fragmentation reactions (where a cluster
may break into any number of pieces, and not only two). See chapter 2 for a more
detailed description of these equations. It is also possible to include in this model
a description of the spatial distribution of the particles; works in this direction
include those by Laurençot and Mischler [54, 57], Herrero and Rodrigo [44] and
Herrero, Velázquez and Wrzosek [45].

A model obtained from a different approach are the Lifshitz-Slyozov equations
(initially derived in [60]):

∂tf + ∂x(V f) = 0, t, x ≥ 0

u(t) + A

∫ ∞

0

xf(t, x) dx = Q, t ≥ 0,

where x ≥ 0 represents the volume of the clusters (which is a continuous variable,
rather than a discrete one as before), t ≥ 0 is the time variable, Q is the total initial
supersaturation, A > 0 is a parameter and V = V (t, x) is the rate of growth of the
clusters, given by

V (t, x) = k(x)u(t) − q(x).
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Here, k and q are real functions that depend on the mechanism of mass transfer
between the clusters. In the evolution of coagulation-fragmentation processes, these
equations describe a later stage than the Becker-Döring equations. In fact, the
connection between these systems is known [78, 55, 19, 74]: under suitable conditions
on the coagulation and fragmentation coefficients ai, bi and the rates of growth k, q,
solutions to a rescaling of the Becker-Döring equations converge for large times to
measure-valued solutions to the Lifshitz-Slyozov equations.

There are also kinetic approaches to the phenomenon of coagulation and frag-
mentation, which take into account the effects of the movement and trajectories of
the particles. A diffusive approach where a Fokker-Planck-type kernel is considered
can be found in the classical Caflisch and Papanicolau’s paper [11]. A study of the
hidrodynamic limits of this model has recently been given by Goudon, Jabin and
Vasseur in [41, 40], and particle-fluid interaction has been analyzed by several au-
thors (see [49] and the references therein); in particular we mention here the case
where the fluid is governed by the Stokes equation; for this we refer to the paper by
Jabin and Otto [48]. A study in a kinetic context of fragmentation kernels has been
given by Jabin and Soler [49], which have a similar structure to those in models for
biological processes of multicellular systems in tumor immune cells competition [7].
A review of some statistical models in the context of bubble-fluid interaction can be
found in the paper by Lasheras, Eastwood, Mart́ınez-Bazán and Montañés [51].

There are a number of problems related to these equations and the processes
they serve as a model for. One would like to know, for example, whether they
accurately describe a given phenomenon, and for which choice of coagulation and
fragmentation coefficients, so that one can predict the behavior of the object of study
and possibly infer the microscopic characteristics of the reactions taking place. For
this it is helpful to develop a rough understanding of the behavior of the solutions
of the relevant equations, such as their convergence or not to an equilibrium; to
obtain useful asymptotic approximations to the solutions in some suitable limits,
which are simpler than the equations themselves or give new information on them;
to find particular solutions; to be able to simulate the solutions numerically in order
to compare them to experimental data; and finally, to have a precise mathematical
understanding of the structure of the equation to help in the previous matters, and
also as a way to test and develop the tools used in the study of differential equations.

The object of our study in some of the following chapters will be the coagula-
tion-fragmentation equations, either in their discrete form (1.3) or the continuous
one (1.4). This model includes some others that have been widely studied (such as
the Becker-Döring system presented above) and is well-suited for the mathematical
study we want to carry out. In the following we detail some of the difficulties to
overcome and our aims.
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1.1.1. Existence of solutions

From the mathematical point of view, one of the first questions in the study of
any equation is that of the existence of solutions. For the coagulation-fragmentation
equations this has been studied in a number of papers, which give a quite precise
knowledge on the conditions under which the coagulation-fragmentation equation
is well-posed either in the continuous or the discrete form; the usual conditions
include the basic requirement that the initial distribution function f 0 should have
a finite mass

∫∞
0
y f 0(y) dy and that the total number of particles

∫∞
0
f 0(y) dy is

also finite, as well as some bounds on the coefficients. Melzak and McLeod first
studied the issue [69, 66, 67, 68]; Galkin, Dubovskii and Stewart extended their
results in [38, 29] using compactness techniques in the space of continuous functions
in the above conditions. Ball, Carr, Penrose and Spouge studied the discrete system
of equations [5, 4, 85], and Stewart, Escobedo, Laurençot, Mischler and Perthame
[86, 33, 35, 52, 56] treated the continuous equations using compactness methods in
the space of integrable functions. Their results for the continuous equations can be
roughly stated as follows: we define a weak solution to the coagulation-fragmenta-
tion system of equations as a function f : (0,+∞) × [0, T ) → R such that (1.4)
holds in the sense of distributions (see section 5.1 for the precise definition); then,
the system has a nonnegative weak solution when the coagulation coefficient a is
less than a constant multiple of 1 + y + y′, the fragmentation coefficient b is locally
bounded on [0,+∞) × [0,+∞) and the initial data f 0 is a nonnegative integrable
function with finite moment of order one; this is,

∫ ∞

0

(1 + y) f 0(y) dy < +∞.

A motivation of the interest in extending these results is given by the following:
considering that both the coagulation and fragmentation reactions preserve the total
mass in the system, a natural property of the behavior of solutions to this system is
mass conservation: the total mass, given by

∫∞
0
y f(y) dy, remains constant during

time evolution. This property is known not to hold under certain conditions on the
size of the coefficients: for example, if the coagulation coefficient grows too rapidly
with cluster size and fragmentation does not counter this, then the solution to the
equations conserves mass only up to a given critical time, after which the mass is less
than the initial one; this phenomenon is known as gelation (see the papers [33, 35]
by Escobedo, Laurençot, Mischler and Perthame), and can be interpreted as the
apparition of “particles of infinite size”. In a similar way, when fragmentation is
too strong for clusters of size close to 0 (in the continuous case), mass may also be
lost; this phenomenon is known as shattering, and can be thought of as caused by
the creation of “particles of size 0”. However, this phenomenon does not happen
unless one allows for a fragmentation coefficient b(y, y′) which is unbounded near
y′ = y = 0, so one must extend the conditions on the coefficients in order to study
it. Gelation and shattering are mathematical effects, interesting in their own right,
and which are worth to have a better understanding of.
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In this work we extend the known existence results to include initial data that
does not necessarily satisfy

∫∞
0
f 0(y) dy < +∞, and coagulation and fragmentation

coefficients that can be unbounded for small particles. When only coagulation effects
are taken into account, this has been done by Escobedo and Mischler [34]; here we
include fragmentation in this existence theory, so that the interaction of both effects
can be studied. In particular, we prove that when coagulation is strong enough for
small particles when compared to fragmentation, shattering does not take place and
mass is conserved, while shattering may happen when fragmentation is stronger.
These results were obtained in collaboration with Stéphane Mischler. To give a
concrete and simple statement, we prove the following:

Theorem 1.1.1. Assume that:

1. For some γ ∈ R, 0 < k0 < 1, and C > 0, the fragmentation coefficient b is
given by

b(y, y′) = C φγ(y)
1

y

(

y′

y

)−1−k0

for all 0 < y′ < y, where for y > 0 we set

φγ(y) = yγ if γ ≤ 0,

φγ(y) = min{yγ, y−l} if γ > 0,

for some number l > 0.

2. For some α < β ∈ R, the coagulation coefficient a : (0,+∞) × (0,+∞) →
[0,+∞) is given by

a(y, y′) = C(yα(y′)β + (y′)αyβ)

for all y, y′ > 0. We assume that

α < β < 1

0 < λ := α+ β < 1

β − α < 1.

If, in addition,

γ < λ− 1 or
λ− 1

2
< γ,

then for all 0 < T ≤ +∞ there is a measure solution f to the coagulation-frag-
mentation equations (described in chapter 2) with initial data f 0, and such that
f ∈ L∞([0, T ), Ṁ1). In the case λ−1

2
< γ, the total mass is conserved.

Actually, we prove the above result for a more general class of coagulation and
fragmentation coefficients; namely, coefficients which are bounded above and below
by functions of the above form.
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1.1.2. Asymptotic behavior

Under the condition of detailed balance (a physical condition motivated by the
requirement that microscopic reactions should be reversible; see chapter 6) and
further conditions that ensure that mass is conserved, it has been known for some
time that the Becker-Döring equations exhibit the following behavior: when the
initial total mass is less than some critical value ρs, all solutions converge in a
strong way to an equilibrium solution with the same total mass, which is also the
only equilibrium with that mass. On the other hand, when the initial mass ρ is above
that critical value, then all solutions converge in a weak sense to the only equilibrium
whose mass is the critical one, while the excess mass ρ−ρs is concentrated in larger
and larger clusters as time passes. This was proved by Ball, Carr and Penrose in
[5, 3], and there have been attempts to extend this important result to more general
models: Carr and da Costa [16] proved it for the generalized Becker-Döring equations
when the initial data decays rapidly enough for large cluster sizes; da Costa [20] then
proved the same for small enough initial data. It was expected that these additional
conditions on the initial data could be removed, and the same result is expected to
hold under general conditions for the coagulation-fragmentation equations, but this
is still a conjecture. In chapter 6 we extend Carr and da Costa’s results by showing
that the restrictions on the initial data are indeed not necessary for the generalized
Becker-Döring equations. Our main result is the following:

Theorem 1.1.2. Assume hypotheses 6.2.6-6.2.12 in chapter 6, and let c = {cj}j≥1

be an admissible solution of the generalized Becker-Döring equations (1.3) (the hy-
potheses essentially consist in assuming a detailed balance hypotheses and sufficient
conditions that ensure mass conservation; recall that the generalized Becker-Döring
equations are a particular case of the Becker-Döring equations in which only reac-
tions where one of the involved clusters is of size less than a certain N are consid-
ered). Call ρ0 :=

∑∞
j=1 jcj(0), the initial density.

1. If 0 ≤ ρ0 ≤ ρs then c converges strongly to the equilibrium with density ρ0.

2. If ρs < ρ0 then c converges weakly to the equilibrium with density ρs.

A more precise description of the convergence of the solutions is given in chapter
6. The proof of this result relies on a careful estimate on the size of the tail of a
solution, which is inspired in a method initially used by Laurençot and Mischler in
[55] to prove uniqueness of solutions. The estimate itself is of interest because it can
possibly be improved to obtain further information on the behavior of solutions; as
it stands, it depends strongly on the fact that reactions where both clusters are of
size greater than some fixed N do not take place, so it cannot be directly generalized
to provide a proof of the corresponding result for the general coagulation-fragmen-
tation equations. However, it gives a new technique to attack the problem and could
help find a generalization of our results.
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1.1.3. Numerical simulation and asymptotic approximation

There is a great difficulty in simulating the coagulation-fragmentation equations
numerically due to the huge number of variables that are necessary and the very
different time scales that play a role in the evolution of the solutions; a previous un-
derstanding of their expected behavior is needed. In chapter 7 we give an asymptotic
approximation of the solutions of the Becker-Döring equations in a case in which
the form of the coagulation and fragmentation coefficients is simple enough so that
a clean theory of the behavior of the solutions can be presented and compared to a
numerical simulation of the equations. The method is expected to be applicable to
more complicated situations, and in fact it has been used later by Bonilla, Carpio
and Neu [8] to study the case in which there is a critical density, so nucleation and
coarsening can take place.

The concrete model we use is the case in which the binding energy of clusters,
a quantity which is related to the ratio between the coagulation and fragmentation
coefficients (see section 2.5), depends linearly on the cluster size, and we assume that
the fragmentation does not depend on the size of the cluster; this is, we are assuming
that all clusters have the same tendency to shed a particle, which is independent of
their size. This case is thought to be a model for the aggregation of lipids in aqueous
solution into cylindrical micelles, which form due to the fact that the involved lipid
molecules have a hydrophobic part (tail) and a hydrophilic one (head), so they have
a tendency to stay close so that tails are together and away from the water, while
heads are pointing towards the water. Due to the shape of the particular molecule at
hand, lipids can pack into cylindrical, spherical clusters, or membranes; each way of
packing has a different cluster binding energy, and it seems that a linear dependence
on the size is a good approximation for cylindrical micelles [46, chapter 15].

We develop an analytic approximation to the behavior of the solution in the limit
where the initial concentration is much larger than the critical micelle concentra-
tion (see chapter 7 for details) by the method of matched asymptotic expansions.
The evolution of the solution is shown to exhibit three distinguished parts or eras,
in which the time scales are very different: during the first part, the number of
monomers (single particles) decreases very fast and a high number of small clusters
are created, so that the size distribution starts to resemble a continuous function;
during the second part, this function evolves as a solution of the heat equation;
finally, the solution slowly approaches an equilibrium distribution where clusters of
very different sizes coexist. These results are compared to numerical simulations
and are shown to agree very well with them.

1.2. The Wigner-Poisson-Fokker-Planck equation

The modeling of quantum diffusion is one of the fields of mathematical interest
in quantum mechanics that is not completely well understood at present. Some
remarkable works aiming to an earlier analysis of diffusive corrections in models



32 CHAPTER 1. INTRODUCTION

arising from quantum kinetics are due to Caldeira and Leggett [12], Diósi [24, 25]
and Diósi et al. [26]. The proper framework of such sort of diffusive models is
that of open quantum systems, i.e. an ensemble of electrons interacting with a heat
bath (an infinite set of harmonic oscillators in thermodynamic equilibrium) that can
exchange matter (conserved particles) with their environment (see [12], [21], [37],
[18]).

The quantum Wigner-Fokker-Planck equation reads

∂W

∂t
+ (ξ · ∇x)W + Θ[V ]W

=
Dpp

m2
∆ξW + 2λdivξ(ξW ) + 2

Dpq

m
divx(∇ξW ) +Dqq∆xW , (1.6)

where W is the (quasi)-probability distribution function, Dpp, Dpq, Dqq, m and λ
are physical constants and Θ[V ]W is the (quadratic) nonlinear term associated with
the 3D Hartree self-consistent potential (cf. (1.12) below). In a recent paper [2],
the well-posedness of the so-called Wigner-Poisson-Fokker-Planck (WPFP) system
in the simplest Markovian approach for the (high temperature) frictionless case
(λ = 0) is studied. This is a quantum-kinetic model (in the Wigner representation)
with Fokker-Planck dissipation mechanism only in the ξ–direction (that is, Dpq =
Dqq = 0):

∂W

∂t
+ (ξ · ∇x)W + Θ[V ]W =

Dpp

m2
∆ξW, x, ξ ∈ R

3, t > 0 . (1.7)

The Lindblad form [61] of this kinetic operator at the density matrix level im-
plies that the problem is mathematically consistent, in the sense that the equation
preserves the positivity of the initial density matrix. The problems of local ex-
istence, uniqueness, stability, regularity and long–time behaviour (in the case of
global solutions) of mild solutions of (1.7) are also tackled in [2]. In [18], the au-
thors make a mathematically rigorous derivation of the frictionless Fokker–Planck
equation from the Caldeira–Leggett model introduced in [12]. Furthermore, they in-
vestigate other Fokker–Planck–type equations obtained from the Caldeira–Leggett
Hamiltonian through different diffusion mechanisms and scalings (fixed temperature
and long–time limit), especially a heat equation with a friction term for the radial
process in phase space. Also, the rate of time decay of solutions to the viscous
hydrodynamic model (i.e. the moment equations for the charge density and the
current coupled to the Poisson equation for the electric potential) associated with
the 1D WPFP equation is studied in [43] via the entropy dissipation method.

Chapter 8 is devoted to prove the existence of global mild solutions (i.e. solutions
of the WPFP equation written in an equivalent integral form, defined in [0,∞)) to
the most general physically relevant class of WPFP models (we only set Dpq = 0). It
is based on the results by José Luis López, Juan José Nieto and the author that have
been published in [13]; some closely related results have been recently published in
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[75]. We are concerned with the analysis of the following initial value problem:

∂W

∂t
+ (ξ · ∇x)W + Θ[V ]W =

Dpp

m2
∆ξW + 2λdivξ(ξW ) +Dqq∆xW (1.8)

W (x, ξ, 0) = W0(x, ξ) , (1.9)

coupled to the Poisson equation for the determination of the self–consistent electro-
static potential:

V (x, t) =
1

4π

∫

R3
y

n(y, t)

|x− y| dy , (1.10)

with

n(x, t) =

∫

R3
ξ

W (x, ξ, t) dξ . (1.11)

Here, Θ[V ] stands for the pseudo–differential operator

Θ[V ]W (x, ξ, t) =
i

(2π)3

∫

R3
η

∫

R3

ξ′

V (x+ ~

2m
η, t) − V (x− ~

2m
η, t)

~

×W (x, ξ′, t)e−i(ξ−ξ′)·η dξ′ dη , (1.12)

with ~ denoting the reduced Planck constant and m the effective mass of the parti-
cles, while λ,Dpp, Dqq are positive constants related to the interactions between the
particles and the reservoir (cf. [24]):

λ =
η

2m
, Dpp = ηkBT , Dqq =

η~2

12m2kBT
, (1.13)

where η > 0 is the coupling (damping) constant of the bath, kB the Boltzmann
constant and T the temperature of the bath. Also,

Q =

∫

R3
x

∫

R3
ξ

W (x, ξ, t) dξ dx

is the total charge of the system, which is preserved along the evolution. This
equation is the simplest systematic Markovian approximation taking friction and
dissipation effects into account, such that the corresponding master equation for
the density matrix of the particle ensemble still belongs to the Lindblad class (as
shown in [25]), ensuring preservation of positivity for all initial conditions and for
all times. Indeed, if the elliptic term involving ∆xW is removed from Eq. (1.8),
then the remaining Fokker–Planck collision kernel (accounting only for friction and
ξ–diffusion effects) prevents the equation from belonging to the Lindblad family.
Thus, in this case the problem would be neither mathematically consistent nor
meaningful in a physical context.
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The WPFP equation (1.8) stems from the following evolution model (see [2]) for
the density matrix function ρ(x, y, t) ∈ L2(R3

x × R
3
y):

∂ρ

∂t
= − i

~
(Hx −Hy)ρ− λ(x− y) · (∇x −∇y)ρ

+
(

Dqq|∇x + ∇y|2 −
Dpp

~2
|x− y|2

)

ρ ,

where Hx and Hy are copies of the electron Hamiltonian

Hz = − ~
2

2m
∆z + V (z, t)

acting on the variables x and y, respectively. Indeed, taking into account that the
Wigner function of the electron ensemble W : R

3
x × R

3
ξ × [0,∞) → R is defined by

W (x, ξ, t) =
1

(2π)3

∫

R3
η

ρ
(

x+
~

2m
η, x− ~

2m
η, t
)

e−iξ·η dη ,

one can easily deduce that the evolution law for W (x, ξ, t) is described by Eq. (1.8).
The positivity of the density matrix operator

[R(t)f ](x) =

∫

R3
y

f(y)ρ(x, y, t) dy ∈ L2(R3)

(guaranteed by the Lindblad condition) implies that the Husimi transform, defined
by the following convolution of the Wigner function with a Gaussian kernel

WH(x, ξ, t) = W (x, ξ, t) ∗x,ξ

(m

~π

)3

exp
{

−m
~

(

|x|2 + |ξ|2
)}

, (1.14)

is pointwise nonnegative on R
3
x × R

3
ξ . Also, the Lindblad condition and a nonvan-

ishing friction (λ > 0) imply that the Fokker–Planck operator is uniformly elliptic
in R

3
x × R

3
ξ.

Contrary to the common techniques leading to the global existence, regularity
and asymptotic behaviour of solutions to classical (Vlasov)-Fokker-Planck systems,
our techniques avoid the explicit use of Sp norms (see [17, 9, 76] for example) to
control the position density. Actually, our proof does not require more regularity
than L1(R3

x×R
3
ξ)∩L1(R3

ξ;L
2(R3

x)) and the control of the kinetic energy for the initial
Wigner function. We also remark that the natural space where the Wigner function
lives is L2(R3

x ×R
3
ξ), which can be seen from the original density matrix formulation

in the widest context of Wigner problems. Actually, by formally multiplying Eq.
(1.8) by W and integrating against x and ξ we have

‖W (t)‖L2(R3
x×R3

ξ
) ≤ ‖W0‖L2(R3

x×R3
ξ
) e

6λt .
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However, the presence of a regularizing Fokker-Planck kernel in the model under
study allows us to develop an L1 theory for the WPFP equation and exploit the
smoothing properties of the Fokker–Planck operator to get regular solutions. The
fact that no maximum principle is available for equations of Wigner type is sig-
nificant, so that in general the Wigner function changes sign even if we start from
positive initial data. This is why the Husimi function (1.14) together with the elliptic
regularization in the x-variable will play an essential role in our analysis.

In chapter 8 we prove the following global-in-time existence result:

Theorem 1.2.1. Let W0 ∈ L1(R3
x × R

3
ξ) ∩ L1(R3

ξ;L
2(R3

x)) be such that

∫

R3
x

∫

R3
ξ

|ξ|2W0(x, ξ) dξ dx <∞.

Then, the Wigner–Poisson–Fokker–Planck equation (1.8)–(1.13) admits a unique
global mild solution

W ∈ C([0,∞);L1(R3
x × R

3
ξ)) ∩ C([0,∞);L1(R3

ξ;L
2(R3

x))) .

Moreover,
W ∈ C((0,∞);W 1,1 ∩W 1,∞(R3

x × R
3
ξ)) .

Also, the charge density (1.11) and the electric potential (1.10) satisfy the following
Hölder–regularity properties: for all t > 0,

n(·, t) ∈ C0,α(R3
x) with 0 < α <

1

2
, V (·, t) ∈ C1,β(R3

x) with 0 < β <
1

3
.
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Chapter 2

Preliminaries

In this chapter we present in detail the coagulation-fragmentation equations
which will be studied in subsequent chapters. It contains no new results, and it
is intended to introduce some of the concepts used later. References to the sources
can be found inside the chapter.

2.1. Derivation of the equations

Suppose that we have a group of things distributed in space, which we call units
or particles, that can stick together to form groups of several units, which we call
clusters. The easiest example to think of and to which the following applies is a
dilute solution of some kind of molecules that may interact and form groups of
several molecules. The size of a cluster is the number of units that form it, so it can
be any positive integer. We are interested in the evolution of the size distribution
of these clusters: we want to know the number of clusters of size j at any time t.
Actually, instead of studying directly the number of clusters of size j, it is easier
to make an approximation and study the density of clusters of size j; this is, the
number of clusters per unit of volume (also called number density to distinguish it
from other measures of density). In this approximation, we suppose that the clusters
are distributed homogeneously enough so that this average density gives a reasonable
description of the size distribution of clusters. It can take any nonnegative value.

We denote by cj the number density of clusters of size j. Usually we will abuse
language by saying “number of clusters” instead of “number density of clusters”
because ideas are explained more easily, but the proper units for cj are clusters per
unit of volume.

We assume that these clusters can join to form larger clusters, and that they
may break into smaller pieces; the first process is called coagulation and the second
is fragmentation (the former is also often referred to as coalescence or clustering,
and the latter as breakage). We will sometimes refer to these as reactions. In a
coagulation reaction, a cluster of size j can stick to a cluster of size i to form a
cluster of size i + j; we refer to this process symbolically as i, j → i + j. We

37
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disregard coagulation processes that involve three or more clusters sticking together
at the same time as these events are extremely infrequent or they do not happen at
all in most of the situations where we want to apply our equation. A fragmentation
reaction is more complicated: it can be a binary fragmentation reaction where a
cluster of size k breaks into a cluster of size j < k and a cluster of size k − j;
we represent this reaction as k → j, k − j; it can also be a multiple fragmentation
reaction where a cluster breaks into more than two pieces, which will be represented
in an analogous way.

To be able to describe the dynamics of the size distribution we need to know how
often and under which conditions these processes happen: we need to keep track of
which of them happen at which moments. As before we will make an approximation
and use the rate of occurrence of a given process, which is the number of times it
happens per unit of time, per unit of volume. Again, we suppose that reactions
happen uniformly enough for this to be a useful approximation. This rate can be
any positive number.

A fundamental assumption is that these processes occur according to the law of
mass action: we suppose that the rate of occurrence of the reaction i, j → i + j is
proportional both to the density of clusters of size i and the density of clusters of size
j (and the constant of proportionality does not change in time). It is a well-known
(approximated) principle in chemistry that the rate of a reaction is proportional to
the concentration of the reacting substances, and this assumption is in agreement
with this. In the same way, we suppose that the rate of occurrence of a fragmentation
reaction in which a cluster of size j fragments into two or more pieces is proportional
to the density of clusters of size j.

We will write aij to denote the constant of proportionality for the coagulation
reaction i, j → i+ j, so that its rate of occurrence is aijcicj . For now, consider only
binary fragmentation and denote by bij its constant of proportionality, so that the
rate of occurrence of the fragmentation reaction i + j → i, j is bijci+j . We call the
aij the coagulation coefficients and the bij the fragmentation coefficients. Note that
they must be symmetric in i, j: aij = aji, bij = bji for all i, j. With these we are
able to write an evolution equation for the size distribution of clusters given by the
cj . The net rate of the reaction i, j → i+ j is

Wij := aijcicj − bijci+j .

It represents the net rate at which pairs of clusters of sizes i, j are converted to
clusters of size i + j; it is net in the sense that we are taking into account both
the forward and backward reactions (due to coagulation and fragmentation, respec-
tively). The Wij are also symmetric in i, j. The number of clusters of size i is
increased by reactions of the form j, i − j → i and decreased by reactions of the
form i, j → i+ j. Hence, the rate of change in time of the density ci is

d

dt
ci =

[ i
2
]

∑

j=1

Wj,i−j −
∞
∑

j=1

Wij for i ≥ 1,
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where [x] denotes the integer part of a number x. The first sum includes all possible
reactions where two clusters stick to form a cluster of size i; the second sum takes
into account all possible reactions in which a cluster of size i joins some other cluster.
In order to be able to write the equations in a more convenient way, it is customary
to define the coefficient aii for i ≥ 1 so that the rate of the reaction i, i→ 2i is 1

2
aiic

2
i

instead of aiic
2
i , and do the same for bii. We will follow this convention here. Then,

with this slight modification of the aii and bii one can write the above equations as

d

dt
ci =

1

2

i−1
∑

j=1

Wj,i−j −
∞
∑

j=1

Wij for i ≥ 1.

(Note that we have added the 1/2 factor because each possible reaction of the kind
j, i− j → i is counted twice in the sum except for the reaction i/2, i/2 → i when i is
even; this is the reason for our renaming of the coefficients with repeated indices).
This infinite system of ordinary differential equations where the unknowns are the
ci is the discrete binary coagulation-fragmentation system of equations.

One can make a different approximation where the size of a cluster can be any
positive number and not necessarily an integer; this can be reasonable if one mea-
sures the size of a cluster by its mass or its radius instead of the number of clusters
that form it. Then, the size distribution at any given moment can be described by
a function f = f(y) for y ≥ 0, where y represents the size of the cluster (measured
in any useful unit) and f(y) is the density of clusters of that size (again measured
in some adequate way). The function f should be viewed as a density function, so
that

∫ b

a

f(y) dy

represents the density of clusters whose size is between a and b. The function f is
called the size distribution of clusters. Analogously we can talk about coagulation
reactions y, y′ → y + y′, where now y, y′ are positive numbers (not necessarily in-
tegers); and fragmentation reactions, where a cluster of size y breaks into clusters
of positive sizes y′, y′′, y′′′, . . . such that y′ + y′′ + y′′′ + · · · = y. Now the rate of
occurrence of the coagulation reaction y, y′ → y + y′ is determined (by the law of
mass action) by the coagulation coefficient a(y, y′) and the rate of occurrence of
the fragmentation reaction y + y′ → y, y′ is given by the fragmentation coefficient
b(y, y′). Then, a(y, y′)f(y)f(y′) is the number of times the corresponding coagula-
tion reaction happens per unit of time, per unit of volume, per unit of cluster size,
as now the values of f are densities of clusters per unit of cluster size. Again, we
will not always mention this and instead will talk about f as measuring densities of
clusters just because the language becomes easier to understand.

Then we can write down the continuous analogue of the discrete binary coa-
gulation-fragmentation equations, which is expectedly called the continuous binary
coagulation-fragmentation equations, already introduced in chapter 1:

∂

∂t
f = C(f) + F (f), t, y ∈ (0,+∞) (2.1)



40 CHAPTER 2. PRELIMINARIES

where the coagulation and fragmentation terms are given by:

C(f) := C1(f) − C2(f) (2.2)

F (f) := F1(f) − F2(f) (2.3)

C1(f)(y) :=
1

2

∫ y

0

a(y′, y − y′)f(y′)f(y − y′) dy′ (2.4)

C2(f)(y) := f(y)

∫ ∞

0

a(y, y′)f(y′) dy′ (2.5)

F1(f)(y) :=

∫ ∞

y

b(y′, y − y′)f(y′) dy′ (2.6)

F2(f)(y) := f(y)
1

2

∫ y

0

b(y′, y − y′)dy′. (2.7)

One can also take into account multiple fragmentation reactions. In this case it
is useful to define a new coefficient b(y, y′) so that b(y, y′)f(y) represents the rate of
formation of clusters of size y′ from clusters of size y, this is: how many clusters of
size y′ are formed from the breakage of clusters of size y per unit of time, per unit of
volume, per unit of cluster size. When one takes this into account, the fragmentation
term from (2.1) must be changed to

F (f) := F1(f) − F2(f) (2.8)

F1(f)(y) :=

∫ ∞

y

b(y′′, y)f(y′′) dy′′ (2.9)

F2(f)(y) := f(y)

∫ y

0

y′

y
b(y, y′)dy′, (2.10)

and the resulting equation is called the continuous coagulation-fragmentation equa-
tion. Below we explain further the meaning and the derivation of this fragmentation
term.

2.2. Interpretation of the fragmentation term

As explained above, the multiple fragmentation coefficient b(y, y′) is defined so
that b(y, y′)f(y) represents the rate of formation of clusters of size y′ from clusters of
size y (where f is the size distribution of clusters). Any kind of breakage of a cluster
into a finite number of pieces is allowed here, and the fact that the fragmentation
term in an evolution equation with this kind of fragmentation should be (2.8)–(2.10)
is not obvious. Here we derive it from the more basic assumption that a cluster of
a given size breaks in a certain way at a rate given by a distribution on the space
of possible “ways of breaking”. This derivation is taken from [36], and we include
it here for completeness.

Consider, for y > 0, the space S(y) of nonincreasing finite sequences Y =
{y1, . . . , yn} with n ≥ 2, yi > 0 for all i and such that y1 + · · · + yn = y. Each
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of these sequences represents a possible fragmentation reaction y → y1 + · · · + yn,
and the condition that y1+· · ·+yn = y ensures that mass is conserved in the reaction.
The rate at which each of them occurs (per cluster of size y) is given by a positive
measure ν(y) on S(y), which clearly comprises all the information on the rate and
type of fragmentation reactions that can take place. The total fragmentation rate
for a cluster of size y can then be written as

β(y) :=

∫

S(y)

ν(y).

Now we would like to express the rate at which clusters of size y′ are obtained from
the fragmentation of clusters of size y in terms of ν. For this, define the marginal
measure νi(y) on the interval (0, y) (with i ≥ 1 an integer) as

∫ y

0

φ(y′)νi(y, y
′) =

∫

S(y)

φ(yi)ν(y, Y ) for all φ ∈ Cc(0, y).

The integral on the right is the integral on S(y) of the measure ν(y) times the
function on S(y) given by Y = {y1, . . . , yn} 7→ φ(yi) (or zero if n < i). This νi(y)
represents the rate at which a cluster of a given size is obtained as the i-th piece
in the breakage of a cluster of size y. The rate at which a cluster of a given size is
obtained as any of the pieces resulting from the breakage of a cluster of size y is
then the measure given by

b(y) :=
∞
∑

i=1

νi(y).

This is a measure on (0, y), but we can consider it as a measure on (0,+∞) extending
it by 0. Now, if the size distribution function is f then the gain and loss terms in
the evolution of the density of clusters of size y are 1

Ff(y) =

∫ ∞

0

f(y′)b(y′, y) dy′ − f(y)

∫

S(y)

ν(y). (2.11)

In the above, the gain term (positive) is due to clusters of size y′ > y breaking to
give a cluster of size y as one of the results, and the loss term (negative) is due to
the fragmentation of clusters of size y (so it is f(y) times the total fragmentation
rate). To write the above as (2.8), note that the total fragmentation rate can be

1In the first integral we are integrating the function y′ 7→ b(y′), which is measure-valued, and
hence the integral gives a measure. We write it as if evaluated on y, which is an abuse of notation,
but we will not worry about the technical details here, as the aim is to provide a plausible derivation
of the fragmentation term to be used later (one can always think that b(y) is regular enough for
b(y, y′) to be representable as a function).
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expressed in terms of b as follows:

y

∫

S(y)

ν(y) =

∫

S(y)

ν(y, Y )

∞
∑

i=1

yi =

∞
∑

i=1

∫

S(y)

yi ν(y, Y )

=

∞
∑

i=1

∫ ∞

0

y′νi(y, y
′) =

∫ ∞

0

y′
∞
∑

i=1

νi(y, y
′) =

∫ ∞

0

y′b(y, y′),

so
∫ y

0

y′

y
b(y, y′) =

∫

S(y)

ν(y)

and the fragmentation term in (2.11) can be written as

Ff(y) =

∫ ∞

0

f(y′)b(y′, y) dy′ − f(y)

∫ y

0

y′

y
b(y′, y),

which is the same as (2.8).
As we have seen,

β(y) :=

∫ y

0

y′

y
b(y, y′) dy′ (2.12)

represents the total fragmentation rate of a cluster of size y. We will define β(y)
as above for any y > 0 for which the integral makes sense (under the technical
conditions imposed later), and will define β(y) = 0 otherwise. Then we can call

P (y, y′) := b(y, y′)/β(y). (2.13)

As before, we make this definition whenever it makes sense and define P (y, y′) = 0
otherwise. This P (y, y′) represents the probability that a cluster of size y′ is obtained
by fragmentation of a cluster of size y.

2.3. Binary fragmentation

If we only allow binary fragmentation reactions, then the measure ν(y) is concen-
trated on the set of sequences in S(y) with two terms. For every Y = {y1, y2} in this
set, y1 = y − y2 and we find a relation between ν1(y) and ν2(y): for all φ ∈ Cc(0, y),

∫ y

0

φ(y′)ν1(y, y
′) =

∫

S(y)

φ(y1)ν(y, Y ) =

∫

S(y)

φ(y − y2)ν(y, Y )

=

∫ y

0

φ(y − y′)ν2(y, y
′) =

∫ y

0

φ(y′)ν2(y, y − y′).

Hence,
ν1(y, y

′) = ν2(y, y − y′).
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For i ≥ 3, νi(y) ≡ 0 for all y by definition (as the measure ν(y) is zero on the set
of sequences in S(y) with more than 2 terms). As a consequence of the previous
identity, b(y) = ν1(y) + ν2(y) satisfies the following symmetry property:

b(y, y′) = b(y, y − y′).

When only binary fragmentation is considered it is usual to define

b̃(y, y′) := b(y + y′, y) = b(y + y′, y′).

Then b̃ is symmetric: b̃(y, y′) = b̃(y′, y). Thanks to this symmetry,
∫ y

0

y′

y
b̃(y′, y − y′) dy′ =

∫ y

0

y − y′

y
b̃(y − y′, y′) dy′,

so
∫ y

0

y′

y
b̃(y′, y − y′) dy′ =

1

2

∫ y

0

b̃(y − y′, y′) dy′,

and we get the expression of the binary fragmentation term from (2.6)–(2.7).

2.4. Self-similar coefficients

We can also impose some additional requirements of the fragmentation coeffi-
cient. One of them is to ask for it to be self-similar : this is, that the probability (see
(2.13)) at which clusters of size y′ are obtained by fragmentation of clusters of size
y depends only on their relative sizes. This means that b is of the form

b(y, y′) = β(y)
1

y
B

(

y′

y

)

, (2.14)

where B is a positive function or a positive measure on (0, 1) (depending on the
mathematical model we are interested in) such that

∫ 1

0

zB(z) dz = 1. (2.15)

The probability distribution of cluster sizes obtained from the breakage of a particle
of size y is here P (y, y′) = 1/y B(y′/y). What we mean by saying that the probability
of obtaining a cluster some given size from a given cluster depends only on their
relative sizes is that the probability of obtaining clusters whose size is within some
given fractions of y does not depend on y. For example, the probability of obtaining
clusters whose size is less than a third of y is, making the change of variables z = y′/y,

∫
y
3

0

1/yB(y′/y) dy′ =

∫ 1

3

0

B(z) dz.

Observe that the coefficient β which appears in equation (2.14) is indeed the
total fragmentation rate for this b:

∫ y

0

y′

y
b(y, y′) dy′ =

∫ y

0

y′

y
β(y)

1

y
B(

y′

y
) dy′ = β(y)

∫ 1

0

zB(z) dy′ = β(y).
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2.5. Statistical mechanics for steady states

The coagulation-fragmentation equations are expected to model certain physical
situations in which a very high number of particles in a dilute solution are reacting
and forming aggregates. Hence, if the model is appropriate, equilibrium states
(solutions which do not depend on time) should agree with equilibrium statistical
mechanics for the particular physical system we are considering. This gives a useful
insight on the connection of these equations with physical phenomena and provides
a new interpretation of some quantities involved in the equations.

We will deal with statistical mechanics of a dilute solution of particles that can
form clusters as a limit of ideal systems in which particles can occupy only a finite
number of places in space and where two or more particles are allowed to occupy
the same place. This idealized situation is called lattice nucleation. The following is
based on personal notes by John Neu and appears in the introduction in [73].

Suppose we have n indistinguishable particles which can occupy M different
places, called binding sites. As they are indistinguishable, the possible states of the
system are M-tuples of nonnegative integers {n1, n2, . . . , nM} such that n1 + · · · +
nM = N , where ni represents the number of particles in the space i (forming a
cluster of ni particles). The ni are called occupation numbers.

In order to study the statistical mechanics of the system we need to give the
energies of all possible configurations. We assume that the energy of a state Aj can
be written as

E ≡ E(Aj) =

∞
∑

i=1

eici,

where ci is the number of clusters with exactly i particles in the state Aj (this is, the
number of binding sites with exactly i particles) and ei is the energy of an i-particle
cluster. The zero level is chosen so that e0, the energy of an empty space, is zero. We
will write E instead of E(Aj) when the state it refers to is implied. Let us further
assume that the system is in a state with known size distribution {ci}. Then the
possible states are the occupation numbers {n1, . . . , nM} that agree with this. Let
us calculate their number.

The number of ways to place c1 indistinguishable 1-clusters (particles) in M
spaces is

M !

c1!(M − c1)!
.

The number of ways to place to place c2 indistinguishable 2-clusters in the remaining
M − c1 spaces is

(M − c1)!

c2!(M − c1 − c2)!
,

and so on. One can see that the number of ways to place all the clusters (c1 1-
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clusters, c2 2-clusters,...) is their product:

M !

c1!(M − c1)!
· (M − c1)!

c2!(M − c1 − c2)!
· · · · · (M −

∑N−1
i=1 ci)!

cN !(M −
∑N

i=1 ci)!

=
M !

c1! . . . cN !(M −∑N
i=1 ci)!

.

Note that we only write the terms up to N because there can be no clusters of
more than N particles (as we have exactly N particles). Then, this is the number
of possible states with given size distribution {ci}. As all of them have the same
energy, the entropy S of the system in this state is given by k times the logarithm
of this number (where k is Boltzmann’s constant):

S = k logM ! − k
∑N

i=1 logci! − k log
(

M −∑N
i=1 ci

)

!.

Now we take a sequence of systems like the one just described, with higher and
higher number of particles, so for each N ≥ 1 we consider a certain system with N
particles, M binding sites and given size distribution {ci} (and we do not explicitly
write the dependence on N of both M and the ci). We will choose the sequence so
that

N/M → ρ > 0
ci
M

→ ρi, i ≥ 1

for some ρ ≥ 0, ρi ≥ 0. In the limit N → ∞, the relation
∑N

i=1 ici = N gives the
following when divided by M :

∞
∑

i=1

iρi = ρ. (2.16)

We will also choose our sequence so that, for a fixed i, ci is always zero if ρi is
zero. Hence, for a fixed i, either ci is always zero or it tends to infinity, so we can
use Stirling’s approximation for the factorial:

log ci! ∼ ci log ci

logM ! ∼M logM.

Hence the entropy density S = S/M can be approximated by

S := S
M

∼ k logM − k
∑N

i=1
ci

M
log ci − k 1

M

(

M −
∑N

i=1 ci

)

log
(

M −
∑N

i=1 ci

)

= −k
∑N

i=1
ci

M
log ci

M
− k

(

1 −
∑N

i=1
ci

M

)

log
(

1 −
∑N

i=1
ci

M

)

,
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so in the limit N → ∞ the entropy density can be written as

S = −k
∑∞

i=1 ρi logρi − k (1 −
∑∞

i=1 ρi) log (1 −
∑∞

i=1 ρi)

= −k∑∞
i=1 ρi logρi − k(1 − r)log(1 − r),

where we have called

r :=

∞
∑

i=1

ρi.

In the limit, the energy density E = E/M is

E =
∞
∑

i=1

eiρi

and the free energy density is F := E − TS, where T is the absolute temperature:

F := E − TS =

∞
∑

i=1

eiρi + kT

∞
∑

i=1

ρilogρi + kT (1 − r)log(1 − r).

In thermal equilibrium this should be a minimum among all possible configurations;
the possible ones are those with

∑∞
i=1 iρi = ρ fixed, as (2.16) must hold. We can

find this minimum using the method of Lagrange multipliers with this constraint;
if a minimum exists, the {ci} for which F attains the minimum value must satisfy
the following set of equations for some λ ∈ R:

{

∂
∂ρi

F = λ ∂
∂ρi

(
∑∞

i=1 iρi), i ≥ 1
∑∞

i=1 iρi = ρ.

Calculating the derivatives, the equations are
{

ei + kT logρi − kT log(1 − r) = λi, i ≥ 1
∑∞

i=1 iρi = ρ.

If we eliminate λ and write the equations in terms of ρ1 we get

λ = kT log
ρ1

1 − r
+ e1

so ρi is given by

ρi = (1 − r)exp
1

kT
(kT i log

ρ1

1 − r
+ ie1 − ei) = (1 − r)i−1 ρi

1e
−ǫi/kT ,

where we have defined the binding energy ǫi as the difference between the energy of
an i-cluster and the energy of the i particles taken separately:

ǫi := ei − ie1.
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In the cases we will be later interested in, r is very small, so the above is well
approximated by

ρi = ρi
1 e

− ǫi
kT ,

and the entropy density S can also be approximated for small r, using that (1 −
r)log(1 − r) ∼ 1 − r:

S = −k
∑∞

i=1 ρilogρi − k(1 −
∑∞

i=1 ρi). (2.17)

This reasoning leads to the conclusion that in equilibrium the size distribution
of clusters should be given by

ρi = ρi
1 e

− ǫi
kT for i ≥ 1,

for some ρ1 ≥ 0 which is determined by the condition that the total mass is ρ:

∞
∑

i=1

iρi =

∞
∑

i=1

ρi
1 e

− ǫi
kT = ρ.

This suggests that we identify the coefficients Qi in the detailed balance condition
(see chapter 6) according to this:

Qi = e−
ǫi
kT . (2.18)

It also gives a good candidate for an entropy functional for the coagulation-frag-
mentation equations, given by equation (2.17), which is crucial when studying the
asymptotic behavior of these equations.
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Chapter 3

The fragmentation operator

In this chapter we want to define precisely the fragmentation operator F given
in (2.8)–(2.10), this is:

Ff := F1f − F2f (3.1)

F1f(y) :=

∫ ∞

y

b(y′′, y)f(y′′) dy′′ (3.2)

F2f(y) := f(y)

∫ y

0

y′

y
b(y, y′)dy′. (3.3)

The results in this chapter are not new, but are scattered among previous mathe-
matical works on the topic of continuous coagulation-fragmentation equations (e.g.
[33, 52, 29, 86] and their references), sometimes for coefficients of a slightly different
kind from the one we use here (for example, binary fragmentation is usually con-
sidered instead of multiple fragmentation). Hence, though most of the results here
can be easily deduced from the existing ones in the literature, we include them for
completeness, as it would be difficult to find in the references the precise statements
which are needed.

We want to know what conditions on f and b ensure Ff is well-defined, and
what additional conditions ensure it has certain regularity. Particularly, later we
will be interested in quantities of the form

∫∞
0
φ(y)Ff(y) dy for some function φ

(e.g., moments of f), so we will try to find requirements on f and b that guarantee
some of these integrals make sense. We are not looking for the best possible results
on the matter, but instead intend to adopt a compromise between simplicity and
later applications.

The fragmentation coefficient b(y, y′) (for 0 < y′ ≤ y) represents, as explained in
previous chapters, the rate of formation of clusters of size y′ from clusters of size y.
Of course, sizes are always positive, as is the rate of formation of clusters of any size,
and clusters resulting from fragmentation must have a smaller size than the cluster
which breaks. So, in our mathematical models b will be a real positive function
defined for y > y′ > 0. Also, if we want (3.3) to make sense we must impose that
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the integral that appears there is defined. To be precise, call

T :=
{

(y, y′) ∈ R
2 | y > y′ > 0

}

.

The following conditions on b will be imposed frequently:

b : T → R is a positive measurable function and

for almost all y > 0, the function y′ b(y, y′) is integrable in y′.
(3.4)

Whenever it is convenient we may consider b as defined on (0,+∞) × (0,+∞) (or
even R

2) extending it by 0.
When (3.4) holds we will define β(y) as in (2.12):

β(y) :=

∫ y

0

y′

y
b(y, y′) dy′ (3.5)

for any y > 0 for which the integral makes sense, and β(y) = 0 otherwise. Note
that by Fubini’s theorem, the total fragmentation rate β thus defined is a positive
measurable function.

Definition 3.0.1 (Fragmentation operator). Let b : T → R be a positive measurable
function, and let f : (0,+∞) → R be a measurable function. We define Ff , the
fragmentation operator acting on f , as the following function, defined for almost all
y > 0, whenever both integrands below are integrable in the sense of Lebesgue for
almost all y > 0:

Ff(y) :=

∫ ∞

y

b(y′′, y)f(y′′) dy′′ − f(y)

∫ y

0

y′

y
b(y, y′)dy′ (3.6)

=

∫ ∞

y

b(y′′, y)f(y′′) dy′′ − f(y) β(y). (3.7)

When all these integrals have a meaning in the sense of Lebesgue for almost all
y > 0 we will say that Ff is well-defined.

3.1. Conditions for the definition of F

The following lemma gives a simple requirement for Ff to be well-defined:

Lemma 3.1.1. Assume (3.4). If f : (0,+∞) → R is a measurable function such
that

∫ ∞

ǫ

|f(y′)|
∫ R

ǫ

b(y, y′) dy dy′ < +∞ for all 0 < ǫ < R,

then Ff is well-defined (as in definition 3.0.1). If β is locally integrable on (0,+∞),
then Ff is a locally integrable function (actually, both F1f and F2f are).
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Proof. The second term in (3.7) is well defined and measurable as both β and f are.
For the first term, we know that b(y′′, y) f(y′′) is measurable as a function of two
variables. Then, applying Fubini’s theorem for a positive measurable function we
have for any 0 < ǫ < R:

∫ R

ǫ

∫ ∞

y

b(y′′, y) |f(y′′)| dy′′ dy =

∫ ∞

ǫ

|f(y′′)|
∫ R

ǫ

b(y′′, y) dy dy′′ < +∞

(recall that we set b(y, y′) = 0 whenever y < y′). Hence, again by Fubini’s theorem,
the first term in (3.7) is also locally integrable (and in particular finite a.e.).

The next lemma gives a stronger condition which is nevertheless simpler to un-
derstand, as usually one knows the size of β but not of the above integral:

Lemma 3.1.2. Assume (3.4). If f : (0,+∞) → R is a measurable function such
that

∫ ∞

ǫ

y β(y) |f(y)| dy < +∞ for all ǫ > 0,

then Ff is well-defined (as in definition 3.0.1). If β is locally integrable on (0,+∞),
then Ff is a locally integrable function (actually, both F1f and F2f are).

Proof. It is easy to see that the conditions in the lemma imply those in 3.1.1, so
this is really a corollary. However, we can also give a direct proof in the same way
as before. The second term in (3.7) is no problem, and for the first term we have
for any ǫ > 0:

∫ ∞

ǫ

y

∫ ∞

y

b(y′, y) |f(y′)| dy′ dy

=

∫ ∞

ǫ

|f(y′)|
∫ y′

ǫ

y b(y′′, y) dy dy′ ≤
∫ ∞

ǫ

|f(y′)| β(y′)y′ dy′ < +∞,

and we see as above that y 7→
∫∞

y
b(y′, y) |f(y′)| dy′ is locally integrable.

Sometimes we will need to impose some additional regularity on the fragmenta-
tion coefficient b. For example, the following hypothesis is often useful:

For some k ≤ 1 there is a constant C ≥ 0 such that
∫ y

0

(

y′

y

)k

b(y, y′) dy′ ≤ C β(y) a.e. y > 0.
(3.8)

Note that for k ≥ 1, (3.8) is implied by (3.4), as for k = 1 this is just the
definition of β and if (3.8) is true of any k ∈ R, then it is true for any greater k and
the same constant.
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Remark 3.1.3. If the fragmentation is self similar (as in equation (2.14)) then the
condition (3.8) is translated to a condition on B, as

∫ y

0

(

y′

y

)k

b(y, y′) dy′ = β(y)

∫ y

0

(

y′

y

)k
1

y
B

(

y′

y

)

dy′ = β(y)

∫ 1

0

zkB(z) dz

and the constant C is in this case
∫ 1

0
zkB(z) dz, when this integral is finite (of course,

it is when k ≥ 1 by (2.15)).

If b satisfies the previous assumption for some k ≤ 1, then Ff is well-defined
under slightly weaker conditions than in lemma 3.1.2:

Lemma 3.1.4. Assume (3.4), and suppose (3.8) holds for some k ≤ 1. If f :
(0,+∞) → R is a measurable function such that

∫ ∞

ǫ

yk β(y) |f(y)| dy < +∞ for all ǫ > 0,

then Ff is well-defined (as in definition 3.0.1), and both F1f and F2f are locally
integrable functions.

Proof. The proof is the same as that of lemma 3.1.2; the only difference is that this
time we multiply by yk, integrate and then use (3.8): for any ǫ > 0,

∫ ∞

ǫ

∫ ∞

y

yk b(y′′, y) |f(y′′)| dy′′ dy

=

∫ ∞

ǫ

|f(y′′)|
∫ y′′

ǫ

yk b(y′′, y) dy dy′′ ≤ C

∫ ∞

ǫ

|f(y′′)| β(y′′)(y′′)k dy′′ < +∞.

3.2. Some notation

We denote the usual space of p-integrable functions (1 ≤ p ≤ ∞) on an open
set Ω ⊆ R

N as Lp(Ω) (where two functions which are almost everywhere equal are
considered as the same one). The space of p-integrable functions for a measure µ
which is not the usual Lebesgue measure is denoted as Lp(Ω, µ). As we will use
Lp(0,+∞) most often, when we write Lp with no other indication, Lp(0,+∞) is
understood.

For k ∈ R, we write L̇1
k to denote the space L1((0,+∞), yk dy); this is, the space

of functions f : (0,+∞) → R such that y 7→ ykf(y) is integrable. For f in this
space, we write

Mk(f) :=

∫ ∞

0

ykf(y) dy.

Mk is a norm in L̇1
k which makes it a complete normed space.
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Analogously, we define the space L̇∞
k as the space of functions f : (0,+∞) → R

such that y 7→ ykf(y) is in L∞(0,+∞) (and as usual, two functions which are almost
everywhere equal are considered as the same one). For f in this space, we write

‖f‖L̇∞

k
:=
∥

∥ykf
∥

∥

∞ .

This defines a norm in L̇∞
k which makes it a Banach space, as f 7→ ymf is an

isometry from it to L∞(0,+∞).
We define the space Mk as the space of measures µ on (0,+∞) such that ykµ(y)

is a finite measure. Its norm is defined by the expression

Mk(µ) :=

∫ ∞

0

ykµ(y).

With this norm, Mk is a complete normed space. Using the same notation as for
the norm in L̇1

k is justified, as L̇1
k ⊆ Mk — with the usual identification — and the

inclusion is an isometry.
The space Mloc is the set of Borel measures on (0,+∞) for which compact sets

of (0,+∞) have finite measure.

3.3. Moments of Ff

For later use we are interested in knowing when Ff has finite moments of a given
order; this is, when Ff ∈ L̇1

k for some k ∈ R.

Lemma 3.3.1 (Moments of Ff). Assume (3.4) holds and let f : (0,+∞) → R be
a measurable function.

If y 7→ y β(y)f(y) is integrable, then Ff is in L̇1
1 and

M1(Ff) ≤ 2

∫ ∞

0

y β(y) |f(y)| dy.

Suppose that (3.8) holds for some k ≤ 1. If for some m ≥ k the function
y 7→ ym β(y)f(y) is integrable, then Ff is in L̇1

m and

Mm(Ff) ≤ (C + 1)

∫ ∞

0

ymβ(y) |f(y)| dy,

where C is the constant in (3.8).

Proof. Observe that the conditions on both statements imply those in lemma 3.1.2,
so Ff is well-defined and measurable. Also, the second statement includes the first
one in the case k = 1, so we only need to prove the second one.
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It is obvious that the second term in (3.7) is in L̇1
m. For the first term we can

directly calculate the integral:

∫ ∞

0

∫ ∞

y

ym b(y′′, y) |f(y′′)| dy′′ dy =

∫ ∞

0

|f(y′′)|
∫ y′′

0

ym b(y′′, y) dy dy′′

≤
∫ ∞

0

|f(y′′)| (y′′)m−k

∫ y′′

0

yk b(y′′, y) dy dy′′

=

∫ ∞

0

|f(y′′)| (y′′)m

∫ y′′

0

(

y

y′′

)k

b(y′′, y) dy dy′′

≤ C

∫ ∞

0

|f(y′′)| a(y′′)(y′′)m dy′′

so the first term in (3.7) is in L̇1
m. With this, the bound in the statement is straight-

forward.

Corollary 3.3.2. Assume (3.4). Suppose that β is in L∞. Then F is a well defined
continuous operator

F : L̇1
M → L̇1

M for M ≥ 1.

In general, if (3.8) holds for some k ≤ 1, then F is a well defined continuous
operator

F : L̇1
M → L̇1

M for M ≥ k.

3.4. Adjoint of F

Most of the previous proofs in this chapter are based on the fact that we can write
the operator F in a very useful form, which we will call the fundamental identity :
for a sufficiently regular function φ we have

∫ ∞

0

φ(y)F1f(y) dy =

∫ ∞

0

∫ ∞

y

φ(y)b(y′′, y)f(y′′) dy′′ dy

=

∫ ∞

0

f(y′′)

∫ y′′

0

φ(y)b(y′′, y) dy dy′′ (3.9)

and
∫ ∞

0

φ(y)F2f(y) dy =

∫ ∞

0

∫ y

0

φ(y)f(y)
y′

y
b(y, y′) dy′ dy

=

∫ ∞

0

f(y)

∫ y

0

φ(y)
y′

y
b(y, y′) dy′ dy. (3.10)

So we get
∫ ∞

0

φ(y)Ff(y) dy =

∫ ∞

0

f(y)F ∗φ(y) dy,
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where

F ∗φ(y) :=

∫ y

0

φ(y′)b(y, y′) dy′ − φ(y)

∫ y

0

y′

y
b(y, y′) dy′ (3.11)

=

∫ y

0

b(y, y′)

(

φ(y′) − y′

y
φ(y)

)

dy′ (3.12)

=

∫ y

0

y′b(y, y′)

(

1

y′
φ(y′) − 1

y
φ(y)

)

dy′. (3.13)

The aim of this section is to give conditions under which this fundamental identity
holds and to state some properties of the operator F ∗.

Definition 3.4.1. Assume (3.4). We define F ∗φ as the function

F ∗φ(y) :=

∫ y

0

φ(y′)b(y, y′) dy′ − φ(y)

∫ y

0

y′

y
b(y, y′) dy′

=: F ∗
1 φ(y) − F ∗

2 φ(y)

whenever these integrals are well-defined in the sense of Lebesgue.

Lemma 3.4.2. Let f : (0,+∞) → R and b : T → [0,+∞) be measurable. The
following are equivalent:

F1f , F2f are well defined locally integrable functions.

F ∗
1 φ, F

∗
2 φ are well defined for all φ ∈ Cc(0,+∞) and

∫ ∞

0

|f(y)F ∗
i φ(y)| dy < +∞, i = 1, 2.

Proof. One can follow the derivation in (3.9), (3.10) with absolute values inside the
integral; then, by Fubini’s theorem for positive measurable functions, any side of
the equality is finite if and only if the other side is.

Proposition 3.4.3 (Fundamental identity for the fragmentation operator). Let
f, ψ : (0,+∞) → R and b : T → [0,+∞) be measurable functions such that both Ff
and F ∗ψ are well-defined and measurable. Then the following are equivalent:

ψF1f , ψF2f are integrable on (0,+∞).

fF ∗
1ψ, fF ∗

2ψ are integrable on (0,+∞).

And whenever the above holds,

∫ ∞

0

Ff(y)ψ(y) dy =

∫ ∞

0

f(y)F ∗ψ(y) dy.
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Proof. One can prove the equivalence as in lemma 3.4.2. Then all the terms in the
equality are well-defined, so we can carry out the derivation in (3.9), (3.10) without
problems.

Corollary 3.4.4. If f and b are measurable functions such that F1f , F2f are well
defined and locally integrable, then for any φ ∈ Cc(0,+∞), F ∗φ is well defined and

∫ ∞

0

φ(y)Ff(y) dy =

∫ ∞

0

f(y)F ∗φ(y) dy.

The next lemma gives weaker conditions under which F ∗φ is a well-defined mea-
surable function, without mention of F :

Lemma 3.4.5. Assume (3.4). Take any φ : (0,+∞) → R which is measurable and
essentially bounded on compact sets of (0,+∞).

If for some ǫ > 0, |φ(y)| /y is essentially bounded on (0, ǫ), then both F ∗
1 φ and

F ∗
2 φ are well-defined measurable functions.

Additionally, suppose that (3.8) holds for some k ≤ 1. Take m ≥ k. If for
some ǫ > 0, |φ(y)| /ym is essentially bounded on (0, ǫ), then both F ∗

1 φ and F ∗
2 φ are

well-defined measurable functions.

Proof. We only prove the second statement, as it includes the first one when k =
m = 1. The second term in the definition of F ∗φ is clearly defined and measurable;
for the first one, call

K := ess sup
0<y<ǫ

|φ(y)|
ym

xy := min{ǫ, y} for y > 0

Ky := ess sup
y′∈(xy ,y)

|φ(y′)| .

Then we have the following for almost all y > 0:

∫ y

0

|φ(y′)| b(y, y′) dy′ =

∫ xy

0

|φ(y′)| b(y, y′) dy′ +
∫ y

xy

|φ(y′)| b(y, y′) dy′

= yk

∫ xy

0

(y′)m−k |φ(y′)|
(y′)m

(y′)k

yk
b(y, y′) dy′ + y

∫ y

xy

|φ(y′)|
y′

y′

y
b(y, y′) dy′

≤ Cǫm−kykKβ(y) + yKy
1

xy

β(y).

Hence, the integral in the first term is finite a.e., and by Fubini’s theorem it is also
measurable.
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Lemma 3.4.6 (Some bounds for F ∗). Assume (3.4) and take any measurable φ :
(0,+∞) → R such that y 7→ φ(y)/y is essentially bounded (this is, φ ∈ L∞

−1). Then
F ∗φ is a well-defined measurable function and for K := ‖φ/y‖∞ it holds that

|F ∗
i φ| ≤ Kβ(y) y, i = 1, 2. (3.14)

Additionally, suppose that (3.8) holds for some k ≤ 1. Take m ≥ k. Then for
any φ ∈ L∞

−m, F ∗φ is a well-defined measurable function and for A := ‖φ/ym‖∞ it
holds that

|F ∗
i φ| ≤ ACβ(y) ym, i = 1, 2.

where C is the constant in equation (3.8).

Proof. The conditions in the lemma imply those in lemma 3.4.5, so in both cases
F ∗φ is well-defined and measurable. As for the bounds, we only need to prove the
second one, as it includes the first one when k = m = 1.

For all y > 0 we have:

|F ∗φ(y)| ≤
∫ y

0

φ(y′)

(y′)m
(y′)mb(y, y′) dy′ +

φ(y)

ym
ym−1

∫ y

0

y′b(y, y′) dy′

≤ A

∫ y

0

(y′)mb(y, y′) dy′ + Aym−1

∫ y

0

y′b(y, y′) dy′

≤ AC ymβ(y) + Aymβ(y) ≤ 2AC ym β(y).

This proves the bound.

Lemma 3.4.7 (Support of F ∗φ). Assume (3.4). If φ : (0,+∞) → R is any function
with support contained in [ǫ,+∞) such that F ∗φ is well defined, then suppF ∗φ ⊆
[ǫ,+∞).

Proof. This is evident from the expression of F ∗φ.

3.5. Definition in L̇∞
M spaces

Lemma 3.5.1. Assume (3.4), suppose that β is bounded and that for some constant
K ≥ 0,

∫ ∞

y

b(y′, y) dy′ < K for all y > 0.

Then F : L∞ → L∞ is well defined and continuous.

Proof. Take f ∈ L∞. It is easy to see that these hypotheses imply those in lemma
3.1.1, so Ff is well-defined. It is also clear that

‖F2f‖∞ ≤ ‖f‖∞ ‖β‖∞ ,
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and we also have that

‖F1f‖∞ ≤ ‖f‖∞ sup
y>0

∫ ∞

y

b(y′, y) dy′ ≤ K ‖f‖∞ .

This proves that F : L∞ → L∞ is continuous.

We can give different conditions that ensure ykFf(y) is bounded for some k ∈ R:

Lemma 3.5.2. Assume (3.4). Suppose that for some k ∈ R,

(y′)k+1b(y, y′) ≤ Cyk β(y) a.e. (y, y′) ∈ T. (3.15)

Suppose that for some m > 1+k, ymβ(y) |f(y)| is essentially bounded by a constant
K ≥ 0. Then, F is well defined and ym |Ff(y)| is essentially bounded.

Proof. For the term β(y)f(y) appearing in Ff , by hypothesis its absolute value
is bounded when multiplied by ym. For the other term, use that ymβ(y) |f(y)| is
bounded and that (3.15) holds to get the following for almost all y > 0:

∫ ∞

y

ymb(y′′, y) |f(y′′)| dy′′ ≤ C ym−k−1

∫ ∞

y

(y′′)kβ(y′′) |f(y′′)| dy′′

≤ C Kym−k−1

∫ ∞

y

(y′′)k−m dy′′ = C K
1

k −m+ 1
ym−k−1yk−m+1 = C ′.

This proves at once that Ff is well defined (as b(y′′, y)f(y′′) is integrable in y′′) and
that ym |Ff(y)| is bounded.

Corollary 3.5.3. Assume (3.4). Suppose that β(y) is in L∞ and that for some
k ∈ R,

(y′)k+1b(y, y′) ≤ C β(y) yk a.e. (y, y′) ∈ T.

Then F is a well defined operator

F : L̇∞
M → L̇∞

M

for every M > k + 1.

3.6. Definition in spaces of measures

The definition of Ff can be extended to the case in which f is only a measure
on (0,+∞). This will be necessary to define and study measure solutions to the
coagulation-fragmentation equation later. In this case, Ff will, in general, also be a
measure on (0,+∞). However, it is enough to define the dual F ∗, which is simpler
and will suffice for our purposes. Another reason to restrict the study to F ∗ instead
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of F is that, in order to give a definition for Ff as a measure, it is enough to define
the quantities

∫ ∞

0

Ffφ

for each φ continuous and of compact support on Cc(0,+∞), in such a way that for
each 0 < ǫR, the functional

Cc(ǫ, R) → R

φ 7→
∫

Ffφ

is continuous (when the uniform norm is considered on Cc(ǫ, R)). Then, Riesz’
representation theorem gives a unique measure Ff on (0,+∞) which agrees with
this. But of course the above quantities can be written in terms of F ∗ as

∫ ∞

0

fF ∗φ,

so by studying F ∗ we are implicitly studying F .

Remark 3.6.1. The notation for integration with respect to a measure used here
differs slightly from that used in other places; if µ is a measure on some measurable
space (Ω,A) and f is a µ-integrable function on Ω, we write

∫

Ω

fµ or

∫

Ω

f(y)µ(y) dy

to denote the integral of f with respect to µ. At other places this is denoted as
∫

Ω
f dµ or

∫

Ω
f(y)dµ(y), but here we denote it as above mainly for analogy with the

case in which µ can be identified with a function.

In the following we can weaken our conditions on the fragmentation coefficient
b. We will assume that

b : (0,+∞) →M1 is a measurable function.

For all y > 0, b(y) is a positive measure

and its support is contained in (0,y).

(3.16)

(Recall that M1 is the space of measures µ on (0,+∞) such that yµ(y) is a finite
measure; see section 3.2.)

Remark 3.6.2. With the usual identification between integrable functions and mea-
sures, if we have a function b in the conditions (3.4), we can find a measure b in the
conditions of (3.16) which coincides with it for almost all y > 0; in this sense, these
hypotheses are weaker than those in (3.4).
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We call, as before, 1

β(y) :=

∫ y

0

y′

y
b(y, y′) dy′ for y > 0

The function β thus defined is measurable.

Definition 3.6.3. Assume (H2). For a function φ ∈ Cc(0,+∞) we define F ∗φ as

F ∗φ(y) :=

∫ y

0

φ(y′)b(y, y′) dy′ − φ(y)

∫ y

0

y′

y
b(y, y′) dy′.

As b : (0,+∞) → M1 is measurable, F ∗φ defined as above is also measurable.
Of course, if (3.4) holds, then F ∗ as defined here is the same as the F ∗ in 3.4.1 (see
remark 3.6.2).

We have the following extension of lemma 3.4.6:

Lemma 3.6.4. Assume (H2). Take any φ ∈ C∞
c (0,+∞) and call ǫ := min supp φ.

Then suppF ∗φ ⊆ [ǫ,+∞) and for C := ‖φ/y‖∞ it holds that

|F ∗φ(y)| ≤ 2Cβ(y) y.

The proof of this lemma is a repetition of the proof of lemma 3.4.6.

1This is meant to denote the integral of the function y′ 7→ y′/y with respect to the measure
b(y); see remark 3.6.1.



Chapter 4

The coagulation operator

4.1. Definition

As in the previous chapter, the ideas here are already known, but the results are
included in order to have precise statements which do not appear in the literature
in the form needed; again, see [33, 29, 86] and their references for related results.
To our knowledge, the results on the weak definition of the coagulation operator
appear only in [34], and we present them here in a slightly modified form.

Let us define the coagulation operator precisely. From here on, the coefficient a
will always be a nonnegative Borel measurable function a : (0,+∞) × (0,+∞) →
[0,+∞) which is symmetric (this is: a(y, y′) = a(y′, y) for all y, y′ > 0).

Definition 4.1.1. For a measurable function f : (0,+∞) → R, we define C(f) (the
coagulation operator acting on f), as the function on (0,+∞) defined for almost all
y > 0 as

C(f) := C1(f) − C2(f)

C1(f)(y) :=
1

2

∫ y

0

a(y′, y − y′)f(y′)f(y − y′) dy′

C2(f)(y) := f(y)

∫ ∞

0

a(y, y′)f(y′) dy′,

whenever all the Lebesgue integrals here make sense for almost all y > 0.
The above operator is quadratic, and sometimes its associated bilinear operator

will be useful: for measurable functions f, g : (0,+∞) → R, we define C(f, g) (the
coagulation operator acting on f, g), as the function on (0,+∞) defined for almost
all y > 0 as

C(f, g) := C1(f, g) − C2(f, g)

C1(f, g)(y) :=
1

2

∫ y

0

a(y′, y − y′)f(y′)g(y − y′) dy′

C2(f, g)(y) :=
1

2
f(y)

∫ ∞

0

a(y, y′)g(y′) dy′ +
1

2
g(y)

∫ ∞

0

a(y, y′)f(y′) dy′,
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whenever all the Lebesgue integrals here make sense for almost all y > 0.

Remark 4.1.2. Note that we use the same notation for both operators; they can be
easily distinguished by the number of arguments they are used with. Of course,
C(f, f) = C(f) whenever any of them makes sense.

As for the fragmentation, we look for conditions that ensure it is defined and has
some additional regularity, in the sense that the integrals

∫

φC(f) make sense for
certain functions φ.

Lemma 4.1.3 (Conditions for the definition of C). Suppose that there are measur-
able functions A1, A2 : (0,+∞) → [0,+∞) such that

a(y, y′) ≤ A1(y)A2(y
′) + A1(y

′)A2(y). (4.1)

Take any measurable functions f, g : (0,+∞) → R such that for i = 1, 2
∫ ∞

0

Ai(y) |f(y)| dy < +∞ (4.2)

∫ ∞

0

Ai(y) |g(y)| dy < +∞. (4.3)

Then C(f, g) is well defined. Furthermore, it is an integrable function on (0,+∞)
and

‖C(f, g)‖1 ≤
3

2

∫ ∞

0

A1 |f |
∫ ∞

0

A2 |g| +
3

2

∫ ∞

0

A2 |f |
∫ ∞

0

A1 |g| .

Proof. The integral in C1 is well-defined for almost all y > 0, and in fact it gives an
integrable function of y:
∫ ∞

0

∫ y

0

a(y′, y − y′) |f(y′)| |g(y − y′)| dy′ dy

≤
∫ ∞

0

∫ y

0

(A1(y
′)A2(y − y′) + A1(y − y′)A2(y

′)) |f(y′)| |g(y − y′)| dy′ dy

=

∫ ∞

0

∫ ∞

0

(A1(y
′)A2(y) + A1(y)A2(y

′)) |f(y′)| |g(y)| dy′ dy

=

∫ ∞

0

A1(y
′) |f(y′)| dy′

∫ ∞

0

A2(y) |g(y)| dy

+

∫ ∞

0

A2(y
′) |f(y′)| dy′

∫ ∞

0

A1(y) |g(y)| dy.

These integrals are well-defined thanks to (4.2, 4.3). By Fubini’s theorem, the
integral in C1(f, g) is well-defined for almost all y > 0.

Now, for C2 we can do something similar:
∫ ∞

0

a(y, y′) |g(y′)| dy′

≤ A1(y)

∫ ∞

0

A2(y
′) |g(y′)| dy′ + A2(y)

∫ ∞

0

A1(y
′) |g(y′)| dy′,
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which is finite, so the first integral in C2(f, g) is well-defined; the second integral is
the same one, interchanging f and g. Let us see that C2(f, g) is integrable:

∫ ∞

0

|f(y)|
∫ ∞

0

a(y, y′) |g(y′)| dy′ dy

≤
∫ ∞

0

A1(y) |f(y)| dy
∫ ∞

0

A2(y
′) |g(y′)| dy′

+

∫ ∞

0

A2(y) |f(y)| dy
∫ ∞

0

A1(y
′) |g(y′)| dy′ < +∞.

Again, the second term in C2(f, g) can be treated in the same way. Finally, the
bound is clear from the calculations above, as each term contributes with 1/2 of the
same quantity.

Lemma 4.1.4 (Additional regularity of C(f, g)). Let φ : (0,+∞) → [0,+∞) be a
measurable function such that for some constant C > 0

φ(y + y′) ≤ C(φ(y) + φ(y′)).

In addition to the hypotheses of lemma 4.1.3, suppose that for i = 1, 2
∫ ∞

0

φ(y)Ai(y) |f(y)| dy < +∞ (4.4)

∫ ∞

0

φ(y)Ai(y) |g(y)| dy < +∞ (4.5)

Then C(f, g) (which is a well-defined integrable function thanks to lemma 4.1.3) is
such that
∫ ∞

0

φ(y) |C(f, g)(y)| dy

≤ (C + 1)

2

(
∫ ∞

0

φA1 |f |
∫ ∞

0

A2 |g| +
∫ ∞

0

φA2 |f |
∫ ∞

0

A1 |g|

+

∫ ∞

0

A1 |f |
∫ ∞

0

φA2 |g| +
∫ ∞

0

A2 |f |
∫ ∞

0

φA1 |g|
)

.

Proof. The proof follows the same line as that of lemma 4.1.3; the only difference is
that this time we multiply by φ before integrating. As the bound is straightforward
we do not include the proof here.

Corollary 4.1.5. Let a : (0,+∞)× (0,+∞) → [0,+∞) be a symmetric measurable
function essentially bounded above by a constant A > 0. Then for a function f ∈ L1

the integrals in the definition of C are defined for almost all y > 0. The function
C(f) is in L1 and

‖C(f)‖1 ≤
3

2
A ‖f‖2

1 .
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In addition, if f ∈ L̇1
k for k > 0, C(f) is in L̇1

k and

Mk(C(f)) ≤ (C + 1)AMk(f) ‖f‖1 ,

where C > 0 is a constant such that (y + y′)k ≤ C(yk + (y′)k) for positive y, y′.

Proof. This is a particular case of lemma 4.1.4 when f = g and φ(y) = yk.

4.2. Definition in L∞

Lemma 4.2.1. As usual , assume that a : (0,+∞) × (0,+∞) → R is a symmetric
nonnegative measurable function. Suppose also that a is essentially bounded. Take
f : (0,+∞) → R which is in L1 ∩ L∞. Then C(f) is well defined and

‖C(f)‖∞ ≤ 3

2
‖a‖∞ ‖f‖∞ ‖f‖1 .

Proof. The lemma follows from a direct estimate on the expression of C(f).

Corollary 4.2.2. If a is a nonnegative bounded measurable function, then C is a
continuous operator

C : L1 ∩ L∞ → L1 ∩ L∞.

4.3. Weak form of the coagulation operator

Definition 4.3.1. Given f, g, φ : (0,+∞) → R measurable functions, we define the
operator C(f, g) acting on φ as:

〈C(f, g), φ〉 :=
1

2

∫ ∞

0

∫ ∞

0

a(y, y′)f(y)g(y′)
(

φ(y + y′) − φ(y) − φ(y′)
)

dy′ dy (4.6)

whenever the function under the integral is integrable in the sense of Lebesgue.

We will frequently denote C(f, f) as C(f).

Proposition 4.3.2 (Fundamental identity). Let f, g, φ : (0,+∞) → R be measur-
able functions, and assume that C(f, g) is well defined and C1(f, g)φ, C1(f, g)φ are
integrable. Then 〈C(f, g), φ〉 is well-defined and

∫ ∞

0

φ(y)C(f, g)(y) dy = 〈C(f, g), φ〉 .
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Proof. When the integrals below are well defined we can operate as follows:

∫ ∞

0

φ(y)C(f, g)(y) dy

=
1

2

∫ ∞

0

∫ y

0

a(y′, y − y′)f(y′)g(y − y′)φ(y) dy′ dy

+
1

2

∫ ∞

0

∫ ∞

0

a(y, y′)f(y)g(y′)φ(y) dy′ dy +
1

2

∫ ∞

0

∫ ∞

0

a(y, y′)f(y′)g(y)φ(y) dy′ dy

=
1

2

∫ ∞

0

∫ ∞

0

a(y′, y)f(y′)g(y)φ(y + y′) dy dy′

+
1

2

∫ ∞

0

∫ ∞

0

a(y, y′)f(y′)g(y)(φ(y′) + φ(y)) dy′ dy

=
1

2

∫ ∞

0

∫ ∞

0

a(y, y′)f(y)g(y′) (φ(y + y′) − φ(y) − φ(y′)) dy dy′.

Note that we have used the symmetry of a. This proves that 〈C(f, g), φ〉 is also
well-defined.

Corollary 4.3.3. Suppose that a : (0,+∞) × (0,+∞) → [0,+∞) is a measurable
function which is essentially bounded.

Then C(f, g) is well-defined on all integrable functions f, g : (0,+∞) → R which
are also integrable in some neighborhood of 0, and the integral in (4.6) makes sense
for φ ∈ Cc(0,+∞).

4.3.1. Weak conditions for the definition of C
In certain cases it may happen that the weak form of the coagulation operator

C(f, g) makes sense while the coagulation operator C(f, g) does not. This is due
to a cancellation between the positive and negative terms in 〈C(f, g), φ〉 which does
not take place directly in C(f, g). What happens in these cases is that C(f, g) can
be defined as a distribution, but this distribution is not a function.

When the coagulation coefficient a is bounded near 0 we can show that the weak
form 〈C(f, g), φ〉 is well defined if φ is C1 and f, g are such that

∫

yf(y) dy and
∫

yg(y) dy are finite.

Lemma 4.3.4. Let φ : (0,+∞) → R be a C1 function with support contained in
[ǫ,∞) for some ǫ > 0. Then there is a constant C ≥ 0 which only depends on ǫ such
that

|φ(y + y′) − φ(y) − φ(y′)| ≤ C y y′ ‖φ‖C1 for all y, y′ > 0.

Proof. If y, y′ ≤ ǫ/2, then the expression is zero. If both of them are ≥ ǫ/2, then

|φ(y + y′) − φ(y) − φ(y′)| ≤ 3 ‖φ‖∞ ≤ 4

ǫ2
3 y y′ ‖φ‖∞ .
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If y ≤ ǫ/2 and y′ ≥ ǫ/2,

|φ(y + y′) − φ(y) − φ(y′)| = |φ(y + y′) − φ(y′)| ≤ y ‖φ‖C1 ≤
2

ǫ
y y′ ‖φ‖C1 ,

and the same bound is true if y′ ≤ ǫ/2 and y ≥ ǫ/2.

Lemma 4.3.5. Let φ : (0,+∞) → R be a C1 function of compact support, and let
f, g ∈ L̇1

1. Suppose that the coagulation coefficient a is bounded on every set of the
form [0, R)2 \ [0, ǫ)2 for R > ǫ > 0.

Then 〈C(f, g), φ〉 is well defined and there is a constant C ≥ 0 which depends
only on the support of φ and the local bound of a, such that

|〈C(f, g), φ〉| ≤ C ‖φ‖C1 M1(f)M1(g).

Proof. This is immediate using the previous lemma.

The previous conditions will allow us later to consider a particle distribution f
for which

∫∞
0
f is not necessarily finite.

Let us also give an example where we can consider some coagulation coefficients
which are not bounded for y or y′ near 0. Assume that a is of the following form:

a(y, y′) = yα(y′)β + (y′)αyβ for all y, y′ > 0

with −1 ≤ α ≤ β ≤ 1 such that α + β ≤ 1.
(4.7)

(Note that this a does not satisfy the condition of lemma 4.3.5 when α < 0). If
we suppose this special form of a, the conditions in the following lemma imply that
C(f) is well defined, but these are weaker than those in lemma 4.1.4, so again we
cannot say that C(f) is well defined.

For a measurable function f : (0,+∞) → (0,∞) and α, β ∈ R we define the
norm ‖·‖(α,β) as

‖f‖(α,β) :=

∫ 1

0

yα |f(y)| dy +

∫ ∞

1

yβ |f(y)| dy.

Lemma 4.3.6. Suppose that (4.7) holds, and let f, g ∈ L̇1
1 be functions such

that ‖f‖(α+1,β) , ‖g‖(α+1,β) are finite. Then 〈C(f, g), φ〉 is well defined for all φ ∈
C1

c (0,+∞).
There is a constant Kǫ > 0 such that for all φ ∈ C1

c (0,+∞) with compact support
contained in [ǫ,+∞)

|〈C(f, g), φ〉| ≤ Kǫ ‖φ‖C1

(

‖f‖(1,1) ‖g‖(α+1,β) + ‖g‖(1,1) ‖f‖(α+1,β)

)

.

Proof. We can bound the integrand I in (4.6) depending on the values of y, y′.
Taking δ := min{ǫ/2, 1} we have
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If y, y′ < δ, then the integrand is 0.

If y < δ and y′ ≥ δ, then

|φ(y + y′) − φ(y) − φ(y′)| = |φ(y + y′) − φ(y′)| ≤ y ‖φ‖C1 ,

so when we multiply by a(y, y′)f(y)g(y′) we get

I ≤ ‖φ‖C1 (yα+1(y′)β + yβ+1(y′)α)f(y)g(y′)

and finally

∫ δ

0

∫ ∞

δ

I dy dy′ ≤ ‖φ‖C1

(
∫ δ

0

yα+1f(y) dy

∫ ∞

δ

yβg(y) dy

+

∫ δ

0

yβ+1f(y) dy

∫ ∞

δ

yαg(y) dy

)

≤ 2δβ−1 ‖φ‖C1

(
∫ δ

0

yα+1f(y) dy

∫ ∞

δ

y g(y) dy

)

≤ 2δβ−1 ‖φ‖C1 ‖f‖(α+1,β) ‖g‖(1,1) .

If y′ < δ and y ≥ δ, we get an analogous estimate:

∫ δ

0

∫ ∞

δ

I dy′ dy ≤ 2δβ−1 ‖φ‖C1 ‖g‖(α+1,β) ‖f‖(1,1) .

Finally, if both y and y′ are ≥ δ, then |φ(y + y′) − φ(y) − φ(y′)| is bounded
by ‖φ‖∞ and

a(y, y′) ≤ δα−β(yy′)β ≤ δα−1yβy′,

so we get:
∫ ∞

δ

∫ ∞

δ

I dy′ dy ≤ δα−1 ‖φ‖∞ ‖f‖(α+1,β) ‖g‖(1,1) .

4.4. Definition in measures

In order to make sense of the coagulation-fragmentation equation in a space of
measures, it is necessary to define the coagulation operator when f is a measure on
(0,+∞), (as we did for the fragmentation operator). We will only need to use its
weak form.

We take a as before: a nonnegative Borel measurable function a : (0,+∞) ×
(0,+∞) → [0,+∞) which is symmetric (this is: a(y, y′) = a(y′, y) for all y, y′ > 0).
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Definition 4.4.1. Given f, g Borel measures on (0,+∞) for which compact sets
have finite measure, and φ : (0,+∞) → R continuous and of compact support, we
define 〈C(f, g), φ〉 as in equation (4.6), whenever the function (y, y′) 7→ a(y, y′)(φ(y+
y′) − φ(y) − φ(y′)) is f ⊗ g-integrable. As before, we will frequently denote C(f, f)
as C(f).

Remark 4.4.2. When f , g are measures, in equation (4.6) it is understood that the
integration is with respect to the product measure f ⊗ g (see also remark 3.6.1
about our notation for the integral with respect to a general measure). In general,
if µ, ν are two measures, we will write their product with different variables (as in
µ(y)ν(y′)) to imply the product measure (µ⊗ ν).



Chapter 5

Existence of solutions

This chapter contains our main results on existence of solutions for the contin-
uous coagulation-fragmentation equations. After proving the existence of regular
solutions we develop the necessary estimates for the later proofs of the existence
theorems. The estimates in section 5.4.1 are already known when one allows the
constants to depend on the total number of particles (the integral of the solution
f), and the novelty here lies in obtaining bounds which do not depend on it. They
are based on the estimates in [34], which do not take into account fragmentation
effects. Section 5.4.2 contains estimates which were proved and used in [33, 35], and
which stem from ideas in previous papers on existence theory; nevertheless, some of
the proofs here differ from the existing ones in the technique used and we thought
them to be of interest. On the other hand, estimates in section 5.4.4 deal with the
interaction between coagulation and fragmentation for small particles and are new,
to our knowledge.

The existence theorems in sections 5.5–5.7 are proved with the help of the es-
timates already mentioned. The new part of the theorem in section 5.5 is that it
allows for the initial condition to be only in L̇1

1 instead of L̇1
1 ∩ L1, together with

less restrictions on the fragmentation coefficient. As a consequence, the solution
may not satisfy that f(t) ∈ L1 for t > 0, and this opens the way for a study of
solutions that behave in a singular way near y = 0. Section 5.6 contains a known
result (stated in [33]) and is included for completeness, as the proof is short with the
results in the rest of this work, and is presented in a different way from the existing
literature. Results on the existence of measure solutions in section 5.7 are new and
include an existence theorem for coagulation and fragmentation coefficients which
are singular near y = 0.
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5.1. Concept of solution

Let us recall the continuous coagulation-fragmentation equations from chapter
2:

∂

∂t
f = C(f) + F (f), t, y ∈ (0,+∞) (5.1)

f(0, y) = f 0(y), y ∈ (0,+∞). (5.2)

We have included here the initial condition f(0, y) = f 0(y); the coagulation and
fragmentation terms are given by

C(f) := C1(f) − C2(f) (5.3)

F (f) := F1(f) − F2(f) (5.4)

C1(f)(y) :=
1

2

∫ y

0

a(y′, y − y′)f(y′)f(y − y′) dy′ (5.5)

C2(f)(y) := f(y)

∫ ∞

0

a(y, y′)f(y′) dy′ (5.6)

F1(f)(y) :=

∫ ∞

y

b(y′′, y)f(y′′) dy′′ (5.7)

F2(f)(y) := f(y)

∫ y

0

y′

y
b(y, y′)dy′. (5.8)

(See 4.3.1 and 3.4.1 for their weak forms, respectively).

Definition 5.1.1. Let a, b be nonnegative measurable functions, with a defined on
(0,+∞) × (0,+∞) and symmetric, and b defined on {(y, y′) ∈ R

2 | 0 < y′ < y}.
Let f 0 : (0,+∞) → R be a measurable function and T ∈ (0,+∞]. We say that
f : [0, T ) × (0,+∞) → R is a solution to the coagulation-fragmentation equations
(5.1), (5.2) if

f is locally integrable on [0, T ) × (0,+∞),

for almost all t ∈ (0, T ), 〈C(f(t, ·)), φ〉 is well-defined for all φ ∈ D([0, T )) (as
in definition 4.4.1),

for all φ ∈ D([0, T ) × (0,+∞)), the function

t 7→ 〈C(f(t)), φ(t, ·)〉 ,

which is defined for almost all t ∈ [0, T ), is integrable on (0, T ),

For almost all t ∈ (0, T ), F (f(t)) is well-defined (as in definition 3.0.1), and
Ff is locally integrable on [0,∞) × [0, T ).
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and the following holds for every φ ∈ D([0, T ) × (0,+∞)):

−
∫ T

0

∫ ∞

0

f(t, y)∂tφ(t, y) dy dt =

∫ ∞

0

f 0(y)φ(0, y) dy dt

+

∫ T

0

∫ ∞

0

Ff(t, y)φ(t, y) dy dt+

∫ T

0

〈C(f(t)), φ(t, ·)〉 dt. (5.9)

This definition essentially says that f is a solution if all terms are defined and
the equation holds in a weak sense.

We can also give a definition of a measure solution, which generalizes the above
to the case in which f(t) is a measure for each t:

Definition 5.1.2. Let a be a nonnegative symmetric Borel measurable function
defined on (0,+∞) × (0,+∞), and b in the conditions (3.16). Let f 0 be a measure
in Mloc (this is, a Borel measure on (0,+∞) which is finite on compact sets), and
take T ∈ (0,+∞]. We say that f : [0, T ) → Mloc is a measure solution to the
coagulation-fragmentation equations (5.1), (5.2) if

for all φ ∈ D([0, T ) × (0,+∞)), t 7→
∫∞
0
φ(y)f(t, y) dy is t-integrable,

for almost all t ∈ (0, T ), 〈C(f(t)), φ〉 is well-defined for all φ ∈ D([0, T )) (as in
definition 4.4.1),

for all φ ∈ D([0, T ) × (0,+∞)), the function

t 7→ 〈C(f(t)), φ(t, ·)〉 ,

which is defined for almost all t ∈ [0, T ), is integrable on (0, T ),

for almost all t ∈ (0, T ), F ∗φ is f(t)-integrable for all φ ∈ D([0, T )),

for all φ ∈ D([0, T ) × (0,+∞)), the function

t 7→
∫ ∞

0

f(t, y)(F ∗φ(t))(y) dy,

which is defined for almost all t ∈ [0, T ), is integrable on (0, T ),

and the following holds for every φ ∈ D([0, T ) × (0,+∞)):

−
∫ T

0

∫ ∞

0

f(t, y)∂tφ(t, y) dy dt =

∫ ∞

0

f 0(y)φ(0, y) dy

+

∫ T

0

∫ ∞

0

f(t, y)F ∗φ(t, y) dy dt+

∫ T

0

〈C(f(t)), φ(t, ·)〉 dt. (5.10)
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5.2. Solutions with bounded coefficients

In certain cases, as shown in corollaries 3.3.2 and 3.5.3, the fragmentation oper-
ator F is a linear continuous operator in a certain space. Under certain conditions
(as shown in corollary 4.1.5), the coagulation operator is continuous in L1. Then we
immediately have a solution that can be obtained as a limit of the Picard iterants
associated to the equation by means of a standard process. The following is easily
obtained:

Theorem 5.2.1. Assume (3.4) and (3.8) for k = 0, and suppose that β is essentially
bounded. Suppose that the coagulation coefficient a : (0,+∞) × (0,+∞) → [0,+∞)
is an essentially bounded symmetric measurable function.

Let X be the Banach space L̇1
1 ∩ L1 with the usual norm for the intersection of

two spaces, and take f 0 ∈ X.
Then there is a solution f to the coagulation-fragmentation equation on (0,+∞)

with initial data f 0 such that f ∈ C1([0,+∞), X) (with f(0) = f 0), Lf(t) and
C(f(t)) are in X for all t ≥ 0 and

d

dt
f(t) = Lf(t) + C(f(t)) t > 0,

where the derivation in t is understood as that of a function in C1([0, T [, X). The
solution is the only one satisfying the above. This solution is also a solution in the
sense of the definitions in chapter 10.

In addition, this solution conserves the mass, in the sense that

∫ ∞

0

y f(t, y) dy =

∫ ∞

0

y f 0(y) dy for all t ∈ (0, T ). (5.11)

Proof. Thanks to lemma 3.3.1, under our hypotheses F is a continuous operator from
L1 → L1 and from L̇1

1 → L̇1
1, so it is also continuous as an operator F : X → X

(and hence Lipschitz, as it is linear).
For the coagulation term, corollary 4.1.5 ensures that for f ∈ X,

‖C(f)‖1 ≤ const. ‖f‖2
1

M1(C(f)) ≤ const. M1(f) ‖f‖1 ,

so C : X → X is also a continuous operator, which must also be locally Lipschitz,
as it is quadratic.

Then, solutions in the sense stated in the theorem can be found and are unique by
a standard result (an argument on Picard iterants analogous to the one for ordinary
differential equations can be carried out). We just need to prove that they are
solutions in the sense of definition 5.1.1.

So, take a solution f in the sense of this theorem. All regularity requirements of
definition 5.1.1 are satisfied. Also, the right hand side of the equation, Ff+C(f), is
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in L1((0, T ), X), so this solution is a solution to the initial value problem (5.1), (5.2)
in the sense of any of the definitions 10.1.10–10.1.16 (as it satisfies the requirement
of being, for example, a mild solution). In particular, it is a weak solution to the
initial value problem in the sense of definition 10.1.15, which implies the conditions
in definition 5.1.1 (note that in our conditions

∫∞
0
φ(y)C(f)(y) dy = 〈C(f), φ〉 for all

φ ∈ D(0,+∞) thanks to lemma 4.3.2).

As proved in section 10.1, these solutions are solutions in the sense of the defi-
nitions in chapter 10, as in particular they are mild solutions in L1.

Finally, mass is conserved because, as our solution is also a solution in the sense
of moments (see definition 10.1.3) in the Banach space X, for ψ(y) = y we have

∫ ∞

0

yf(t, y) dy =

∫ ∞

0

yf 0(y) dy +

∫ t

0

∫ ∞

0

y(Ff(s, y) + C(f)(s, y)) dy ds

=

∫ ∞

0

yf 0(y) dy +

∫ t

0

∫ ∞

0

F ∗ψ(y)f(s, y) dy ds+

∫ t

0

〈C(f(s)), ψ〉 ds =

∫ ∞

0

yf 0(y) dy.

Here we have used the fundamental identities in propositions 4.3.2 and 3.4.3 to
change C by C and interchange F and F ∗.

We can also find solutions in the space L∞:

Theorem 5.2.2. In addition to the hypotheses of theorem 5.2.1, suppose that f 0 is
in L∞ and write X := L̇1

1 ∩ L1 ∩ L∞, with the usual norm for the intersection.

Then there is a solution f to the coagulation-fragmentation equation on (0,+∞)
with initial data f 0 such that f ∈ C1([0,+∞), X) (with f(0) = f 0), Lf(t) and
C(f(t)) are in X for all t ≥ 0 and

d

dt
f(t) = Lf(t) + C(f(t)) t > 0,

where the derivation in t is understood as that of a function in C1([0, T ), X). The
solution is the only one satisfying the above. This solution is also a solution in the
sense of the definitions in chapter 10.

In addition, this solution conserves the mass, in the sense that

∫ ∞

0

y f(t, y) dy =

∫ ∞

0

y f 0(y) dy for all t ∈ (0, T ).

Proof. The same reasoning as in theorem 5.2.1, together with lemmas 3.5.1 and 4.2,
proves that F : X → X and C : X → X are continuous. Then, the same argument
as before gives the result.
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5.3. Positivity of the solution

Lemma 5.3.1. Assume the hypotheses of theorem 5.2.1, and let f be the solution
to the coagulation-fragmentation equations given by that theorem. If f 0 is positive
a.e., then f(t) is positive a.e. for all t ≥ 0.

Proof. Call f−(t, y) := max{−f(t, y), 0} and s(t, y) := −1 if f(t, y) < 0 and 0 oth-
erwise, so that f−(t, y) = s(t, y)f(t, y). Then f−(t, y) can be written as β(f(t, y)),
with β(s) := max{−s, 0}, and s(t, y) = β ′(f(t, y)) when f(t, y) 6= 0, so theorem
10.2.7 proves we can calculate as follows:

d

dt

∥

∥f−(t)
∥

∥

1
=

d

dt

∫ ∞

0

f−(t, y) dy =

∫ ∞

0

s(t, y)(Ff(t, y) + C(f)(t, y)) dy.

For the fragmentation part:

∫ ∞

0

s(t, y)Ff(t, y) dy

=

∫ ∞

0

∫ ∞

y

s(t, y)b(y′′, y)f(t, y′′) dy′′ dy −
∫ ∞

0

s(t, y)f(t, y)β(y) dy

=

∫ ∞

0

∫ y′′

0

b(y′′, y)s(t, y)f(t, y′′) dy dy′′ −
∫ ∞

0

y f−(t, y)β(y) dy

≤
∫ ∞

0

f−(t, y′′)

∫ y′′

0

b(y′′, y) dy dy′′

≤
∫ ∞

0

f−(t, y′′)C0β(y′′) dy′′ ≤ B
∥

∥f−(t)
∥

∥

1
.

Note that we have used that β is bounded by some positive constant and that (3.8)
holds for k = 0, so for some constant C0 > 0 and all y′′ > 0 we have

∫ y′′

0

b(y′′, y) dy ≤ C0β(y′′) ≤ B for some B > 0.

We have also used that f(t, y′′) ≥ −f−(t, y′′) and s is nonpositive, so s(t, y)f(t, y′′) ≤
f−(t, y′′).
For the coagulation part: use lemma 4.3.2 again to write:

∫ ∞

0

s(t, y)C(f(t))(y) dy = 〈C(f(t)), s(t)〉

=
1

2

∫ ∞

0

∫ ∞

0

a(y, y′)f(t, y′)f(t, y)s(t, y + y′) dy dy′

−
∫ ∞

0

∫ ∞

0

a(y, y′)f(t, y′)f(t, y)s(t, y) dy dy′.
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For the last term we have:
∫ ∞

0

∫ ∞

0

a(y, y′)f(t, y′)f(t, y)s(t, y) dy dy′

=

∫ ∞

0

∫ ∞

0

a(y, y′)f(t, y′)f−(t, y) dy dy′ ≤ A ‖f(t)‖1

∥

∥f−(t)
∥

∥

1
.

For the first one, observe that

s(t, y + y′)f(t, y)f(t, y′) ≤











0 if f(t, y), f(t, y′) ≥ 0

f−(t, y) |f(t, y′)| if f(t, y) < 0, f(t, y′) ≥ 0

|f(t, y)| f−(t, y′) if f(t, y′) < 0, f(t, y) ≥ 0.

Hence
∫ ∞

0

∫ ∞

0

a(y, y′)f(t, y′)f(t, y)s(y + y′) dy dy′

≤ 2A

∫ ∞

0

f−(y) |f(y′)| dy dy′ ≤ 2A ‖f(t)‖1

∥

∥f−(t)
∥

∥

1
.

Gronwall’s lemma then proves that ‖f−(t)‖1 is always zero, as it is at t = 0, so f(t)
is positive a.e. for all t ≥ 0.

5.4. Estimates for regular solutions

Let us give some estimates for the kind of solutions obtained in section 5.2. We
are interested in obtaining information on the behavior of their moments and other
properties by finding bounds which depend only on suitably weak requirements on
the initial condition and the coefficients. One of the reasons for this is that these
estimates will be used later in a limiting argument where we prove existence of
solutions under various conditions, and there we will need them to be independent
of the particular approximation we are using.

The results below are of the kind: “such quantity related to f is bounded by
a constant which depends only on such and such quantity”. What is meant by
this is that if one has a different solution with different initial data and coefficients,
the corresponding bound is still true with the same constant as long as the stated
quantities on which it depends are the same for the new initial data and coefficients.
It may seem odd to see these results phrased in a way that includes “constants”
which depend on several other quantities, but this is reasonable in view of their
intended application: later, for a given sequence of approximated solutions, these
constants will really be fixed in the sense that they will be valid for every solution
in the sequence.

In the following we will use C(t) or C to denote generic numbers that depend only
on the quantities involved in the result being discussed at the moment; the number
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denoted by them may change in the course of a proof, with the only requirement
that they must depend only on the quantities of the result. To ease the language, we
will refer to these as being allowed constants or constants that depend only on the
allowed quantities. On some of the results we also specify whether the dependence
of the constants on some quantities is increasing or decreasing; in these cases, the
allowed constants are also required to have the same dependence on them.

Throughout this section f will be a solution to the coagulation-fragmentation
equations on [0,+∞) in the conditions of theorem 5.2.1 with an initial condition f 0

which is a bounded function of compact support in (0,+∞) and is positive almost
everywhere. In order to carry out arguments involving various moments of f , we
need to ensure in some way that they are finite for all times, so in addition we
will suppose that the coagulation and fragmentation coefficients also have compact
support. Then we know that f has compact support at all times. Let us gather all
that for future reference:

Hypothesis 5.4.1. Throughout this section we assume the following:

The fragmentation coefficient b satisfies (3.4), and has compact support on
{(y, y′) ∈ R

2 | y > y′ > 0} (in particular, it satisfies (3.8) for any k ∈ R).

The total fragmentation rate β (as defined in (3.5)) is essentially bounded.

The coagulation coefficient a : (0,+∞)× (0,+∞) → [0,+∞) is a nonnegative
symmetric measurable function with compact support on (0,+∞) × (0,+∞).
There is some constant A ≥ 0 such that

a(y, y′) ≤ A (1 + y + y′). (5.12)

The initial data f 0 is a bounded function with compact support on (0,+∞).

f is a solution to the coagulation-fragmentation equations on [0,+∞) given by
theorem 5.2.2 with coefficients a, b and initial condition f 0.

Below we will call:

ρ :=

∫ ∞

0

yf 0(y) dy. (5.13)

First of all, we know that the solution f is positive almost everywhere (lemma
5.3.1) and that mass is conserved (equation (5.11)); then ρ, the total mass of the
initial condition, is also the mass of the solution at any later time:

∫ ∞

0

y f(t, y) dy =

∫ ∞

0

y f 0(y) dy = ρ for all t ≥ 0. (5.14)

In addition, we know that f(t) always has compact support on (0,+∞), thanks to
the assumption that a and b have compact support: fragmentation never produces
small clusters, and coagulation never produces large ones.
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Lemma 5.4.2. For all t ≥ 0, the function f(t) has compact support on (0,+∞).
To be more precise:

If for some 0 < R f 0 has support contained in (0, R) and a has support con-
tained in {(y, y′) | y, y′ > 0 and ǫ ≤ y + y′ ≤ R}, then f(t) has support
contained in (0, R) for all t ≥ 0.

If for some 0 < ǫ f 0 has support contained in (ǫ,+∞) and b has support
contained in {(y, y′) | ǫ ≤ y′ < y}, then f(t) has support contained in (ǫ,+∞)
for all t ≥ 0.

Proof. For the first part, one can see directly that d
dt

∫∞
R
yf(t, y) dy ≤ 0; as f is

nonnegative and
∫∞

R
yf 0(y) dy = 0 the result follows. One can prove the second

part analogously, considering d
dt

∫ ǫ

0
yf(t, y) dy.

In particular, this implies that all moments of the form
∫∞
0
f(t, y)ψ(y) dy for ψ

locally bounded on (0,+∞) are finite for all times t ≥ 0.

5.4.1. Estimates independent of the number of particles

Superlinear moments of f

Proposition 5.4.3 (Bound on superlinear moments of f). Take Φ : [0,+∞) → R a
nonnegative function such that y 7→ Φ(y)/y is concave and limy→0 Φ(y)/y = 0. Call

K0 :=

∫ ∞

0

Φ(y)f 0(y) dy < +∞.

Then for all t > 0 there is a constant C(t) > 0 which depends (increasingly) only
on Φ, t, ρ, A (see (5.12)) and K0 such that

∫ ∞

0

Φ(y)f(t, y) dy ≤ C(t).

If in addition Φ(y) ≤ y2 for y > 0, then the following holds for some constant C(t)
which depends only on t, ρ, A (see (5.12)) and K0:

∫ ∞

0

C(f(t))(y)Φ(y) dy ≤ C(t) for all t ≥ 0.

Let us state some further results in order to prove this.

Lemma 5.4.4. If ϕ : [0,+∞) → R is a concave function with ϕ(0) = 0. Then
y 7→ ϕ(y)/y is decreasing and ϕ is sublinear; this is,

ϕ(x+ y) ≤ ϕ(x) + ϕ(y) for all x, y ≥ 0.
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Proof. If 0 < x < y, writing x = θy + (1 − θ)0 with θ = x/y gives

ϕ(x) ≤ x

y
ϕ(y),

which proves the first part. We use it to prove that ϕ is sublinear:

ϕ(x+ y)

x+ y
≤ ϕ(x)

x
=⇒ ϕ(x+ y) ≤ ϕ(x) +

y

x
ϕ(x) ≤ ϕ(x) + ϕ(y).

Lemma 5.4.5. Suppose that ϕ : [0,+∞) → R is a concave function with ϕ(0) = 0.
Then for all y, y′ > 0,

(y + y′)ϕ(y + y′) − yϕ(y)− y′ϕ(y′) ≤ 2
yy′

y + y′
ϕ(y + y′).

Proof. As ϕ is concave, writing y = y′

y+y′
· 0 + y

y+y′
(y + y′) one has

ϕ(y) ≥ y

y + y′
ϕ(y + y′).

Analogously,

ϕ(y′) ≥ y′

y + y′
ϕ(y + y′).

Substituting this on the left hand side of the inequality we have:

(y + y′)ϕ(y + y′) − yϕ(y)− y′ϕ(y′) ≤

ϕ(y + y′)

(

y + y′ − y2

y + y′
− (y′)2

y + y′

)

= ϕ(y + y′)
2yy′

y + y′
.

Lemma 5.4.6. Suppose that Φ : [0,+∞) → R is such that y 7→ Φ(y)/y is concave
and limy→0 Φ(y)/y = 0. Then for all y, y′ > 0,

Φ(y + y′) − Φ(y) − Φ(y′) ≤ 2

(

Φ(y)y′ + Φ(y′)y
)

y + y′
.

Proof. This is obtained applying the previous lemma to ϕ(y) := Φ(y)/y for y > 0,
ϕ(0) = 0, and using that ϕ is sublinear (see lemma 5.4.4).

Lemma 5.4.7. Suppose that Φ : [0,+∞) → R is in the conditions of lemma 5.4.6,
and that

Φ(y) ≤ y2 for all y > 0.

Then the following estimate holds for all y, y′ > 0:

a(y, y′)(Φ(y + y′) − Φ(y) − Φ(y′)) ≤ 4A(Φ(y)y′ + Φ(y′)y + yy′), (5.15)

where A is the constant from (5.12).
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Proof. For y + y′ ≥ 1 we use (5.12) and lemma 5.4.6:

a(y, y′)(Φ(y + y′) − Φ(y) − Φ(y′))

≤ 2A(1 + y + y′)
Φ(y)y′ + Φ(y′)y

y + y′
≤ 4A(Φ(y)y′ + Φ(y′)y).

We also need an estimate for y + y′ < 1. Call ϕ(y) := Φ(y)/y, ϕ(0) := 0. This is a
concave function with ϕ(0) = 0, so in particular it is sublinear. Also, the bound on
Φ implies that ϕ(y) ≤ y for y ≥ 0. Then, for y, y′ > 0,

Φ(y + y′) − Φ(y) − Φ(y′) = (y + y′)ϕ(y + y′) − y ϕ(y) − y′ϕ(y′)

≤ (y + y′)
(

ϕ(y) + ϕ(y′)
)

− y ϕ(y) − y′ϕ(y′)

= yϕ(y′) + y′ϕ(y) ≤ 2yy′.

Hence, for y + y′ ≤ 1, using that a(y, y′) < A(1 + y + y′) < 2A,

a(y, y′)
(

Φ(y + y′) − Φ(y) − Φ(y′)
)

≤ 4Ay y′.

Together with the bound for y + y′ ≥ 1, this proves the result.

Proof of proposition 5.4.3. Let us estimate the time derivative of the Φ-moment.
Call ϕ(y) := Φ(y)/y for y > 0, and ϕ(0) = 0. Then ϕ is nonnegative and concave,
and in particular it must be increasing. Hence, we only need to worry about the
coagulation term, as

∫∞
0
F (f)(y)Φ(y) dy ≤ 0 due to proposition 3.4.3 (see expression

(3.13)).

As a first step, suppose that Φ(y) ≤ y2 for all y > 0. Then we can estimate the
coagulation part by using lemma 5.4.7:

d

dt

∫ ∞

0

f(y)Φ(y) dy ≤
∫ ∞

0

C(f)(y)Φ(y) dy

≤ 1

2

∫ ∞

0

∫ ∞

0

a(y, y′)f(y)f(y′)(Φ(y + y′) − Φ(y) − Φ(y′)) dy dy′

≤ A

∫ ∞

0

∫ ∞

0

f(y)f(y′)(Φ(y)y′ + Φ(y′)y + 2yy′) dy dy′

≤ 2Aρ

∫ ∞

0

f(y)Φ(y) dy+ Aρ2.

By Gronwall’s lemma,
∫∞
0
f(y)Φ(y) dy is bounded on [0, t] for t > 0, with a bound

C(t) that depends only on ρ, A and K0 =
∫∞
0
f 0(y)Φ(y) dy (observe that this C(t)

does not depend directly on Φ). This proves the last part of the proposition.

Now we drop the assumption that Φ(y) ≤ y2 for all y. Then, we can write
Φ = Φ1 + Φ2, with Φ1(y) smaller than a constant times y for all y, in such a way
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that a multiple of Φ2 satisfies the conditions of our first step. One way to do this is
to define, for y ≥ 0:

Φ2(y) :=

{

Φ(1)y2 if y < 1

Φ(y) if y ≥ 1

Φ1(y) := Φ(y) − Φ2(y).

Take C := max{1,Φ(1)}. Then, C−1Φ2 is in the conditions of our first step: y 7→
Φ2(y)/y is still concave, nonnegative, has limit 0 when y → 0, Φ2(y) ≤ Cy2 for
y < 1 and for y ≥ 1,

Φ2(y) = Φ(y) = y ϕ(y) ≤ y2ϕ(1) = y2Φ(1) ≤ C y2.

Also, Φ1(y) is zero for y > 1, and for 0 < y ≤ 1 we have

Φ1(y) ≤ Φ(y) = y ϕ(y) ≤ y ϕ(1) ≤ C y.

Hence,
Φ1(y) ≤ C y for y ≥ 0.

Finally, we can estimate the Φ-moment as follows, using the constant C(t) from the
previous step corresponding to C−1Φ2 (observe that this C(t) is allowed, as it can
be bounded using only C, t, ρ, A and K0):

∫ ∞

0

Φ(y)f(y) dy =

∫ ∞

0

Φ1(y)f(y) dy+

∫ ∞

0

Φ2(y)f(y) dy ≤ C ρ+ C C(t).

This proves proposition 5.4.3.

Corollary 5.4.8. Suppose that Φ : [0,+∞) → R is a nonnegative function such
that y 7→ Φ(y)/y is concave and limy→0 Φ(y)/y = 0. Call

K0 :=

∫ ∞

0

Φ(y)f 0(y) dy < +∞.

Then for all t, S > 0 there is a constant C(t) > 0 which depends only on t, Φ, S, ρ,
A (see (5.12)) and K0 such that

∫ ∞

S

C(f(t))(y)Φ(y) dy ≤ C(t) for all t ≥ 0.

This C(t) depends decreasingly on S, and increasingly on the rest of the involved
quantities.

Proof. If Φ(S) = 0 then Φ ≡ 0 and there is nothing to prove, so assume that
Φ(S) > 0. We can change Φ on [0, S) and then apply proposition 5.4.3 in a very
similar way as was done in its proof:

Φ̃(y) :=

{

Φ(S)
S2 y

2 if y ≤ S

Φ(y) if y > S.
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Call ϕ̃(y) := Φ̃(y)/y for y > 0, ϕ̃(0) = 0, which is concave. Then for y ≥ S,

Φ̃(y) = yϕ̃(y) ≤ y2 ϕ̃(S)

S
= y2 Φ̃(S)

S2
,

as y 7→ ϕ̃(y)/y is decreasing (lemma 5.4.4). Hence,

S2

Φ̃(S)
Φ̃(y) ≤ y2 for all y ≥ 0.

Then Φ̃S2/Φ̃(S) is in the conditions of proposition 5.4.3, so for some constant C(t)
which depends on the allowed quantities (including Φ̃(S)/S2), and knowing that the
integrand below is nonnegative,

∫ ∞

S

Φ̃(y)f(t, y) dy ≤
∫ ∞

0

Φ(y)f(t, y) dy ≤ Φ̃(S)

S2
C(t) for t ≥ 0.

This proves our result, noting that Φ̃(S)/S2 is a decreasing function of S.

Let us state a result on the behavior of the moments of f of order 1 ≤ k ≤ 2,
which is a direct consequence of proposition 5.4.3:

Corollary 5.4.9. Take 1 ≤ k ≤ 2. Call

K0 :=

∫ ∞

0

ykf 0(y) dy < +∞.

Then for all t > 0 there is a constant C(t) > 0 which depends only on t, ρ, A (see
(5.12)) and K0 such that

∫ ∞

0

ykf(t, y) dy ≤ C(t).

Proof. Apply proposition 5.4.3 to

Φ(y) :=

{

y if 0 < y < 1

y2 if 1 ≤ y.

Note that the resulting C(t) is independent of k.

A moment of f related to the fragmentation coefficient

Proposition 5.4.10. Suppose that Φ : [0,+∞) → R is such that y 7→ Φ(y)/y is
concave and strictly increasing, and such that limy→0 Φ(y)/y = 0. Call

K0 :=

∫ ∞

0

Φ(y)f 0(y) dy < +∞. (5.16)
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Then for 0 < R < S and all t ≥ 0 there is a constant C(t) which depends only on
R, S, t, ρ, A (from (5.12)) and K0 such that

∫ t

0

∫ ∞

S

Φ(y)

y
f(s, y)

∫ R

0

y′b(y, y′) dy′ dy ds ≤ C(t). (5.17)

This C(t) depends decreasingly on S and increasingly on the other quantities.

Proof. Thanks to proposition 5.4.8 we know that there is a constant which depends
only on the allowed quantities such that

∫ ∞

S

C(f(t))(y)Φ(y) dy ≤ C(t) for all t ≥ 0.

Then, for t ≥ 0,

d

dt

∫ ∞

S

Φ(y)f(t, y) dy =

∫ ∞

S

Ff(t, y)Φ(y) dy +

∫ ∞

S

C(f(t))(y)Φ(y) dy

≤
∫ ∞

S

Ff(t, y)Φ(y) dy+ C(t),

And we deduce that

−
∫ t

0

∫ ∞

S

Ff(s, y)Φ(y) dy ds ≤ t C(t) +

∫ ∞

0

Φ(y)f 0(y) dy = t C(t) +K0. (5.18)

Now, for the left hand side we use that y 7→ Φ(y)/y is increasing:

−
∫ ∞

0

Ff(y)Φ(y) dy = −
∫ ∞

0

f(y)F ∗Φ(y) dy

=

∫ ∞

0

f(y)

∫ y

0

(

Φ(y)

y
− Φ(y′)

y′

)

y′b(y, y′) dy′ dy

≥
∫ ∞

S

f(y)

∫ R

0

(

Φ(y)

y
− Φ(y′)

y′

)

y′b(y, y′) dy′ dy

≥
∫ ∞

S

f(y)

∫ R

0

(

Φ(y)

y
− Φ(R)

R

)

y′b(y, y′) dy′ dy (5.19)

Then, using that for y ≥ S

Φ(R)

R
=

Φ(S)

S

Φ(R)

Φ(S)

S

R
≤ Φ(y)

y

Φ(R)

Φ(S)

S

R
= C

Φ(y)

y
,

where

C :=
Φ(R)

Φ(S)

S

R
< 1,
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as y 7→ Φ(y)/y is strictly increasing (note that C is increasing in R and decreasing
in S). Hence, from (5.19) we get:

−
∫ ∞

0

Ff(y)Φ(y) dy ≥ (1 − C)

∫ ∞

S

Φ(y)

y
f(y)

∫ R

0

y′b(y, y′) dy′ dy.

Together with (5.18), we obtain the result in the proposition for some allowed con-
stant C(t):

∫ t

0

∫ ∞

S

Φ(y)

y
f(s, y)

∫ R

0

y′b(y, y′) dy′ dy ds ≤ C(t) for t ≥ 0.

Corollary 5.4.11. Assume the conditions of proposition 5.4.10, and take R > 0.
Call

B0 := sup
0<y<2R

β(y). (5.20)

Then for any t > 0 there is a constant C(t) which depends (increasingly) only on
B0 and the quantities in proposition 5.4.10, such that

∫ t

0

∫ ∞

0

(

1 +
Φ(y)

y

)

f(s, y)

∫ R

0

y′b(y, y′) dy′ dy ds ≤ C(t). (5.21)

(It is understood here that b(y, y′) = 0 when y ≤ y′).

Proof. For y > 2R,

1 +
Φ(y)

y
≤
( 2R

Φ(2R)
+ 1
)Φ(y)

y
,

so we only need to estimate the integral when y < 2R, as the rest was bounded in
proposition 5.4.10, applied for S := 2R. But 1 + Φ(y)/y is bounded when y ≤ 2R
by 1 + Φ(2R)/(2R), so it is enough to estimate the following:

∫ t

0

∫ 2R

0

f(s, y)

∫ R

0

y′b(y, y′) dy′ dy ds

≤
∫ t

0

∫ 2R

0

f(s, y)

∫ y

0

y′b(y, y′) dy′ dy ds

=

∫ t

0

∫ 2R

0

y f(s, y)β(y) dy ds ≤ B0tρ.

The bound we have found is increasing on all the quantities it depends on except for
R, but it is clear that it can be taken to be increasing in R also, as the expression
in the left hand side of (5.21) is itself increasing in R.
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Corollary 5.4.12. For any t > 0 there is a constant C(t) ≥ 0 which only depends
on t, ρ, A such that

∫ t

0

∫ ∞

0

f(s, y)

∫ R

0

y′b(y, y′) dy′ dy ds ≤ C(t). (5.22)

(It is understood here that b(y, y′) = 0 when y ≤ y′).

Proof. We can prove this by choosing a fixed Φ such that Φ(y) ≤ 2y (for example)
in corollary 5.4.11. Take, for example,

Φ(y) :=

{

y2 if 0 < y ≤ 1

2y if 1 < y.

Choosing any 0 < R < S, corollary 5.4.11 gives a constant C(t) that satisfies the
inequality (5.22); this constant depends on ρ, t, A and K0 (from (5.16)), but in our
case

K0 =

∫ ∞

0

Φ(y)f 0(y) dy ≤ 2

∫ ∞

0

yf 0(y) dy = 2ρ,

so C(t) can be taken to be independent of K0.

Local integrability estimates

Our bounds on local integrability below will depend on the following quantity:

bx := sup
0<y′<y<x

b(y, y′) for x > 0. (5.23)

Proposition 5.4.13 (Local estimate in L̇1
1). Assume that the function z 7→ z a(z, y′)

is increasing for all y′ > 0. Take Φ : [0,+∞) → R such that y 7→ Φ(y)/y is
concave and strictly increasing, and such that limy→0 Φ(y)/y = 0. Suppose that
Λ : [0,+∞) → [0,+∞) is a C1 strictly convex function with Λ′ concave and Λ(0) =
Λ′(0) = 0, such that

Λ′(by) ≤ 1 +
Φ(y)

y
for y > 0.

Take R > 0. Define bx as in (5.23), and

K1 :=

∫ ∞

0

y Λ(f 0(y)) dy (5.24)

K0 :=

∫ ∞

0

Φ(y)f 0(y) dy. (5.25)

Then for all t ≥ 0 there is a constant C(t) which depends only on t, R, ρ, A (from
(5.12)), by, B1 (with S := 2R), K1 and K0, such that

∫ R

0

y Λ(f(t, y)) dy ≤ C(t) for t ≥ 0.
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Proof. Call φ(y) := yΛ′(f(y)) for 0 < y < R and 0 otherwise, and write

d

dt

∫ R

0

yΛ(f(t, y)) dy =

∫ ∞

0

f(t, y)F ∗φ(y) dy + 〈C(f(t)), φ〉 .

Step 1: bound for the fragmentation part.

We have:
∫ ∞

0

f(t, y)F ∗φ(y) dy ≤
∫ ∞

0

f(y)y

∫ R

0

y′Λ′(f(y′))
1

y
b(y, y′) dy′ dy

We estimate this integral on the regions with y < R and y ≥ R: for y < R, use
Young’s inequality f(y)Λ′(f(y′)) ≤ Λ(f(y)) + Λ(f(y′)) to write

∫ R

0

f(y)y

∫ R

0

Λ′(f(y′))
y′

y
b(y, y′) dy′ dy

≤
∫ R

0

Λ(f(y))y

∫ R

0

y′

y
b(y, y′) dy′ dy +

∫ R

0

∫ R

0

Λ(f(y′))y′b(y, y′) dy′ dy

≤ R bR

∫ R

0

Λ(f(y))y dy +R bR

∫ R

0

Λ(f(y′))y′ dy′

= 2R bR

∫ R

0

Λ(f(y′))y′ dy′. (5.26)

For the part with y ≥ R, use the following Young’s inequality (see chapter 9.4):

Λ′(f(y′))b(y, y′) ≤ Λ∗(Λ′(f(y′))) + Λ(b(y, y′)) ≤ Λ(f(y′)) + Λ(b(y, y′))

to write

∫ ∞

R

f(y)

∫ R

0

Λ′(f(y′))y′b(y, y′) dy′ dy

≤
∫ ∞

R

f(y)

∫ R

0

y′Λ(f(y′)) dy′ dy +

∫ ∞

R

f(y)

∫ R

0

y′Λ(b(y, y′)) dy′ dy

=: I1 + I2.

The first integral, I1, is easy to estimate:

I1 ≤
1

R
ρ

∫ R

0

yΛ(f(y)) dy. (5.27)

For the second one,

I2 ≤
∫ ∞

R

f(y)Λ′ (by)

∫ R

0

y′b(y, y′) dy′ dy

≤
∫ ∞

R

f(y)
(

1 +
Φ(y)

y

)

∫ R

0

y′b(y, y′) dy′ dy =: u(t). (5.28)



86 CHAPTER 5. EXISTENCE OF SOLUTIONS

Note that the integral of u on (0, t) for t > 0 was bounded in corollary 5.4.11.
Step 2: bound for the coagulation part.

We also need to find a bound for the following:

〈C(f(t)), φ〉 =
1

2

∫ ∞

0

∫ ∞

0

a(y, y′)f(y)f(y′)(φ(y + y′) − φ(y) − φ(y′)) dy dy′.

Let us rewrite φ(y + y′) − φ(y) − φ(y′): putting ϕ(y) := χ(y)Λ′(f(y)),

φ(y + y′) − φ(y) − φ(y′) = (y + y′)ϕ(y + y′) − yϕ(y)− y′ϕ(y′)

= y (ϕ(y + y′) − ϕ(y)) + y′ (ϕ(y + y′) − ϕ(y′)) .

Thanks to the symmetry of the integral we have that

〈C(f(t)), φ〉 =

∫ ∞

0

∫ ∞

0

a(y, y′)f(y)f(y′)y (ϕ(y + y′) − ϕ(y)) dy dy′.

Now use Young’s inequality and the identity (9.5):

f(y) (ϕ(y + y′) − ϕ(y))

= f(y)Λ′(f(y + y′))χ(y + y′) − χ(y)Λ(f(y))− χ(y)Λ∗(Λ′(f(y)))

≤ Λ(f(y))χ(y+ y′) + Λ∗(Λ′(f(y + y′)))χ(y + y′) − χ(y)Λ(f(y))− χ(y)Λ∗(Λ′(f(y)))

≤ Λ∗(Λ′(f(y + y′)))χ(y + y′) − Λ∗(Λ′(f(y)))χ(y)

=: Σ(y + y′) − Σ(y),

where we define Σ(y) := Λ∗(Λ′(f(y)))χ(y). Then,

〈C(f(t)), φ〉 ≤
∫ ∞

0

∫ ∞

0

a(y, y′)f(y′)y (Σ(y + y′) − Σ(y)) dy dy′

=

∫ ∞

0

∫ ∞

0

a(y, y′)f(y′)yΣ(y + y′) dy dy′ −
∫ ∞

0

∫ ∞

0

a(y, y′)f(y′)yΣ(y) dy dy′

=

∫ ∞

0

∫ ∞

y′

a(y − y′, y′)f(y′)(y − y′)Σ(y) dy dy′ −
∫ ∞

0

∫ ∞

0

a(y, y′)f(y′)yΣ(y) dy dy′

=

∫ ∞

0

∫ ∞

0

((y − y′)a(y − y′, y′)χy>y′ − ya(y, y′)) f(y′)Σ(y) dy dy′ ≤ 0,

the last inequality due to the fact that z 7→ za(z, y′) is increasing.
With this and (5.26), (5.27), (5.28) we finally get

∫ R

0

yΛ(f(t, y)) dy

≤
∫ R

0

yΛ(f 0(y)) dy +

∫ t

0

(

C

∫ R

0

yΛ(f(s, y)) dy+ u(s)

)

ds
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for some constant C ≥ 0 that depends only on the allowed quantities. The integral
of u on (0, t) for t > 0 is bounded by the constants in the statement, as proved
in corollary 5.4.11. Thus, Gronwall’s lemma proves that for some (other) constant
C(t) we have

∫ R

0

yΛ(f(t, y)) dy ≤ C(t) for t ≥ 0.

5.4.2. Estimates which depend on the number of particles

L1 estimate

To estimate the integral of f , which represents the total number of clusters,
some control on the fragmentation coefficient is needed, as fragmentation produces
an increase on their number. Take S > R > 0 and B1 ≥ 0 such that

∫ R

0

b(y, y′) dy′ ≤ B1

∫ R

0

y′b(y, y′) dy′ for all y ≥ S. (5.29)

(This is also considered in [33]). Define

B2 := sup
y∈(0,S)

∫ y

0

b(y, y′) dy′. (5.30)

The estimates below will depend on B1 and B2.

Proposition 5.4.14. Take Φ in the conditions of proposition 5.4.10, and define K0

as is done there. Choose S > R > 0.There is a constant C(t) which depends only on
t ≥ 0, Φ, ρ, A (from (5.12)), K0, R, S, B1 and B2 (from (5.29) and (5.30)) such
that

‖f(t)‖1 ≤ C(t) for all t ≥ 0.

This constant C(t) is decreasing in S and increasing in t, Φ, ρ, A, K0, B1 and B2

(note that nothing is said about R).

Proof. To find a bound for ‖f(t)‖1 we only need to control the behavior of f near
0, as we know that the total mass is finite and for all times t ≥ 0

∫ ∞

R

f(t, y) dy ≤
∫ ∞

R

yf(t, y) dy ≤ ρ/R.

Near 0 we can calculate as follows: call χ := χ(0,R), and note that χ(y+ y′)−χ(y)−
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χ(y′) ≤ 0 for y, y′ > 0, so 〈C(f), χ〉 ≤ 0. Hence we have:

d

dt

∫ R

0

f(y) =

∫ R

0

Ff(y) dy + 〈C(f), χ〉 ≤
∫ R

0

Ff(y) dy

≤
∫ R

0

∫ ∞

y

f(y′)b(y′, y) dy′ dy =

∫ ∞

0

f(y′)

∫ y′

0

b(y′, y)χ(y) dy dy′

≤
∫ S

0

f(y′)

∫ y′

0

b(y′, y) dy dy′ +

∫ ∞

S

f(y′)

∫ R

0

b(y′, y) dy dy′

≤ B2

∫ S

0

f(y′) dy′ +B1

∫ ∞

S

f(y′)

∫ R

0

y b(y′, y) dy dy′

≤ B2

∫ R

0

f(y′) dy′ +B2
ρ

R
+B1

∫ ∞

S

f(y′)

∫ R

0

y b(y′, y) dy dy′.

Integrating in time we have:

∫ R

0

f(t, y) ≤
∫ R

0

f 0(y) dy +

∫ t

0

(

B2

∫ R

0

f(s, y) dy + h(s)

)

ds,

where we have called

h(s) := B2
ρ

R
+B1

∫ ∞

S

f(s, y′)

∫ R

0

y b(y′, y) dy dy′.

Now, using proposition 5.4.10 for our R, S, there is some constant C(t) depending
on the allowed quantities such that

∫ t

0

h(s) ds ≤ C(t) for all t ≥ 0.

Gronwall’s lemma then finishes the proof.

Local integrability estimates

Our bounds on local integrability below will depend on the following quantity:

bx := sup
0<y′<y<x

b(y, y′) for x > 0. (5.31)

Lemma 5.4.15. Suppose that Λ : [0,+∞) → [0,+∞) is a C1 strictly convex func-
tion with Λ′ concave and Λ(0) = Λ′(0) = 0. Then,

xΛ′(y) ≤ Λ(x) + Λ(y) for all x, y ≥ 0.

Proof. Young’s inequality from theorem 9.4.3 gives that

xΛ′(y) ≤ Λ(x) + Λ∗(Λ′(y)
)

. (5.32)
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But, as Λ′ is concave,

Λ(y) =

∫ y

0

Λ′(s) ds ≥
∫ y

0

s
Λ′(s)

s
ds ≥ Λ′(y)

y

∫ y

0

s ds =
1

2
yΛ′(y).

Hence, yΛ′(y) ≤ 2Λ(y). Use this in (9.5) to obtain

Λ∗(Λ′(y)
)

= yΛ′(y) − Λ(y) ≤ Λ(y).

Putting this into (5.32) proves the lemma.

Proposition 5.4.16 (Local estimate in L1). Suppose that Φ : [0,+∞) → R is such
that y 7→ Φ(y)/y is concave and strictly increasing, and such that limy→0 Φ(y)/y = 0.
Suppose that Λ : [0,+∞) → [0,+∞) is a C1 strictly convex function with Λ′ concave
and Λ(0) = Λ′(0) = 0, such that

Λ′(by) ≤ 1 +
Φ(y)

y
for y > 0.

Take R > 0. Define bx as in (5.31), B1 as in (5.29) and

K1 :=

∫ ∞

0

Λ(f 0(y)) dy (5.33)

K0 :=

∫ ∞

0

Φ(y)f 0(y) dy. (5.34)

Then for all t ≥ 0 there is a constant C(t) which depends only on t, R, ρ, A (from
(5.12)), by, B1 (with S := 2R), K1 and K0, such that

∫ R

0

Λ(f(t, y)) dy ≤ C(t) for t ≥ 0.

Proof of proposition 5.4.16. Call φ(y) := Λ′(f(y)) for 0 < y < R and 0 otherwise,
and write

d

dt

∫ R

0

Λ
(

f(t, y)
)

dy =

∫ ∞

0

f(t, y)F ∗φ(y) dy + 〈C(f(t)), φ〉 .

Step 1: bound for the fragmentation part.

We have:

∫ ∞

0

f(t, y)F ∗φ(y) dy ≤
∫ ∞

0

f(y)

∫ R

0

Λ′(f(y′)
)

b(y, y′) dy′ dy

Thanks to the previous lemma

Λ′(f(y′)
)

b(y, y′) ≤ Λ
(

f(y′)
)

+ Λ
(

b(y, y′)
)

,
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so we can write

∫ ∞

0

f(y)

∫ R

0

Λ′(f(y′))b(y, y′) dy′ dy

≤
∫ ∞

0

f(y)

∫ R

0

Λ
(

f(y′)
)

dy′ dy +

∫ ∞

0

f(y)

∫ R

0

Λ
(

b(y, y′)
)

dy′ dy

=: I1 + I2.

The first integral, I1, is easy to estimate:

I1 ≤ ‖f‖1

∫ R

0

Λ(f(y)) dy. (5.35)

For the second one, use that Λ(x) ≤ xΛ′(x) for all x ≥ 0:

I2 ≤
∫ ∞

0

f(y)Λ′ (by)

∫ R

0

b(y, y′) dy′ dy

≤ B1

∫ ∞

0

f(y)
(

1 +
Φ(y)

y

)

∫ R

0

y′ b(y, y′) dy′ dy =: u(t). (5.36)

Note that the integral of u on (0, t) for t > 0 was bounded in corollary 5.4.11, and
that the bound is allowed here (in particular, B0 ≤ 2Rb2R).
Step 2: bound for the coagulation part.

For the coagulation part we can keep only the positive term. Calling χ := χ(0,R),

〈C(f(t)), φ〉

≤ 1

2

∫ ∞

0

∫ ∞

0

a(y, y′)f(y)f(y′)χ(y + y′) Λ′(f(y + y′)) dy dy′

≤ 1

2
A(1 + 2R)

∫ R

0

∫ R

0

f(y)f(y′)Λ′(f(y + y′))χ(y + y′) dy dy′

Using lemma 5.4.15 we have that f(y) Λ′(f(y + y′)) ≤ Λ(f(y)) + Λ(f(y + y′)), so

〈C(f(t)), φ〉 ≤ 1

2
A(1 + 2R)

∫ R

0

∫ R

0

Λ(f(y))f(y′) dy dy′

+
1

2
A(1 + 2R)

∫ R

0

∫ R

0

f(y′)Λ(f(y + y′))χ(y + y′) dy dy′. (5.37)

For the first integral we can write

∫ R

0

∫ R

0

Λ(f(y))f(y′) dy dy′ =

∫ R

0

f(y) dy

∫ R

0

Λ(f(y)) dy

≤ ‖f‖1

∫ R

0

Λ(f(y)) dy,
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and for the second one,

∫ R

0

∫ R

0

f(y′)Λ(f(y + y′))χ(y + y′) dy dy′

=

∫ R

0

f(y′)

∫ R+y′

y′

Λ(f(y))χ(y) dy dy′

≤
∫ R

0

f(y′) dy′
∫ R

0

Λ(f(y)) dy ≤ ‖f‖1

∫ R

0

Λ(f(y)) dy.

So from (5.37) we have

〈C(f(t)), φ〉 ≤ A(1 + 2R) ‖f(t)‖1

∫ R

0

Λ(f(y)) dy.

Thanks to proposition 5.4.14 (taking S := 2R), there is an allowed constant C(t)
such that

‖f(t)‖1 ≤ C(t) for t ≥ 0

(note that the constant B2 from (5.30) is bounded by 2R b2R). With this and (5.35),
(5.36) we finally get

∫ R

0

yΛ(f(t, y)) dy

≤
∫ R

0

yΛ(f 0(y)) dy +

∫ t

0

(

C(t)

∫ R

0

yΛ(f(s, y)) dy+ u(s)

)

ds

for some constant C(t) ≥ 0 that depends only on the allowed quantities. Also, the
integral of u on (0, t) for t > 0 is bounded by the constants in the statement, as
proved in corollary 5.4.11. Thus, Gronwall’s lemma proves that for some (other)
allowed constant C(t) we have

∫ R

0

Λ(f(t, y)) dy ≤ C(t) for t ≥ 0.

5.4.3. Weak continuity estimates

Take a function Φ : (0,+∞) → (0,+∞) which is continuous, positive and such
that limy→∞ Φ(y) = +∞, and take also T,R0 > 0. Call

CF (R) :=

∫ T

0

∫ ∞

R

Φ(y)f(t, y)

∫ R

0

y′b(y, y′) dy′ dy dt for R > 0. (5.38)
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Also, call
B(δ, R) := sup

y∈(δ,R)

β(y) for 0 < δ < R.

Take constants α < β with β > 0, and A0 > 0 such that

a(y, y′) ≤ A0(y
α(y′)β + yβ(y′)α) for y, y′ > 0, (5.39)

Take a number m < 0 and call

CC :=

∫ T

0

∫ 1

0

∫ 1

0

yma(y, y′)f(t, y)f(t, y′)y y′ dy dy′ dt. (5.40)

Proposition 5.4.17. Assume the conditions above, and take φ ∈ Cc. Then the
function

G(t) :=

∫ ∞

0

φ(y)f(t, y) dy for t ∈ [0, T )

is continuous, with a modulus of continuity which depends only on φ, CF , CC, A0,
B and ρ. This is: for each t ∈ [0, T ) and ǫ > 0 there is a δ > 0 which depends only
on t, ǫ and the above quantities, such that if |h| ≤ δ and t+ h ∈ [0, T ), then

|G(t) −G(t+ h)| ≤ ǫ.

Proof. Equivalently, we will prove that for given t, ǫ we can find δ > 0 such that if
|h| ≤ δ,

∣

∣

∣

∣

∫ t+h

t

d

ds
G(s) ds

∣

∣

∣

∣

≤ ǫ. (5.41)

The time derivative of G is:

d

dt

∫ ∞

0

φ(y)f(y) dy =

∫ ∞

0

f(y)

∫ y

0

φ(y′)b(y, y′) dy′ dy −
∫ ∞

0

f(y)φ(y)β(y) dy

+
1

2

∫ ∞

0

∫ ∞

0

a(y, y′)f(y)f(y′) (φ(y + y′) − φ(y) − φ(y′)) dy dy′.

Take r, R > 0 so that the support of φ is contained on (r, R). We can bound
uniformly the absolute value of the second term:

∫ ∞

0

f(y)φ(y)β(y) dy ≤ 1

r
‖φ‖∞ ρB(r, R),

For the first term, fix t ∈ [0, T ) and ǫ > 0, and let us find δ such that (5.41) holds.
As limy→∞ Φ(y) = +∞ (see (5.38)), we can choose S > R > 0 which only depends
on ǫ and CF such that

∫ T

0

∫ ∞

S

f(y)

∫ R

0

y′b(y, y′) dy′ dy ≤ ǫ.
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Then, taking δ ≤ ǫ/B(r, S) and h such that |h| ≤ δ and t+ h ∈ [0, T ),

∣

∣

∣

∣

∫ t+h

t

∫ ∞

0

f(s, y)

∫ y

0

y′φ(y′)b(y, y′) dy′ dy ds

∣

∣

∣

∣

≤ ‖φ‖∞
∣

∣

∣

∣

∫ t+h

t

∫ S

r

y f(s, y)β(y) dy ds

∣

∣

∣

∣

+‖φ‖∞
∣

∣

∣

∣

∫ t+h

t

∫ ∞

S

f(s, y)

∫ R

0

y′b(y, y′) dy′ ds

∣

∣

∣

∣

≤ ‖φ‖∞ δ ρB(r, S) + ‖φ‖∞ ǫ ≤ ‖φ‖∞ (ρ+ 1)ǫ,

which can be made as small as desired by choosing ǫ correctly.
For the third term we can do something similar: fix t ∈ [0, T ) and ǫ > 0. Thanks

to (5.40), we can find τ > 0 which depends only on ǫ, R and CC such that

∫ T

0

∫ τ

0

∫ R

0

a(y, y′)f(t, y)f(t, y′)y y′ dy dy′ dt ≤ ǫ.

Also, note that the integrand of the third term is 0 when y ≥ R. Take δ > 0 such
that

∫ R

τ

f(s, y)yα+1 dy ≤ ǫ/δ for all s ∈ [0, T )

(such a δ depends only on α, τ , R and ρ, thanks to the uniform bound on the mass)
and take any 0 < h < δ with t+ h ∈ [0, T ). Then, using lemma 4.3.4 and (5.39),

∣

∣

∣

∣

∫ t+h

t

∫ ∞

0

∫ ∞

0

a(y, y′)f(s, y)f(s, y′) (φ(y + y′) − φ(y) − φ(y′)) dy dy′ ds

∣

∣

∣

∣

≤ C

∫ t+h

t

∫ τ

0

∫ R

0

a(y, y′)f(t, y)f(t, y′)y y′ dy dy′ dt

+ C A0

∫ t+h

t

∫ R

τ

∫ R

τ

f(s, y)f(s, y′)yα+1(y′)β+1 dy dy′ ds

≤ Cǫ+ C

∫ t+h

t

∫ R

τ

f(s, y)yα+1 dy ds

≤ Cǫ+ Cδ sup
s∈[0,T )

∫ R

τ

f(s, y)yα+1 dy ≤ 2Cǫ.

One can follow the same argument, with the obvious modifications, for h < 0.

5.4.4. Regularization of moments of order less than 1 near

y = 0

In order to study the regularity of solutions near y = 0 one needs to estimate the
behavior of moments less than 1, as we already know that the first moment, which
represents the total mass, is constant in time and depends only on the first moment
of the initial data (at least for the regular solutions used in this section).
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The bounds below apply to a solution in the conditions of hypotheses 5.4.1 (at
the beginning of section 5.4), with the following additional requirements on the form
of the coagulation and fragmentation coefficients:

Hypothesis 5.4.18. There are 0 < ǫa < 1 < Ra, 0 < ǫb < 1 < Rb such that

a has support contained in {(y, y′) | ǫa ≤ y, y′}
b has support contained in {(y, y′) | ǫb ≤ y′ < y − ǫb}.

There are constants K ′
a > 0 and α < β ≤ 1 ∈ R such that

a(y, y′) ≤ K ′
a(y

α(y′)β + (y′)αyβ)

for all y, y′ > 0. We always denote λ := α + β.

There are γ ∈ R, 0 < k0 < 1, and Kb, K
′
b > 0 such that the fragmentation

coefficient b satisfies

b(y, y′) ≤ K ′
b φγ(y)

1

y

(

y′

y

)−1−k0

(5.42)

for all 0 < y′ < y, where for y > 0 we set

φγ(y) = yγ if γ ≤ 0,

φγ(y) = min{yγ, 1} if γ > 0.

We assume that the initial data f 0 has support contained in [ǫb,+∞). As a
consequence (see lemma 5.4.2), the support of f(t) is contained in [ǫb,+∞)
for all t ≥ 0.

Remark 5.4.19. Observe that the hypotheses on b imply that for each 0 < R0 < S0

and k > k0 there is some constant Bk > 0 which depends on k, R0, S0 and K ′
b such

that
∫ y

0

(y′)kb(y, y′) dy′ ≤ Bky
kβ(y) for all y ≤ S0. (5.43)

∫ R0

0

(y′)kb(y, y′) dy′ ≤ Bk

∫ R0

0

y′b(y, y′) dy′ for all y ≥ S0. (5.44)

These bounds will be useful below.

Coagulation is stronger near y = 0

In order to prove a regularizing effect on moments less than 1 when coagulation
is stronger than fragmentation near y = 0 we need some further assumptions:
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Hypothesis 5.4.20. In addition to 5.4.18 and 5.4.1, we assume that ǫa ≤ ǫb and
that there are constants Ka > 0 and Ra > 1 such that

Ka(y
α(y′)β + (y′)αyβ) ≤ a(y, y′)

for all ǫb < y, y′ < Ra.
We also assume that β − α < 1.

Take 0 < k < 1 and a function ψ which behaves as yk near 0. We want to
estimate

∫∞
0
ψ(y)f(y) dy. Let us calculate its time derivative:

d

dt

∫ ∞

0

ψ(y)f(y) dy =

1

2

∫ ∞

0

∫ ∞

0

a(y, y′)f(y)f(y′)(ψ(y + y′) − ψ(y) − ψ(y′)) dy dy′

+

∫ ∞

0

f(y)F ∗ψ(y) dy. (5.45)

To find a good bound for the coagulation part (the first on the right hand side),
we use a technique very similar to that in lemma 3.1 of [34]: we write (ψ(y + y′) −
ψ(y) − ψ(y′)) as a sum (actually an integral) of other functions, interchange the
integrals, and finally use the Cauchy-Schwartz inequality on the resulting expression;
this gives a bound which does not seem to follow from an inequality of the kind
ψ(y+ y′)−ψ(y)−ψ(y′) < h(y, y′) for any h. Let us write, for a suitable function φ,

ψ(y) =

∫ ∞

0

φ(A)φy(A) dA, (5.46)

where

φy(A) :=











ym if y < A ≤ 1

Am if A < y ≤ 1

0 if 1 < y,

for somem ∈ R. A formal calculation, having in mind that we want to use a function
ψ that behaves as yk near y = 0, suggests that we take

φ(y) :=

{

yk−m−1 if y ≤ 1

0 if y > 1.

Choose any m > k; then we can calculate ψ from (5.46): for y ≤ 1,

ψ(y) =

∫ ∞

0

φ(A)φy(A) dA =

∫ y

0

Ak−1 dA+ ym

∫ 1

y

Ak−m−1 dA

=
1

k
yk +

1

k −m
ym(1 − yk−m) =

(

1

k
+

1

m− k

)

yk − 1

m− k
ym,
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while ψ(y) = 0 for y > 1. One can see then that for y < 1,

C1y
k ≤ ψ(y) ≤ C2y

k,

with C1 := 1
k

and C2 :=
(

1
k

+ 1
m−k

)

, which are positive finite constants.

Note that,

φy+y′(A) − φy(A) − φy′(A) ≤
{

−Am if 1 ≥ y, y′ ≥ A

0 otherwise.

With this we can estimate the coagulation part from (5.45):

∫ ∞

0

∫ ∞

0

a(y, y′)f(y)f(y′)(ψ(y + y′) − ψ(y) − ψ(y′)) dy dy′

=

∫ 1

0

φ(A)

∫ ∞

0

∫ ∞

0

a(y, y′)f(y)f(y′)(φy+y′(A) − φy(A) − φy′(A)) dy dy′ dA

≤ −
∫ A

0

φ(A)Am

∫ 1

A

∫ 1

A

a(y, y′)f(y)f(y′) dy dy′ dA

≤ −Ka

∫ 1

0

φ(A)Am

(
∫ 1

A

f(y)yλ/2 dy dA

)2

(5.47)

Here we have used that a(y, y′) ≥ Ka(yy
′)λ/2 for ǫ ≤ y, y′ ≤ R and that

a(y, y′)f(y)f(y′) ≥ Ka(yy
′)λ/2f(y)f(y′) for all y, y′ ≤ 1.

Note that ǫb does not appear here, as the support of f is contained in [ǫb,+∞).

Take two functions g1, g2 to be chosen later; the Cauchy-Schwartz inequality
implies that:

∫ 1

0

g1(A)g2(A)

∫ 1

A

f(y)yλ/2 dy dA ≤
(
∫ 1

0

g2
1(A) dA

)1/2
(

∫ 1

0

g2
2(A)

(
∫ 1

A

f(y)yλ/2 dy

)2

dA

)1/2

.

If we want to compare this to our previous equation, one must take g2
2(A) = φ(A)Am,

or

g2(A) := A
k−1

2 χ[A<1].

If we choose g1 to be a power near 0, it must have an exponent greater than −1/2, as

we need it to be square-integrable. Then, take any δ > 0 and g1(A) := A− 1

2
+δχ[A<1].
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Then we can continue from 5.47 and write

∫ ∞

0

∫ ∞

0

a(y, y′)f(y)f(y′)
(

ψ(y + y′) − ψ(y) − ψ(y′)
)

dy dy′

≤ Ka

(
∫ 1

0

g2
1(A) dA

)−1(∫ 1

0

g1(A)g2(A)

∫ 1

A

f(y)yλ/2 dy dA

)2

=: KaC3

(
∫ 1

0

g1(A)g2(A)

∫ 1

A

f(y)yλ/2 dy dA

)2

. (5.48)

The latter part is

∫ 1

0

g1(A)g2(A)

∫ 1

A

f(y)yλ/2 dy dA =

∫ 1

0

f(y)yλ/2

∫ y

0

g1(A)g2(A) dAdy, (5.49)

and, for y < 1,

∫ y

0

g1(A)g2(A) dA =

∫ y

0

A
k
2
−1+δ dA =

2

k + 2δ
y

k
2
+δ =: C4y

k
2
+δ. (5.50)

Then, from (5.48) and using (5.49)–(5.50) we have

∫ ∞

0

∫ ∞

0

a(y, y′)f(y)f(y′)
(

ψ(y + y′) − ψ(y) − ψ(y′)
)

dy dy′

≤ −KaC3C
2
4

(
∫ 1

0

f(y)y
λ+k

2
+δ dy

)2

. (5.51)

Now, let us estimate the fragmentation part from (5.45). In addition to 0 < k <
1, we suppose that k ≥ k0 and calculate as follows:

∫ ∞

0

f(y)F ∗ψ(y) dy ≤
∫ ∞

0

f(y)

∫ y

0

ψ(y′)b(y, y′) dy′ dy

≤ C2

∫ S

0

f(y)

∫ y

0

(y′)kb(y, y′) dy′ dy + C2

∫ ∞

S

f(y)

∫ 1

0

(y′)kb(y, y′) dy′ dy, (5.52)

where S > 1 is some number. The second part can be bounded thanks to our bound
on the fragmentation coefficient in eq. (5.42) and (5.44) for R0 = 1, S0 = S:

∫ ∞

S

f(y)

∫ 1

0

(y′)kb(y, y′) dy′ dy ≤ Bk

∫ ∞

S

f(y)

∫ 1

0

y′b(y, y′) dy′ dy

≤ CBk

∫ ∞

S

f(y) dy ≤ Cρ. (5.53)



98 CHAPTER 5. EXISTENCE OF SOLUTIONS

for some constant C > 0 which depends only on the constants in the bound (5.42).
As for the first part, we can use (5.43) (again for S0 = S) to obtain
∫ S

0

f(y)

∫ 1

0

(y′)kb(y, y′) dy′ dy

≤ Bk

∫ S

0

f(y)ykβ(y) dy ≤ BkK
′
b

∫ S

0

f(y)yk+γ dy

≤ BkK
′
b

∫ 1

0

f(y)yk+γ dy +BkK
′
bCρ, (5.54)

where C = max{1, Sk+γ−1}. Gathering the latter estimates one has
∫ ∞

0

f(y)F ∗ψ(y) dy ≤ C2Bk K
′
b

∫ 1

0

f(y)yk+γ dy + C2Bk K
′
bCρ+ C.

With this and (5.45), (5.51) we finally obtain

d

dt

∫ ∞

0

ψ(y)f(y) dy ≤ −KC

(
∫ 1

0

f(y)y
λ+k
2

+δ dy

)2

+KF

∫ 1

0

f(y)yk+γ dy +K,

where KC > 0, KF , K ≥ 0 are the quantities obtained in the previous estimates.

Proposition 5.4.21. Assume that a, b, f satisfy the conditions in hypothesis 5.4.18
(in addition to hypothesis 5.4.1, which is assumed to hold in all of our estimates).
Take k0 ≤ k < 1 and δ > 0 (k0 appears in hypotheses 5.4.18).

Then, there is a function ψ : (0,+∞) → (0,+∞) such that ψ(y) = 0 when y ≥ 1
and

C1y
k ≤ ψ(y) ≤ C2y

k for all 0 < y < 1

for some constants C1, C2 > 0 which depend on k, and there are constants KC > 0,
K,KF ≥ 0 which depend only on k, δ, ρ, Ka, K

′
b, λ and γ (from hypothesis 5.4.18),

such that

d

dt

∫ ∞

0

ψ(y)f(y) dy ≤ −KC

(
∫ 1

0

f(y)y
λ+k
2

+δ dy

)2

+KF

∫ 1

0

f(y)yk+γ dy +K,

for almost all t > 0.

Proposition 5.4.22. Assume 5.4.1, 5.4.18 and 5.4.20, and suppose that

γ >
λ− 1

2
.

Then there exist k < 1, θ < α+ 1 and constants C,C(t) > 0 that depend only on ρ,
Ka, K

′
b, λ, γ and k0, such that

∫ 1

0

f(s, y)yk dy ≤ max

{

C

t
, C

}

∫ t

0

(
∫ 1

0

f(s, y)yθ dy

)2

ds ≤ C(t)

for all t > 0.
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Proof. We can take δ > 0 and k0 < k < 1 such that k > λ and

λ+ k

2
+ δ < k + γ.

Actually, we can choose k such that, additionally,

λ+ k

2
+ δ < α + 1,

as
λ+ 1

2
< α + 1 ⇔ α + β + 1 < 2α+ 2 ⇔ β − α < 1,

which holds by hypothesis.
Call

θ :=
λ+ k

2
+ δ.

Then, as θ < k + γ, we use the previous proposition to obtain that

d

dt

∫ ∞

0

ψ(y)f(y) dy ≤ −KC

(
∫ 1

0

f(y)yθ dy

)2

+KF

∫ 1

0

f(y)yθ dy +K,

where ψ is the function given there. Now, suppose that the following holds:

∫ 1

0

f(y)yθ dy > max

{

4KF

KC
,

√

4KF

KC
K

}

.

Then we have

∫ 1

0

f(y)yθ dy ≤ KC

4KF

(
∫ 1

0

f(y)yθ dy

)2

K ≤ KC

4KF

(
∫ 1

0

f(y)yθ dy

)2

,

so, when
∫ 1

0
f(y)yθ dy > 4KF

KC
, our differential inequality implies that

d

dt

∫ ∞

0

ψ(y)f(y) dy ≤ −KC

2

(
∫ 1

0

f(y)yθ dy

)2

≤ −C
(
∫ 1

0

f(y)ψ(y) dy

)2

. (5.55)

(Note that θ < k, as k > λ.) In particular, knowing that for some allowed constant

C > 0 one has that
∫∞
0
ψ(y)f(y) dy ≤ C

∫ 1

0
f(y)yθ dy, we see that the above equation

holds when
∫∞
0
ψ(y)f(y) dy > KC

4 C KF
. By a Gronwall-type estimate, for some (other)

allowed constant C > 0, we have

∫ ∞

0

ψ(y)f(t, y) dy ≤ max

{

C

t
, C

}

for t ≥ 0.
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Now take k′ with k < k′ < 1. By interpolation with the moment of order one,
we know that the moment of order k′ is integrable on (0, t) for any t > 0, and its
integral is bounded above by some allowed constant. So, from equation (5.55) we
obtain that

∫ t

0

(
∫ 1

0

f(s, y)yθ dy

)2

ds ≤ C(t)

for some allowed constant C(t).

Fragmentation is stronger near y = 0

There is also a regularization near zero when the fragmentation is strong enough,
which can be seen by studying the behavior of moments greater than 1. For this,
we assume the following:

Hypothesis 5.4.23. In addition to 5.4.18 and 5.4.1, we assume that 2ǫb < ǫa and
that there are constants Kb > 0 and Rb > 1 such that

Kb φγ(y)
1

y

(

y′

y

)−1−k0

≤ b(y, y′)

for all ǫa < y′ < y − ǫa < Rb.

We will use the following lemma, which is a direct consequence of the inequalities
in proposition 11.1.2:

Lemma 5.4.24. Suppose that α ≤ β ∈ R such that β − α < 1, and take 1 < k <
2 − (β − α). Call λ := α + β. Then, there is a constant C > 0 such that

(yα(y′)β + (y′)αyβ)((y + y′)k − yk − (y′)k) ≤ C(yy′)
λ+k

2 for all y, y′ ≤ 1.

With this we can estimate the behavior of the moment of order k of a solution
to the coagulation-fragmentation equations. Take ψ(y) := yk for ǫa < y < 1 and
ψ(y) = 0 otherwise; then,

d

dt

∫ 1

0

ψ(y)f(y) dy ≤

1

2

∫ 1

0

∫ 1

0

a(y, y′)f(y)f(y′)(ψ(y + y′) − ψ(y) − ψ(y′)) dy dy′

+

∫ ∞

0

f(y)F ∗ψ(y) dy. (5.56)
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We can estimate the coagulation part as follows, using the previous lemma:

∫ 1

0

∫ 1

0

a(y, y′)f(y)f(y′)(ψ(y + y′) − ψ(y) − ψ(y′)) dy dy′

≤ K ′
a

∫ 1

ǫa

∫ 1

ǫa

f(y)f(y′)(yα(y′)β + (y′)αyβ)((y + y′)k − yk − (y′)k) dy dy′

≤ C

∫ 1

ǫa

∫ 1

ǫa

f(y)f(y′)(yy′)
λ+k

2 dy dy′ = C

(
∫ 1

ǫa

f(y)y
λ+k
2 dy

)2

, (5.57)

where C depends only on K ′
a, α, β and k. For the fragmentation part we have:

∫ ∞

0

f(y)F ∗ψ(y) dy =

∫ ∞

1

f(y)

∫ 1

0

ψ(y′)b(y, y′) dy′ dy

+

∫ 1

0

f(y)

∫ y

0

ψ(y′)b(y, y′) dy′ dy −
∫ 1

0

f(y)ψ(y)

∫ y

0

y′

y
b(y, y′) dy′ dy. (5.58)

For the first term we can use an estimate similar to that in (5.52)–(5.53) to obtain

∫ ∞

1

f(y)

∫ 1

0

ψ(y′)b(y, y′) dy′ dy ≤ C ρ, (5.59)

and for the last two terms in the sum in (5.58), we have:

∫ 1

0

f(y)

∫ y

0

ψ(y′)b(y, y′) dy′ dy −
∫ 1

0

f(y)ψ(y)

∫ y

0

y′

y
b(y, y′) dy′ dy.

≤
∫ 1

ǫa

f(y)

∫ y−ǫb

ǫb

(y′)kb(y, y′) dy′ dy −
∫ 1

ǫa

f(y)yk

∫ y−ǫb

ǫb

y′

y
b(y, y′) dy′ dy

= −
∫ 1

ǫa

f(y)yk

∫ y−ǫb

ǫb

(

y′

y
− (y′)k

yk

)

b(y, y′) dy′ dy

≤ −Kb

∫ 1

ǫa

f(y)yk+γ

∫ (y−ǫb)/y

ǫb/y

(

z − zk
)

z−1−k0 dz dy

≤ −Kb

∫ 1

ǫa

f(y)yk+γ

∫ (ǫa−ǫb)/ǫa

ǫb

(

z − zk
)

z−1−k0 dz dy = −KbC

∫ 1

ǫa

f(y)yk+γ dy

(5.60)

for some constant C > 0 that depends only on ǫa, ǫb, k and k0. Finally we obtain
from (5.56) and (5.57)–(5.60):

d

dt

∫ 1

ǫa

ykf(y) dy ≤ C

(
∫ 1

ǫa

f(y)y
λ+k
2 dy

)2

− C ′
∫ 1

ǫa

f(y)yk+γ dy + C ′′.
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Proposition 5.4.25. Assume hypotheses 5.4.1, 5.4.18 and 5.4.23. Then there are
constants k > 1, C ′ > 0 and C,C ′′ ≥ 0 that depend only on K ′

a, Kb, α, β, γ, k0 and
ρ, such that

d

dt

∫ 1

ǫa

ykf(y) dy ≤ C

(
∫ 1

ǫa

f(y)y
λ+k
2 dy

)2

− C ′
∫ 1

ǫa

f(y)yk+γ dy + C ′′.

Proposition 5.4.26. Assume hypotheses 5.4.1, 5.4.18 and 5.4.23, and suppose that
γ < λ−1. There is m < α+1 and a constant C(t) that depends only on K ′

a, Kb, λ, γ
and ρ, such that

∫ t

0

∫ 1

ǫa

f(s, y)ym dy ds ≤ C(t) for all t > 0.

Proof. By interpolation in the previous proposition, there are allowed constants
C ′ > 0 and C,C ′′ ≥ 0 such that

d

dt

∫ 1

ǫa

ykf(y) dy ≤ C

∫ 1

ǫa

f(y)yλ+k−1 dy − C ′
∫ 1

ǫa

f(y)yk+γ dy + C ′′.

As γ < λ− 1, again by interpolation we have

d

dt

∫ 1

ǫa

ykf(y) dy ≤ C

∫ 1

ǫa

f(y)yλ+k−1 dy − C ′
(
∫ 1

ǫa

f(y)yλ+k−1 dy

)θ

+ C ′′,

for some θ > 1. Reasoning as in the previous section, there are allowed constants
C1, C

′
1 ≥ 0 such that

d

dt

∫ 1

ǫa

ykf(y) dy ≤ −C1

(
∫ 1

ǫa

f(y)yλ+k−1 dy

)θ

when

∫ 1

ǫa

f(y)yλ+k−1 dy ≥ C ′
1.

In particular, as λ+ k − 1 < k and hence
∫ 1

ǫa
f(y)yλ+k−1 dy ≥

∫ 1

ǫa
f(y)yk dy,

∫ 1

ǫa

ykf(t, y) dy ≤ max

{
∫ 1

ǫa

ykf 0(y) dy, C ′
1

}

for all t > 0

and, for some allowed constant C ≥ 0,

∫ t

0

(
∫ 1

ǫa

f(s, y)yλ+k−1 dy

)θ

ds ≤ C + Ct for all t > 0.

Choosing k so that λ + k − 1 < α + 1 (which can always be done, as we assume
β < 1), we obtain the result.
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5.5. Solutions with finite mass

In this section we want to prove existence of solutions for the coagulation-frag-
mentation equation when the total mass

∫∞
0
yf(y) dy is finite, relaxing the usual

assumption that the number of clusters
∫∞
0
f(y) dy is bounded.

We gather our hypotheses below, which include the assumption that the map
z 7→ z a(z, y′) is increasing for all y′ > 0.

Hypothesis 5.5.1. Throughout this section we assume the coefficients a, b satisfy
the following:

The fragmentation coefficient b satisfies (3.4), and is bounded on {(y, y′) | 0 <
y′ < y < R} for all R > 0.

The coagulation coefficient a : (0,+∞) × (0,+∞) → [0,+∞) is a measurable
symmetric function such that a(y, y′) ≤ A(1+y+y′) for some constant A > 0,
and

z 7→ z a(z, y′) is increasing for all y′ > 0.

We also assume that the initial condition f 0 : (0,+∞) → R is a nonnegative function
in L̇1

1.

Below we will write

ρ :=

∫ ∞

0

y f 0(y) dy (5.61)

bx := sup
0<y′<y<x

b(y, y′) for x > 0, b0 := 0 (5.62)

We will prove the following theorem:

Theorem 5.5.2. Assume the above hypotheses on the coefficients a, b, and take a
nonnegative function f 0 ∈ L̇1

1. Then for all 0 < T ≤ +∞ there is a solution f to the
coagulation-fragmentation equations (5.1)–(5.2) with initial data f 0 (in the sense
of definition 5.1.1), and such that f ∈ L∞([0, T ), L̇1

1). In addition, this solution
conserves the mass.

The strategy goes as usual: we will prove that a solution can be obtained as a
certain limit of solutions to a regularized problem. The solutions to this simpler
problem are of the kind obtained in section 5.2, and we will need some estimates
on their behavior in order to be able to pass to the limit in (5.9). These estimates
should depend only on the properties of the coefficients or the initial condition we
want to use, and in particular should not depend on the regularization used.
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5.5.1. Passing to the limit

We define a sequence of approximations as follows: for y > y′ > 0 we set

bn(y, y′) :=

{

b(y, y′) if 1
n
< y′ < y − 1

n
< n

0 otherwise.

In the same way, we set for y, y′ > 0:

an(y, y′) :=

{

a(y, y′) if 1
n
< y, y′ < n

0 otherwise.

We also define a regularization of the initial condition: for y > 0,

f 0
n(y) :=

{

min{f 0(y), n} if 1
n
< y < n

0 otherwise.

Observe that the coefficients an, bn satisfy the hypotheses in theorem 5.2.1 and also
the stronger hypothesis 5.4.1 from section 5.4; in particular, all estimates from this
section apply to the regularized solution defined below.

Lemma 5.5.3. For any ψ : (0,+∞) × (0,+∞) → R which is in L∞ and any
compact set K ⊆ [0,+∞),

∫ y

0

ψ(y′)bn(y, y′) dy′ →
∫ y

0

ψ(y′)b(y, y′) dy′ uniformly for y ∈ K.

In particular, if βn is the total fragmentation rate associated to the fragmentation
coefficient bn, then applying the above for ψ(y, y′) := y′/y whenever 0 < y′ < y ∈ K
and ψ ≡ 0 otherwise,

βn → β uniformly in K.

Proof. As b is bounded in K ×K by some constant C, we have the following for a
large enough n and any y ∈ K:

∣

∣

∣

∣

∫ y

0

ψ(y′)b(y, y′) dy′ −
∫ y

0

ψ(y′)bn(y, y′) dy′
∣

∣

∣

∣

=

∣

∣

∣

∣

∫ y

0

ψ(y′)
(

b(y, y′) − bn(y, y′)
)

dy′
∣

∣

∣

∣

≤ ‖ψ‖∞
∫ 1/n

0

b(y, y′) dy′ ≤ ‖ψ‖∞ C
1

n
→ 0 as n→ ∞.
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Call Fn, Cn the fragmentation and coagulation operators associated to bn, an,
respectively. We know from theorem 5.2 that there is a solution fn of the coagula-
tion-fragmentation equations with coefficients an, bn and initial condition f 0

n, in the
sense stated there. We intend to prove that the sequence {fn} converges in a certain
sense to a solution of the coagulation-fragmentation equations with coefficients a and
b and initial data f 0. For this we will prove that, given a number 0 < T < +∞, the
conditions of the Dunford-Pettis theorem (more precisely, the version in theorem
9.2.3) hold for this sequence with the measure λ⊗ (y dy) on [0, T ]× (0,+∞), where
λ is the Lebesgue measure on [0, T ]. For this we have to show that:

The sequence {fn} is bounded in this space; this is,

∫ T

0

∫ ∞

0

y fn(t, y) dy dt is uniformly bounded in n (5.63)

(recall that the fn are nonnegative).

The integral of y fn(y) on small sets contained in a given compact set tends
to zero uniformly in n,

and the integral of yfn(t, y) on sets of the form [0, T ]× (N,+∞) tends to zero
when N → ∞ uniformly in n.

Equation (5.63) holds because of mass conservation: we know that for all n ≥ 1,

∫ T

0

∫ ∞

0

y fn(t, y) dy dt = T

∫ ∞

0

y f 0
n(y) dy ≤ Tρ. (5.64)

Below we prove the remaining points.

Lemma 5.5.4. There is a C∞ function Φ : [0,+∞) → [0,+∞) such that y 7→
Φ(y)/y is concave, limy→0 Φ(y)/y = 0, limy→∞ Φ(y)/y = +∞, Φ(y) ≤ y2 for y ≥ 0,
Φ(0) = 0 and

∫ ∞

0

Φ(y)f 0(y) dy < +∞.

Proof. This is just proposition 9.1.1 applied to f 0 and the measure y dy.

Lemma 5.5.5. Let Φ be the function from lemma 5.5.4. For all T > 0 the integral

∫ T

0

∫ ∞

0

fn(t, y)Φ(y) dy dt

is uniformly bounded in n.

Proof. Proposition 5.4.3 gives a bound for this moment, which depends only on
∫∞
0

Φ(y)f 0(y) dy (which is finite, as Φ was chosen as satisfying this), and quantities
which are uniformly bounded independently of n.
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Lemma 5.5.6. There is a C∞ function Λ : [0,+∞) → [0,+∞) which is strictly
convex, such that Λ′ is concave, Λ(0) = Λ′(0) = 0, limy→∞ Λ(y)/y = +∞, for which

∫ ∞

0

y Λ(f 0(y)) dy < +∞

and such that

Λ′(by) ≤ 1 +
Φ(y)

y
for all y > 0.

Proof. This Λ is given by proposition 9.1.2. The bound on Λ′ can be written as

Λ′(y) ≤ 1 +
Φ(h(y))

h(y)
for all y > 0, (5.65)

where h is the “inverse” of y 7→ by, defined as h(0) := 0 and

h(y) := sup{x ≥ 0 | bx < y} for y > 0.

Note that h is increasing, and that it becomes +∞ at some point if b is bounded. This
h satisfies that h(by) = y for all y ≥ 0, so (5.65) implies the bound in the statement.
In turn, we can satisfy (5.65) thanks to proposition 9.1.2 (see also the conditions in
proposition 9.1.1), as h(y) → ∞ when y → ∞ and hence Φ(h(y))/h(y) → ∞ when
y → ∞.

Lemma 5.5.7. For all t, R > 0 there is a constant C(t), which depends on them
increasingly, such that

∫ R

0

yΛ(fn(t, y)) dy ≤ C(t) for all n ≥ 1.

Proof. This is given by proposition 5.4.13.

Lemma 5.5.8. There is a nonnegative function f : [0,+∞) × (0,+∞) with

f ∈ L∞([0,+∞), L̇1
1)

and a subsequence of {fn} (which we denote also as {fn}) such that for every T > 0,

fn ⇀ f in L1([0, T ), L̇1
1) weakly.

In addition this function f conserves the mass:
∫∞
0
yf(t, y) dy =

∫∞
0
yf 0(y) dy for

almost all t > 0.

Proof. Take T > 0. Let us first find a subsequence of {fn} which converges weakly
in L1([0, T ), L̇1

1). This space is canonically identified with the space of integrable
functions on X := [0, T ] × [0,+∞) with the measure µ := λ ⊗ y dy, where λ is
the usual Lebesgue measure on [0, T ] (see theorem 10.2.1), so we can find such a
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subsequence by proving that {fn} satisfies the hypotheses of Dunford-Pettis’ the-
orem 9.2.3 in L1(X,µ): {fn} is bounded in this space, which is a consequence of
mass conservation (see (5.64)); by a standard argument, uniform local integrability
is given by lemma 5.5.7 and a uniform bound for the integral outside a compact
set is given by lemma 5.5.5. Hence, there is a subsequence of {fn} which converges
weakly to an f ∈ L1(X,µ). Then, repeating the argument for each T in a diverging
sequence and applying a usual diagonal argument we can find a subsequence of {fn}
(still denoted {fn}) and a function f : [0,+∞) → L̇1

1 such that fn converges to f
weakly in L1([0, T ), L̇1

1) for all T > 0.

To show that f ∈ L∞([0,∞), L̇1
1), note that for any compact K in [0,+∞) we

have, thanks to the weak convergence we have already proved, that

∫

K

∫ ∞

0

yf(t, y) dy dt = lim

∫

K

∫ ∞

0

yfn(t, y) dy dt = ρ |K| .

This proves that f ∈ L∞([0,∞), L̇1
1), and also mass conservation.

Lemma 5.5.9. The function f from lemma 5.5.8 is in C([0, T ], L̇1
1 − weak) for all

T > 0 and

fn → f in C([0, T ], L̇1
1 − weak).

Proof. We eventually want to apply proposition 9.3.1. For that, let us first prove
that for every φ ∈ C1

c [0,+∞) the sequence of functions given by

Gn(t) :=

∫ ∞

0

φ(y)yfn(t, y) dy

is equicontinuous on [0, T ]. Their time derivative is:

d

dt

∫ ∞

0

φ(y)yfn(y) dy =

∫ ∞

0

fn(y)

∫ y

0

y′φ(y′)b(y, y′) dy′ dy −
∫ ∞

0

fn(y)yφ(y)β(y) dy

+

∫ ∞

0

∫ ∞

0

a(y, y′)fn(y)fn(y
′)y (φ(y + y′) − φ(y)) dy dy′.

Take R > 0 so that the support of φ is contained on (0, R). We can bound uniformly
the absolute value of the last two terms:

∫ ∞

0

fn(y)yφ(y)β(y) dy ≤ ‖φ‖∞ ρB,

where B is an upper bound of β on (0, R). For the third term, note that the
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integrand is 0 when y ≥ R, so

∣

∣

∣

∣

∫ ∞

0

∫ ∞

0

a(y, y′)fn(y)fn(y
′)y (φ(y + y′) − φ(y)) dy dy′

∣

∣

∣

∣

≤
∫ ∞

R

∫ R

0

a(y, y′)fn(y)fn(y
′)yφ(y) dy dy′+

∫ R

0

∫ R

0

a(y, y′)fn(y)fn(y
′)y |φ(y + y′) − φ(y)| dy dy′

≤ ‖φ‖∞A

∫ ∞

R

(1 +R+ y′)fn(y′)

∫ R

0

yfn(y) dy dy
′ + (1 + 2R)A ‖φ‖C1 ρ

2

≤ ‖φ‖∞Aρ

(

1

R
ρ+ 2ρ

)

+ A ‖φ‖C1 (1 + 2R)ρ2

≤ A ‖φ‖C1 ρ
2(

1

R
+ 3 + 2R).

For the first term we can prove that for t ∈ [0, T ],

∫ t+h

t

∫ ∞

0

fn(y)

∫ y

0

y′φ(y′)b(y, y′) dy′ dy → 0 when h→ 0+

uniformly in n, and this would finally prove that the sequence of functions Gn defined
at the beginning of the proof is equicontinuous on [0, T ]. So take any ǫ > 0 and
choose S > R > 0 such that

∫ T+1

0

∫ ∞

S

f(y)

∫ S

0

y′b(y, y′) dy′ dy ≤ ǫ.

(This can be done thanks to lemma 5.5.5.) Then, taking 0 ≤ h ≤ ǫ/B, where B is
an upper bound of β on (0, S),

∫ t+h

t

∫ ∞

0

fn(y)

∫ y

0

y′φ(y′)b(y, y′) dy′ dy

≤ ‖φ‖∞
∫ t+h

t

∫ S

0

y fn(y)β(y) dy+ ‖φ‖∞
∫ t+h

t

∫ ∞

S

fn(y)

∫ S

0

y′b(y, y′) dy′

≤ ‖φ‖∞ hρB + ‖φ‖∞ ǫ

≤ ‖φ‖∞ (ρ+ 1)ǫ,

which can be made as small as desired by choosing ǫ correctly.
Now we can apply Ascoli-Arzelà’s theorem and conclude that there is a subse-

quence of Gn which converges uniformly on [0, T ] (note that the sequence is obvi-
ously uniformly bounded by ‖φ‖∞ ρ). However, we already knew that {fn} converges
weakly in L1([0, T ), L̇1

1); this implies that for all ψ ∈ L∞(0, T ),

∫ T

0

ψ(t)

∫ ∞

0

φ(y)y fn(y) dy dt→
∫ T

0

ψ(t)

∫ ∞

0

φ(y)y f(y) dy dt.
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This means that if we define

G(t) :=

∫ ∞

0

φ(y)yf(t, y) dy

then
Gn → G weakly inL1(0, T ).

Then the above subsequence of Gn, which is known to converge uniformly, must
converge to G. An extension of the above reasoning proves that every subsequence
of Gn has a subsequence which converges uniformly to G; this implies that

Gn → G uniformly on (0, T ).

Then the sequence fn and the function f are in the conditions of proposition 9.3.1
(lemma 5.5.7 ensures that fn(t) is in a fixed weakly compact set of L̇1

1 for all n and
t). Hence we can finally conclude that f ∈ C([0, T ], L̇1

1 − weak) and

fn → f in C([0, T ], L̇1
1 − weak).

Convergence of the fragmentation term

Let us first show that for almost all t ≥ 0, Ff(t) makes sense.

Lemma 5.5.10. For all S > R > 0 and T > 0 there is some constant C =
C(T,R, S) such that

∫ T

0

∫ ∞

S

Φ(y)

y
fn(t, y)

∫ R

0

y′bn(y, y′) dy′ dy dt ≤ C for all n ≥ 1.

Proof. This is proposition 5.4.10 applied for these R, S, Φ, and t := T .

Lemma 5.5.11. For all S > R > 0 and T > 0 there is some constant C =
C(T,R, S) such that the function f from lemma 5.5.8 satisfies

∫ T

0

∫ ∞

S

Φ(y)

y
f(t, y)

∫ R

0

y′b(y, y′) dy′ dy dt ≤ C.

Proof. The last lemma proves in particular that for some constant C = C(T,R, S),

∫ T

0

∫ ∞

S

Φ(y)

y
fn(t, y)

∫ R

0

y′bn(y, y′) dy′ dy dt ≤ C for all n ≥ 1.

Now, for any M > S we know from lemma 5.5.3 that

∫ R

0

y′bn(y, y′) dy′ →
∫ R

0

y′b(y, y′) dy′ uniformly for y ∈ [S,M ],
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so, thanks to the weak convergence of {fn},

C ≥
∫ T

0

∫ M

S

Φ(y)

y
fn(t, y)

∫ R

0

y′bn(y, y′) dy′ dy dt

→
∫ T

0

∫ M

S

Φ(y)

y
f(t, y)

∫ R

0

y′b(y, y′) dy′ dy dt as n→ ∞.

This is true for any M > S, so

∫ T

0

∫ ∞

S

Φ(y)

y
f(t, y)

∫ R

0

y′b(y, y′) dy′ dy dt ≤ C,

which proves the lemma.

Now the following is a consequence of our last result and lemma 3.1.1:

Lemma 5.5.12. Ff(t) is well defined for almost all t ∈ [0, T ), and for φ ∈
Cc([0, T ) × (0,+∞)) the fundamental identity in proposition 3.4.3 holds:

∫ T

0

∫ ∞

0

Ff(t)(y)φ(t, y) dy dt =

∫ T

0

∫ ∞

0

f(t, y)F ∗φ(t)(y) dy dt.

Lemma 5.5.13. For each φ ∈ Cc([0, T ) × (0,+∞)),

∫ T

0

∫ ∞

0

Fnfn(t)(y)φ(t, y) dy dt→
∫ T

0

∫ ∞

0

Ff(t)(y)φ(t, y) dy dt.

Proof. Using the fundamental identity, what we have to prove is that

∫ T

0

∫ ∞

0

fn(t, y)F ∗
nφ(t)(y) dy dt→

∫ T

0

∫ ∞

0

f(t, y)F ∗φ(t)(y) dy dt. (5.66)

Note that, as the expression of the adjoint of the fragmentation operator is linear in
β, F ∗

nφ(t) − F ∗φ(t) = F̃ ∗φ(t), where F̃ is the fragmentation operator associated to
the fragmentation coefficient b̃ := b − bn ≥ 0. As we know that βn → β uniformly
on bounded sets of [0,+∞), lemma (3.14) proves that

F ∗
nφ→ F ∗φ uniformly on bounded sets of [0, T ) × (0,+∞).

Hence, as we know fn → f weakly in L1 on compact sets of [0, T ) × (0,+∞), we
know that for any S > 0

∫ T

0

∫ S

0

fn(t, y)F ∗
nφ(t)(y) dy dt→

∫ T

0

∫ S

0

f(t, y)F ∗φ(t)(y) dy dt.
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Hence, we only need to prove the convergence of the remaining part for large enough
S. Take R > 0 such that supp φ ⊆ (0, R), S ≥ 2R and calculate as follows:

∣

∣

∣

∣

∫ T

0

∫ ∞

S

fn(t, y)F ∗
nφ(t)(y) dy dt

∣

∣

∣

∣

=

∫ T

0

∫ ∞

S

fn(t, y)

∫ y

0

φ(y′)bn(y, y′) dy′ dy dt.

≤ S

Φ(S)
‖φ‖∞

∫ T

0

∫ ∞

S

Φ(y)

y
fn(t, y)

∫ R

0

bn(y, y′) dy′ dy dt

≤ S

Φ(S)
‖φ‖∞C

for some constant C independent of n, given by lemma 5.5.10. This converges to 0
as S → ∞, and the same bound applies to f , b instead of fn, bn thanks to lemma
5.5.11. This proves the stated convergence.

Convergence of the coagulation term

Lemma 5.5.14. For each φ ∈ Cc([0,∞) × (0,+∞)),
∫ ∞

0

∫ ∞

0

Cn(fn(t))(y)φ(t, y) dy dt→
∫ ∞

0

∫ ∞

0

C(f(t))(y)φ(t, y) dy dt.

Proof. Take φ ∈ Cc([0,∞) × (0,+∞)) and T,R > 0 such that the support of φ is
contained in [0, T )×(0, R). Write ∆φ(t, y, y′) := φ(t, y+y′)−φ(t, y)−φ(t, y′). Using
the weak form of the operator C, what we want to prove is that, when n→ ∞,

∫ T

0

∫ R

0

fn(t, y)

∫ R

0

an(y, y′)fn(t, y′)∆φ(t, y, y′) dy′ dy dt

−→
∫ T

0

∫ R

0

f(t, y)

∫ R

0

a(y, y′)f(t, y′)∆φ(t, y, y′) dy′ dy dt.

We know that fn ⇀ f weakly in L1((0, T ), L̇1
1). Thanks to lemma 9.2.4, we only

need to show that the sequence of functions on (0, T ) × (0, R) given by

(t, y) 7→ 1

y

∫ R

0

an(y, y′)fn(t, y′)∆φ(t, y, y′) dy′

is uniformly bounded and converges pointwise a.e. to

1

y

∫ R

0

a(y, y′)f(t, y′)∆φ(t, y, y′) dy′.

Note that lemma 4.3.4 implies that for some constant C ≥ 0,

1

y
|φ(y + y′) − φ(y) − φ(y′)| ≤ C y′ ‖φ‖C1 for all y, y′ > 0,
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so for each y, the function (t, y′) 7→ ∆φ(t, y, y′) is in the dual of L1([0, T ), L̇1
1). Then

the uniform boundedness is clear, as

∣

∣

∣

∣

1

y

∫ R

0

an(y, y′)fn(t, y′)∆φ(t, y, y′) dy′
∣

∣

∣

∣

≤ 3A(1 + 2R)C ‖φ‖C1 ρ.

Let us prove the pointwise convergence. As fn → f in C([0, T ], L̇1
1− weak), we know

that
fn(t, ·) ⇀ f(t, ·) weakly in L̇1

1 for all t ∈ (0, T )

and also that for all y, y′ > 0,

an(y, y′) < A(1 + 2R)

an(y, y′) → a(y, y′).

Hence, using lemma 9.2.4 again shows that for all (t, y) ∈ (0, T ) × (0, R)

∫ R

0

an(y, y′)fn(t, y′)∆φ(t, y, y′) dy′ →
∫ R

0

a(y, y′)f(t, y′)∆φ(t, y, y′) dy′.

This proves the lemma.

5.6. Existence of solutions with finite mass and

finite number of particles

We want to prove existence of solutions for the coagulation-fragmentation equa-
tion (in the sense of definition 5.1.1) when both the total mass

∫∞
0
yf(y) dy and

the number of clusters
∫∞
0
f(y) dy are finite. Except for the assumption on the co-

agulation coefficient a, the hypotheses in this section include those in the previous
one.

Hypothesis 5.6.1. Throughout this section we assume the coefficients a, b satisfy
the following:

The fragmentation coefficient b satisfies (3.4), and is bounded on {(y, y′) | 0 <
y′ < y < R} for all R > 0.

There are constants R0 > 0 and B1 ≥ 0 such that

∫ R0

0

b(y, y′) dy′ ≤ B1

∫ R0

0

y′b(y, y′) dy′ for all y ≥ 2R0. (5.67)

The coagulation coefficient a : (0,+∞) × (0,+∞) → [0,+∞) is a measurable
symmetric function such that a(y, y′) ≤ A(1+y+y′) for some constant A > 0.
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We also assume that the initial condition f 0 : (0,+∞) → R is a nonnegative function
in L1 ∩ L̇1

1.

Below we will write

ρ :=

∫ ∞

0

y f 0(y) dy (5.68)

bx := sup
0<y′<y<x

b(y, y′) for x > 0, b0 := 0 (5.69)

We will prove the following theorem:

Theorem 5.6.2. Assume the above hypotheses on the coefficients a, b, and take a
nonnegative function f 0 ∈ L̇1

1 ∩ L1. Then for all 0 < T ≤ +∞ there is a solution
f to the coagulation-fragmentation equations (5.1)–(5.2) with initial data f 0 (in the
sense of definition 5.1.1), and such that f ∈ L1([0, T ) × (0,+∞)) ∩ L∞([0, T ), L̇1

1).
In addition, this solution conserves the mass.

To prove this we will follow the same approach as before. In fact,we can use
many of the results from the previous section, as the only hypothesis we are missing
here is that, for y > 0, z 7→ a(z, y) is an increasing function of z.

Define the approximations an, bn, f
0
n, fn as in the previous section. Then, results

5.5.3–5.5.5 are still valid here, as they do not make use of the hypothesis on a. Let
us prove the additional ones which are needed to pass to the limit in this case.

Lemma 5.6.3. There is a C∞ function Λ : [0,+∞) → [0,+∞) which is strictly
convex, such that Λ′ is concave, Λ(0) = Λ′(0) = 0, limy→∞ Λ(y)/y = +∞, for which

∫ ∞

0

Λ(f 0(y)) dy < +∞

and such that

Λ′(by) ≤ 1 +
Φ(y)

y
for all y > 0.

Proof. This Λ is given by proposition 9.1.2; one can find Λ additionally satisfying
the bound for the same reason as in lemma 5.5.6.

In order to use some of the results from section 5.4 we will need to prove that the
constants used there are uniformly bounded for the sequence of coefficients bn and
an (this is, a fixed constant can be used for all n). This is the aim of the following
lemma:

Lemma 5.6.4. For all large enough integers n ≥ B1 it holds that

∫ R0

0

bn(y, y′) dy′ ≤ B1

∫ R0

0

y′ bn(y, y′) dy′ for all y ≥ 2R0.



114 CHAPTER 5. EXISTENCE OF SOLUTIONS

Remark 5.6.5. We can take a subsequence of the approximated solutions and say
that this inequality is satisfied for all integers n; we will frequently omit the fact
that a suitable subsequence must be taken, and it should be understood that the
sequence of solutions is not necessarily the full sequence we defined initially.

Proof. Take n ≥ max{B1, 1/R0} and y ≥ 2R0. Then,

∫ R0

0

bn(y, y′) dy′ =

∫ R0

0

b(y, y′) dy′ −
∫ R0

0

(

b(y, y′) − bn(y, y′)
)

dy′.

For the first term, use (5.67):

∫ R0

0

b(y, y′) dy′ ≤ B1

∫ R0

0

y′ b(y, y′) dy′.

For the second one, as n ≥ 1/R0 and hence b(y, y′) is the same as bn(y, y′) for
1/n < y′ < R0 < 2R0 < y,

∫ R0

0

(

b(y, y′) − bn(y, y′)
)

dy′ =

∫ 1/n

0

(

b(y, y′) − bn(y, y′)
)

dy′

≥ n

∫ 1/n

0

y′
(

b(y, y′) − bn(y, y′)
)

dy′ ≥ B1

∫ R0

0

y′
(

b(y, y′) − bn(y, y′)
)

dy′.

Putting the last three equations together proves the lemma.

Lemma 5.6.6. For all t ≥ 0 there is a constant C(t) which is increasing in t and
such that

‖fn(t)‖1 ≤ C(t) for all n ≥ 1.

Proof. Apply proposition 5.4.14 for R := R0, S := 2R0. Note that all constants
that appear there can be bounded independenty of n; in particular, the constant B1

there can be taken to be independent of n thanks to lemma 5.6.4, and B2 is bounded
by 2R0 b2R0

.

Lemma 5.6.7. For all t, R > 0 there is a constant C(t), which depends on them
increasingly, such that

∫ R

0

Λ(fn(t, y)) dy ≤ C(t) for all n ≥ 1.

Proof. This is given by proposition 5.4.16, but a remark is needed: note that the
quantity B1 that appears there depends on R and is not exactly the B1 in this
section, so we need to prove that for each fixed R > 0, the B1 in the proposition
can be bounded independently of n. Actually, it is enough to prove this for each
R ≥ R0, as it is clearly enough to prove the lemma for R ≥ R0.
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For R = R0 this is given by lemma 5.6.4. For R > R0 and y > 2R note that

∫ R

0

bn(y, y′) dy′ =

∫ R0

0

bn(y, y′) dy′ +

∫ R

R0

bn(y, y′) dy′

≤ B1

∫ R0

0

y′ bn(y, y′) dy′ +
1

R0

∫ R

R0

y′ bn(y, y′) dy′

≤
(

B1 +
1

R0

)

∫ R

0

y′ bn(y, y′) dy′.

Then, the number B1 corresponding to R in proposition 5.4.16 is bounded by a
constant, and the proposition can be applied also for R > R0, finishing the proof.

Lemma 5.6.8. There is a nonnegative function f : [0,+∞) × (0,+∞) with

f ∈ L∞([0,+∞), L̇1
1)

f ∈ L1([0, T ) × (0,+∞))

f ∈ C([0, T ], L1 − weak) for all T > 0,

and a subsequence of {fn} (which we denote also as {fn}) such that for every T > 0,

fn ⇀ f in L1([0, T ) × (0,+∞)) weakly

fn ⇀ f in L1([0, T ), L̇1
1) weakly

fn → f in C([0, T ], L1 − weak),

and such that
∫∞
0
yf(t, y) dy = ρ for all t ≥ 0.

Proof. Lemma 5.5.8 applies here, as we have proved lemma 5.6.7, which can be used
instead of 5.5.7. Hence, there is a subsequence of {fn} which converges weakly to a
function f in L1([0, T ), L̇1

1) for all T > 0. Additionally f ∈ L∞([0,∞), L̇1
1).

To find a further subsequence that converges weakly also in L1([0, T )× (0,+∞))
for every T > 0 we can apply theorem 9.2.3 again, now for the usual Lebesgue
measure on [0, T ] × [0,+∞): uniform local integrability is given by lemma 5.5.7; a
uniform bound for the integral outside sets of the form [0, T ] × [0, R] which tends
uniformly to 0 as R → ∞ is given by mass conservation; and lemma 5.6.6 proves
that {fn} is uniformly bounded in this space. The same argument used above gives
a subsequence which converges weakly on L1([0, T ) × (0,+∞)) and proves that
f ∈ L1([0, T ) × (0,+∞)) for all T > 0.

To show that f ∈ C([0, T ], L1 −weak) and that {fn} converges to f in this space
one can apply the arguments in [52, lemma 2.7, proposition 2.8].

Convergence of the fragmentation term

As the conditions on the fragmentation term include those in the previous section,
we already have the following:
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Lemma 5.6.9. For each φ ∈ Cc([0, T ) × (0,+∞)),

∫ T

0

∫ ∞

0

Fnfn(t)(y)φ(t, y) dy dt→
∫ T

0

∫ ∞

0

Ff(t)(y)φ(t, y) dy dt.

Convergence of the coagulation term

The proof of convergence of the coagulation term in section 5.5 only uses hy-
potheses included here, so we directly have the following:

Lemma 5.6.10. For each φ ∈ Cc([0,∞) × (0,+∞)),
∫ ∞

0

∫ ∞

0

Cn(fn(t))(y)φ(t, y) dy dt→
∫ ∞

0

∫ ∞

0

C(f(t))(y)φ(t, y) dy dt.

5.7. Existence of measure solutions

We would like to prove that there exist measure solutions to the coagulation-
fragmentation equations (see definition 5.1.2)) when the coefficients are less regular
than in previous sections, so that we allow for a singular behavior of the small-size
particles and possible loss of mass due to the creation of dust or “shattering”. In
particular, we want to allow for β(y) not to be bounded near y = 0.

5.7.1. Stability result

Theorem 5.7.1. Take T > 0. Suppose that for each n ∈ N we have a function
fn which is a measure solution to the coagulation-fragmentation equations on [0, T )
(see definition 5.1.2) with coagulation coefficient an, fragmentation coefficient bn
and initial data f 0

n. We assume that an, bn and f 0
n satisfy the conditions on the

coefficients from definition 5.1.2. Additionally, we suppose that for all continuous
φ,

∫ y

0

y′φ(y′)bn(y, y′) dy′ is continuous in y, (5.70)

that each an is a continuous function and there are some α ≤ β ∈ R and C > 0
such that

an(y, y′) ≤ C(yα(y′)β + yβ(y′)α) for y, y′ > 0, n ∈ N. (5.71)

Suppose also that

1. For each n ∈ N and t ∈ [0, T ), fn(t) is a nonnegative measure.

2. There is a constant ρ > 0 such that
∫ ∞

0

y fn(t, y) dy < ρ for all n ∈ N, t ∈ [0, T ).
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3. For each φ ∈ Cc, the sequence {Fn}, defined by Fn(t) :=
∫∞
0
φ(y)fn(t, y) dy

(t ∈ [0, T )), is equicontinuous.

4. There is a positive increasing continuous function Ψ : (0,+∞) → (0,+∞)
such that limy→∞ Ψ(y) = +∞ and for all R, ǫ > 0 there is a constant Cǫ,R > 0
such that,

∫ T

0

∫ ∞

ǫ

Ψ(y)fn(t, y)

∫ R

0

y′bn(y, y′) dy′ dy ≤ Cǫ,R for all n ∈ N.

5. There is a function b in the conditions (3.16) such that for all continuous
φ : [0,+∞) → R it holds that

∫ ∞

0

y′φ(y′)bn(y, y′) dy′ →
∫ ∞

0

y′φ(y′)b(y, y′) dy′

uniformly for y in compact sets of (0,+∞).

6. There is a function a : (0,+∞) × (0,+∞) → [0,+∞) such that an tends to a
uniformly in compact sets of (0,+∞) × (0,+∞).

7. There are constants C > 0 and m < 0 such that
∫ T

0

∫ 1

0

∫ 1

0

a(y, y′)fn(t, y)fn(t, y
′) y y′ dy dy′ dt ≤ C for n ∈ N.

Then, there is a measure f 0 ∈M1 and a function f ∈ C([0, T );M1-weak-∗) which is
a solution to the coagulation-fragmentation equations on [0, T ) with coefficients a, b
and initial condition f 0, and there is a subsequence of {fn} (which we still refer to
as {fn}) such that

fn → f in C([0, T );M1-weak-∗).
In the rest of this section we will prove this result.

Remark 5.7.2. A function f : [0, T ] →M1 is in C([0, T ],M1 −weak-∗) if it is contin-
uous in the weak-∗ topology1 of M1. In the space C([0, T ],M1−weak-∗) we consider
the topology for which a fundamental system of neighborhoods of a point f is formed
by the sets {Wj}j∈J given by

Wj := {g ∈ C([0, T ],M1 − weak-∗) | (f − g)([0, T ]) ⊆ Vj},
where {Vj}j∈J is a fundamental system of neighborhoods of 0 in the weak-∗ topology
of M1. A sequence {fn} converges to a function f in this space if and only if for
each φ ∈ Cc(0,+∞)

∫ ∞

0

φ(y)fn(t, y) dy →
∫ ∞

0

φ(y)f(t, y) dy

uniformly for t ∈ [0, T ].

1M1 is seen as the dual space of Cc with the norm of L̇∞

−1
; see section 3.2 for the notation.
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Convergence of fn

Each fn can be naturally identified with a positive measure on [0, T )× (0,+∞),
thanks to the regularity assumptions in definition 5.1.2. Point 2 in our hypotheses
ensures that the sequence of measures (t, y) 7→ yfn(t, y) is uniformly bounded when
they are considered as measures on [0, T ) × (0,+∞). This implies that there is a
subsequence of fn (still referred to as {fn}) and a positive measure f on [0, T ) ×
(0,+∞) such that y fn(t, y) converges to y f(t, y) in the weak-∗ topology of the space
of finite measures on [0, T ) × (0,+∞). In other words, there is a subsequence of fn

such that

∫ T

0

∫ ∞

0

φ(t, y)fn(t, y) dy dt→
∫ T

0

∫ ∞

0

φ(t, y)f(t, y) dy dt

for all φ ∈ Cc([0, T ) × (0,+∞)).

In particular, this shows that we can pass to the limit in the first term of equation
(5.10). Now, point 3 and Ascoli-Arzelà’s theorem allow us to say that, for each φ ∈
Cc, there is a further subsequence of {fn} such that t 7→ Fn(t) :=

∫∞
0
φ(y)fn(t, y) dy

converges uniformly in compact sets of [0, T ) to some function; the above weak
convergence proves that this function must in fact be equal to t 7→

∫∞
0
φ(y)f(t, y) dy,

and in turn that the latter must be continuous. Actually, the same argument proves
that any subsequence of {fn} has a further subsequence that satisfies this; this
implies that

∫ ∞

0

φ(y)fn(t, y) dy →
∫ ∞

0

φ(y)f(t, y) dy for all φ ∈ Cc,

or, equivalently, that fn → f in C([0, T );M1-weak-∗). With this, if we define f 0 :=
f(0), we have

∫ ∞

0

f 0
n(y)φ(y) dy →

∫ ∞

0

f 0(y)φ(y) dy for φ ∈ Cc,

so we can pass to the limit in the term with the initial condition of equation (5.10).

Convergence of the fragmentation term

To complete the proof of the stability result we need to show that it is possible
to pass to the limit in both the coagulation and fragmentation terms (and on the
way, prove that the function f does satisfy the conditions in definition 5.1.2, so that
the equation makes sense for f).

To prove the convergence of the fragmentation term we need a previous result:

Lemma 5.7.3. In the above hypotheses, it holds that
∫ T

0

∫ ∞

ǫ

Ψ(y)f(t, y)

∫ R

0

y′b(y, y′) dy′ dy ≤ +∞ for all ǫ, R > 0.
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Proof. Take ǫ, R > 0. Choose a continuous function φ which is equal to 1 on (0, R), is
always less than 1 and is zero on (2R,+∞); take also S > 0 and another continuous
function ϕ which is less than 1, is equal to 1 on (ǫ, S), and has compact support
contained in (ǫ/2, 2S). Then, for n ∈ N,

∫ T

0

∫ ∞

ǫ

Ψ(y)fn(t, y)

∫ R

0

y′bn(y, y′) dy′ dy

≤
∫ T

0

∫ ∞

ǫ/2

ϕ(y)Ψ(y)fn(t, y)

∫ 2R

0

φ(y′)y′bn(y, y′) dy′ dy ≤ Cǫ/2,2R.

The uniform convergence of y 7→
∫ 2R

0
φ(y′)y′bn(y, y′) dy′ (point 5) and the weak-∗

convergence of fn prove the result.

We need to show that for all φ ∈ C∞
c ([0, T ) × (0,+∞)),

∫ T

0

∫ ∞

0

fn(t, y)F ∗
nφ(t, y) dy dt→

∫ T

0

∫ ∞

0

f(t, y)F ∗φ(t, y) dy dt,

where F ∗
n , F

∗ are the adjoint fragmentation operators associated to bn and b, re-
spectively (see definition 3.6.3). Point 4 and the previous lemma prove that these
integrals are finite.

Our hypotheses on the continuity of integrals of bn (eq. (5.70) ensures that F ∗
nφ

is continuous on [0, T ) × (0,+∞)), and it is easy to see, in the same way as in the
proof of lemma 3.6.4, that there is a constant C > 0 such that

|F ∗
nφ(t, y) − F ∗φ(t, y)| ≤ C |β(y) − βn(y)| for (t, y) ∈ [0, T ) × (0,+∞), n ∈ N,

where β and βn are the total fragmentation rates associated to b and bn, respectively.
As point 5 implies (choosing φ(y) = y) that βn → β uniformly in compact sets of
(0,+∞), we see that for each K ⊆ (0,+∞) compact,

F ∗
nφ→ F ∗φ uniformly in [0, T ) ×K.

Hence, thanks to the weak-∗ convergence of {fn}, we can say that for each ϕ ∈ Cc,

∫ T

0

∫ ∞

0

ϕ(y)fn(t, y)F
∗
nφ(t, y) dy dt→

∫ T

0

∫ ∞

0

ϕ(y)f(t, y)F ∗φ(t, y) dy dt.

Take δ, R > 0 such that φ has support contained in [0, T )×(δ, R). Then, take S > R
and choose a continuous function ϕ ∈ Cc which is always less than 1 and equal to
1 on (δ, S); notice that F ∗

nφ and F ∗φ have support contained in [0, T ) × (δ,+∞)
(see lemma 3.6.4). To prove the expected convergence we can now follow a standard
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argument (below omit the variables (t, y) for simplicity):

∣

∣

∣

∣

∫ T

0

∫ ∞

0

fnF
∗
nφ dy dt−

∫ T

0

∫ ∞

0

fF ∗φ dy dt

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ T

0

∫ ∞

0

ϕfnF
∗
nφ dy dt−

∫ T

0

∫ ∞

0

ϕfF ∗φ dy dt

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ T

0

∫ ∞

0

(1 − ϕ)fnF
∗
nφ dy dt

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ T

0

∫ ∞

0

(1 − ϕ)fF ∗φ dy dt

∣

∣

∣

∣

=: S1 + S2 + S3.

The first part (S1), converges to zero as n → ∞ as proved above. When y > R,
only the positive part of F ∗

nφ(t, y), F ∗φ(t, y) is nonzero (see the expression in 3.6.3);
then we can find a bound for S2 and S3 using lemma 5.7.3:

S3 ≤
∣

∣

∣

∣

∫ T

0

∫ ∞

S

f(t, y)

∫ R

0

φ(t, y′)b(y, y′) dy dt

∣

∣

∣

∣

≤ 1

Ψ(S)

∣

∣

∣

∣

∫ T

0

∫ ∞

S

Ψ(y)f(t, y)

∫ R

0

φ(t, y′)b(y, y′) dy dt

∣

∣

∣

∣

≤ C

Ψ(S)
,

where C > 0 is a constant that only depends on R and φ; the latter bound is
given by lemma 5.7.3, and the same can be done for S2 by using the bound in
point 4. Then, if ǫ > 0 is any number, we can find S such that C/Ψ(S) ≤ ǫ/4 (as
limy→∞ Ψ(y) = +∞), and then take n large enough for S1 to be less than ǫ/2. This
proves the convergence of the fragmentation term.

Convergence of the coagulation term

For the coagulation part we need to prove that, for each φ ∈ C∞
c ,

∫ T

0

∫ ∞

0

∫ ∞

0

an(y, y′)fn(t, y)fn(t, y
′)(φ(t, y + y′) − φ(t, y) − φ(t, y′)) dy dy′ dt

converges to the corresponding expression with a, f instead of an, fn. We will denote

∆φ(t, y, y′) := φ(t, y + y′) − φ(t, y) − φ(t, y′)

to make expressions shorter. Take R > 0 such that the support of φ is contained in
[0, T )×(0, R); then, note that the support of ∆φ is contained in [0, T )×(0, R)×(0, R).

To prove the convergence we will break the y, y′ integral into two parts: one for
(y, y′) in a compact set of (0,+∞)× (0,+∞), and the remaining one which includes
the “borders” where y, y′ are small (this is enough, as ∆φ has support contained in
[0, T )× (0, R)× (0, R)). For the first part we can use the convergence of {an} from
point 6, and for the latter part one needs the bound in point 7.
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In order to do this, take a function ϕ ∈ Cc. Then,

∫ T

0

∫ ∞

0

∫ ∞

0

an(y, y′)fn(t, y)fn(t, y
′)∆φ(t, y, y′) dy dy′ dt

=

∫ T

0

∫ ∞

0

∫ ∞

0

ϕ(y)ϕ(y′)an(y, y′)fn(t, y)fn(t, y
′)∆φ(t, y, y′) dy dy′ dt

+

∫ T

0

∫ ∞

0

∫ ∞

0

(1−ϕ(y)ϕ(y′))an(y, y′)fn(t, y)fn(t, y
′)∆φ(t, y, y′) dy dy′ dt =: I1+I2.

Let us rewrite I1 as

∫ T

0

∫ ∞

0

fn(t, y)ϕ(y)

∫ ∞

0

ϕ(y′)an(y, y′)fn(t, y′)∆φ(t, y, y′) dy′ dy dt

=:

∫ T

0

Fn(t) dt.

To prove that this converges to the expected limit it is enough to show that Fn

converges pointwise on [0, T ), as then we can apply the dominated convergence
theorem, knowing that

Fn(t) ≤ C

∫ R

ǫ

yβfn(t, y) dy

∫ R

ǫ

yαfn(t, y) dy ≤ C ′,

thanks to (5.71), where ǫ > 0 is such that the support of ϕ is contained in (ǫ,+∞)
and C,C ′ > 0 are constants independent of n. This bound is a consequence of
the uniform bound on

∫∞
0
y fn(t, y) dy in point 2. In turn, as fn converges to f in

C([0, T );M1-weak-∗), to prove that Fn converges pointwise it is enough to see that,
for each t ∈ [0, T ),

∫ ∞

0

ϕ(y′)an(y, y′)fn(t, y′)∆φ(t, y, y′) dy′

converges uniformly for y ∈ (0,∞). (5.72)

(Of course, we must prove it converges to the right limit). To see this, fix t ∈ [0, T )
and write:
∫ ∞

0

ϕ(y′)an(y, y′)fn(t, y′)∆φ(t, y, y′) dy′ =

∫ ∞

0

ϕ(y′)(an(y, y′) − a(y, y′))fn(t, y′)∆φ(t, y, y′) dy′

+

∫ ∞

0

ϕ(y′)a(y, y′)fn(t, y′)∆φ(t, y, y′) dy′.

Here, the first term converges uniformly to 0 thanks to the uniform convergence of an

on compact sets and the uniform bound on
∫∞
0
y fn(y) dy (point 2); the second term
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converges pointwise for y ∈ (0,+∞) to the same expression with f instead of fn

thanks to the weak-∗ convergence of {fn}; it is equicontinuous in y and uniformly
bounded again due to point 2, so by Ascoli-Arzelà’s theorem it has a uniformly
convergent subsequence. As the same argument can be applied to any subsequence
of the second term, we can say that the whole sequence converges to the expected
limit. Hence, we have proved (5.72). As explained above, this implies that I1
converges to the right limit.

As for I2, by choosing a suitable ϕ we can make it small enough and carry out
an argument analogous to the one for the convergence of the fragmentation term.
If we take ϕ ≤ 1 such that ϕ(y) = 1 for y ∈ (δ, 2R), then

|I2| ≤
∫ T

0

∫ δ

0

∫ δ

0

an(y, y′)fn(t, y)fn(t, y
′) |∆φ(t, y, y′)| dt dy dy′

≤ C

∫ T

0

∫ δ

0

∫ δ

0

an(y, y′)fn(t, y)fn(t, y
′) y y′ dt dy dy′ ≤ C ′δ−m

where we have used lemma 4.3.4 and point 7. As m < 0, this expression tends
to 0 as δ → 0, and the proof can be finished in a way analogous to the proof of
convergence of the fragmentation part.

This proves the stability result in theorem 5.7.1.

5.7.2. Measure solutions for nonsingular coagulation

In this section we will prove existence of measure solutions to the coagulation-
fragmentation equations under the following conditions:

Hypothesis 5.7.4. We will assume the following:

The fragmentation coefficient b is in the conditions in (3.4). For each contin-
uous function φ,

∫ y

0

y′φ(y′)b(y, y′) dy′ is continuous in y.

The coagulation coefficient a : (0,+∞) × (0,+∞) → [0,+∞) is a continuous
symmetric function such that for some numbers 0 < α ≤ β ≤ 1 and some
constant C > 0,

a(y, y′) ≤ C(yα(y′)β + yβ(y′)α) for y, y′ > 0.

We will prove the following theorem:

Theorem 5.7.5. Assume the above hypotheses on the coefficients a, b, and take a
positive measure f 0 ∈ M1. Then for all 0 < T ≤ +∞ there is a measure solution
f to the coagulation-fragmentation equations (5.1)–(5.2) with initial data f 0 (in the
sense of definition 5.1.2), and such that f ∈ L∞([0, T ),M1).
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The general method of proof will be similar to the one used in previous sections:
we will construct a sequence of approximated solutions for which the conditions of
the stability theorem 5.7.1 hold.

Approximated solutions

We define a sequence of approximations to the coagulation and fragmentation
coefficients as follows: take a continuous function ϕb

n : (0,+∞)×(0,+∞) → [0,+∞)
which is less than 1, is equal to 1 on the set {(y, y′) | 1/n < y′ < y−1/n < n−1/n},
and has compact support contained in the set {(y, y′) | 1/(2n) < y′ < y − 1/(2n) <
2n− 1/(2n)}. Set

b̃n(y, y′) := ϕb
n(y, y′)b(y, y′) for y > y′ > 0.

Then, take a regularizing sequence {ρn} such that the support of ρn is contained in
(−1/(4n), 1/(4n)) 2 and set, for y > y′ > 0,

bn(y, y′) :=

∫ y

0

ρn(y′ − z)b̃n(y, z) dz,

We also regularize the coagulation coefficient: take a continuous function ϕa
n :

(0,+∞) × (0,+∞) → [0,+∞) which is less than 1, is equal to 1 on the set
{(y, y′) | 1/n < y, y′ < n}, and has compact support contained in the set {(y, y′) |
1/(2n) < y, y′ < 2n}. Set

an(y, y′) := ϕa
n(y, y′)a(y, y′) for y, y′ > 0.

In a similar way, we define a regularization of the initial condition: for a continuous
function ϕ0

n : (0,+∞) → [0,+∞) which is less than 1, is equal to 1 on (1/n, n) and
has compact support contained in (1/(2n), 2n),

f̃ 0
n(y) := f 0(y)ϕ0

n(y),

and

f 0
n(y) :=

1

y

∫ ∞

0

ρn(y − y′)y′f̃ 0
n(y′) dy′.

The coefficients an, bn satisfy the hypotheses in theorem 5.2.1 and also the
stronger hypothesis 5.4.1 from section 5.4; in particular, all estimates from this
section apply to the regularized solutions defined below.

Call Fn, Cn the fragmentation and coagulation operators associated to bn, an,
respectively. We know from theorem 5.2 that there is a solution fn of the coagula-
tion-fragmentation equations with coefficients an, bn and initial condition f 0

n, in the
sense stated there.

2A sequence of nonnegative C∞ functions with integral equal to 1 and supports that converge
to 0.
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Uniform estimates

We need to prove that all of the conditions in the stability theorem 5.7.1 hold
for the sequence just defined. First, an is a continuous function and the continuity
condition (5.70) on bn is also satisfied, as well as the bound (5.71). Points 1 and 2
are satisfied thanks to the conservation of positivity (lemma 5.3.1) and mass (see
theorem 5.2.1). Observe that with this regularization we still have the usual bounds
for the mass of the initial condition f 0

n: namely,

∫ ∞

0

yf 0
n(y) dy ≤

∫ ∞

0

y
1

y

∫ ∞

0

ρn(y − y′)y′f 0(y′) dy′ dy

=

∫ ∞

0

y′f 0(y′)

∫ ∞

0

ρn(y − y′) dy dy′ =

∫ ∞

0

y′f 0(y′) dy′ = ρ.

Lemmas 5.5.4 and 5.5.5 are still true in the present case (one can apply 9.1.1 to
the measure f 0 to prove the first one and prove the second one just as before, using
that the mass of f 0

n is uniformly bounded and that an(y, y′) ≤ A(1 + y + y′)), so
point 4 of theorem 5.7.1 also holds. The convergence conditions in points 5 and 6
are satisfied thanks to the way of regularizing the coefficients a and b, and point 7 is
trivially satisfied, as in our case α > 0 and the uniform bound on the mass proves it.
Hence, the only remaining point is 3: this is proved by proposition 5.4.17, (observe
that all the quantities that appear there can be bounded independently of n, using
the function Φ and the uniform bounds found above).

With these uniform bounds, the stability theorem 5.7.1 proves theorem 5.7.5.

5.7.3. Measure solutions for singular coagulation

Now we will study the case in which the coagulation coefficient may not be
bounded near y = 0 or y′ = 0. For this, we assume a special form of the coagulation
and fragmentation coefficients. The following hypotheses are stronger than 5.7.4
except in the fact that they allow α < 0 in the bounds of the coagulation coefficient:

Hypothesis 5.7.6. We will assume the following:

1. The fragmentation coefficient b is in the conditions in (3.16). For each con-
tinuous function φ,

∫ y

0

y′φ(y′)b(y, y′) dy′ is continuous in y.

2. There are γ ∈ R, 0 < k0 < 1, and Kb, K
′
b > 0 such that the fragmentation

coefficient b satisfies the following:

Kb φγ(y)
1

y

(

y′

y

)−1−k0

≤ b(y, y′) ≤ K ′
b φγ(y)

1

y

(

y′

y

)−1−k0
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for all 0 < y′ < y, where for y > 0 we set

φγ(y) = yγ if γ ≤ 0,

φγ(y) = min{yγ, y−l} if γ > 0,

for some number l > 0.

3. The coagulation coefficient a : (0,+∞) × (0,+∞) → [0,+∞) is a continuous
symmetric function. There are constants Ka, K

′
a > 0 and α < β ∈ R such that

Ka(y
α(y′)β + (y′)αyβ) ≤ a(y, y′) ≤ K ′

a(y
α(y′)β + (y′)αyβ)

for all y, y′ > 0. We assume that

α < β < 1

0 < λ := α+ β < 1

β − α < 1.

Remark 5.7.7. We impose that the total fragmentation rate be bounded on (1,+∞)
to avoid difficulties when estimating the total fragmentation rate for large particles,
as proposition 5.4.10 is not applicable here. This is not a fundamental restriction, as
we are interested in the interplay between coagulation and fragmentation for small
particles.

We will prove the following theorem:

Theorem 5.7.8. Assume the above hypotheses on the coefficients a, b, and take a
positive measure f 0 ∈ M1. Suppose that

γ < λ− 1 or
λ− 1

2
< γ.

Then for all 0 < T ≤ +∞ there is a measure solution f to the coagulation-fragmen-
tation equations (5.1)–(5.2) with initial data f 0 (in the sense of definition 5.1.2),
and such that f ∈ L∞([0, T ),M1).

In addition, when λ−1
2

< γ and f 0 ∈ M1 ∩Mm for some m < 1, this solution
conserves the mass.

We will follow the same strategy as before: construct a sequence of approxi-
mations, prove the necessary estimates and then pass to the limit using theorem
5.7.1.

Approximated solutions

We define an approximation to the coefficients in a very similar way to that
in the previous section, with the advantage that we do not need to regularize the
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fragmentation coefficient by convolution, as now it is already a function (not only a
measure).

Take a continuous function ϕb
n : (0,+∞)×(0,+∞) → [0,+∞) which is less than

1, is equal to 1 on the set {(y, y′) | 1/n < y′ < y−1/n < n−1/n}, and has compact
support contained in the set {(y, y′) | 1/(2n) < y′ < y− 1/(2n) < 2n− 1/(2n)}. Set

bn(y, y′) := ϕb
n(y, y′)b(y, y′) for y > y′ > 0.

We regularize the coagulation coefficient as in section 5.7.2: take m ∈ N, and a
continuous function ϕa

m : (0,+∞)×(0,+∞) → [0,+∞) which is less than 1, is equal
to 1 on the set {(y, y′) | 1/m < y, y′ < m}, and has compact support contained in
the set {(y, y′) | 1/(2m) < y, y′ < 2m}. Set

am(y, y′) := ϕa
m(y, y′)a(y, y′) for y, y′ > 0.

We use the same regularization of the initial condition as in section 5.7.2.

As before, these coefficients satisfy the hypotheses in theorem 5.2.1 and also
hypothesis 5.4.1, so there exist solutions, in the strong sense stated in that theorem,
of the coagulation-fragmentation equations with coefficients an, bn, to which the
estimates in section 5.4 apply.

For n,m ∈ N, we define fn,m as the solution (in the sense of theorem 5.2.1) to
the coagulation-fragmentation equations with coefficients bn, am.

Uniform estimates

Point 4 in theorem 5.7.1 holds for the sequence just constructed, as by hypothesis,
for all 0 < ǫ < R,

∫ R

ǫ
fn(t, y)yβn(y) dy is uniformly bounded and for 1 < R < S we

have

∫ ∞

S

ylfn(y)

∫ R

0

y′bn(y, y′) dy′ dy ≤
∫ ∞

S

ylfn(y)yβ(y) dy ≤
∫ ∞

S

fn(y)y dy ≤ ρ,

thanks to point 2 in hypothesis 5.7.6.

The rest of the uniform bounds needed to apply theorem 5.7.1 can be seen to
hold in the same way as in section 5.7.2, except for point 7. Estimating the moments
near y = 0 is the difficulty in this case. We can do this depending on the relative
values of λ and γ: when γ > λ−1

2
, we can pass to the limit in the sequence {fn,2n}

and the estimate in proposition 5.4.22 proves point 7; when γ < λ− 1, we can pass
to the limit in the sequence {f4n,n} and the estimate in proposition 5.4.26 proves it.
The particular sequence used to take the limit is chosen so that the hypotheses on
the supports of the coagulation and fragmentation coefficients in propositions 5.4.22
and 5.4.26 hold.
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As for mass conservation, observe that proposition 5.4.22 (applied when γ >
(λ− 1)/2) proves that for some k < 1 and some bounded function C,

∫ 1

0

ykf(t, y) dy ≤ C(T )

∫ 1

0

ykfn,2n(t, y) dy ≤ C(T )

for all T > 0 and all t ∈ [0, T ). A usual argument then proves that

lim

∫ ∞

0

yfn,2n(t, y) dy =

∫ ∞

0

yf(t, y) dy,

so the limit f is a mass-conserving solution.
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Chapter 6

Asymptotic behavior of solutions

to the generalized Becker-Döring

cluster equations

The results in this chapter were obtained under the supervision and help of
Stéphane Mischler, and were published in [14].

6.1. Introduction

Coagulation-fragmentation equations are useful as models that describe the dy-
namics of many physical phenomena in which a large number of particles or units
can stick together to form groups of particles, or clusters. A first version of them was
initially proposed by Becker and Döring [6], and a variant by Penrose and Lebowitz
[79]; these relatively simple models take into account only processes in which a clus-
ter gains or loses one particle, and describe only the concentration of clusters of a
given size at a certain moment, omitting also a description of their spatial distri-
bution. Since then a number of generalizations have been studied which also allow
reactions between clusters of more than one particle, the main examples of this be-
ing the discrete coagulation-fragmentation equations (see for example [4, 15, 16]),
their continuous version [52, 53, 84, 86, 87, 35, 33, 71] and the respective versions
including a spatial description by means of diffusion [57, 54]. An introduction to
these equations can be found in chapters 1 and 2, and a recent review can be found
in [58].

The generalized Becker-Döring equations are an intermediate step between the
Becker-Döring system and the full discrete coagulation-fragmentation equations in
which we allow reactions between clusters of at most a given finite size N and other

129
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clusters. The system of equations is the following:

ċ1 = −
∞
∑

k=1

W1,k (6.1)

ċj =
1

2

j−1
∑

k=1

Wj−k,k −
∞
∑

k=1

Wj,k, 2 ≤ j ≤ N

ċj =
1

2

j−1
∑

k=1

Wj−k,k −
N
∑

k=1

Wj,k, N + 1 ≤ j ≤ 2N

ċj =

N
∑

k=1

Wj−k,k −
N
∑

k=1

Wj,k, j ≥ 2N + 1

Here the unknowns are cj = cj(t) for j = 1, . . . , positive functions depending on the
time t which are intended to represent the density of clusters of size j (those formed
by j elementary particles). The quantities Wjk, which depend on the cj , are given
by

Wjk := ajkcjck − bjkcj+k (j, k ≥ 1),

where the numbers ajk, bjk for j, k ≥ 1 with min{j, k} ≤ N are the coagulation
and fragmentation coefficients, respectively, which are symmetric in j, k. As can
be seen, this system is a particular case of the coagulation-fragmentation equations
when ajk = bjk = 0 if min{j, k} > N .

The study of the long-time behavior of solutions to these equations is expected to
be a model of physical processes such as phase transition. Call

∑∞
j=1 jcj the density

of a solution {cj}j≥1. For the Becker-Döring equations it was proved in [5] and [3]
that, under certain general conditions which include a detailed balance (see below),
there is a critical density ρs ∈ [0,∞] such that any solution that initially has density
ρ0 ≤ ρs (ρ0 < ∞ if ρs = ∞) will converge for large times, in a certain strong sense,
to an equilibrium solution with density ρ0, while any solution with density above ρs

will converge (in a weak sense) to the only equilibrium with density ρs. The rate of
convergence to equilibrium was studied in [47]. The mentioned weak convergence
can then be interpreted as a phase transition in the physical process modelled by the
equation (see below for a precise statement). It is an interesting problem to extend
this result to more general models; this has been done for the generalized Becker-
Döring equations in [16] under some conditions on the decay of the initial data and
in [20] for suitably small initial data. The aim of this chapter is to prove that this
result about the generalized Becker-Döring system is true for general initial data.
The corresponding result is expected to hold for the full coagulation-fragmentation
equations, but finding a proof of this is still an open problem.
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6.2. Statement of the main result

Let us recall some usual definitions and notation from previous works on the
coagulation-fragmentation equations. We will make use of the vector space

X :=

{

{cj}j≥1

∣

∣

∣

∞
∑

j=1

j |cj | <∞
}

with norm

‖c‖ :=

∞
∑

j=1

j |cj| ∀ c = {cj}j≥1 ∈ X.

The space X is clearly a Banach space (actually, this space is isometric to the space
of absolutely summable sequences under the map {cj} 7→ {j cj}). In it we will
make use of the notion of convergence associated to the norm ‖·‖, which we will
call “strong convergence” following common usage. We will also say that a sequence
{ci}i≥1 of elements of X converges weak-∗ to an element c ∈ X, and will denote it

by ci
∗
⇀ c, if

1. there exists M ≥ 0 such that ‖ci‖ ≤ M for all i ≥ 1 and

2. cij → cj when i→ ∞, for all j ≥ 1 (where ci = {cij}j≥1 and c = {cj}j≥1).

This is just the usual weak-∗ convergence in the space X when it is regarded as
the dual space of the space of sequences {ck}k≥1 such that limk→∞ k−1 ck = 0, with
norm given by ‖{ck}‖ := max {k−1 |ck| | k ≥ 1} (see [5], p. 672). We also cite a
result from [5]:

Lemma 6.2.1 ([5], Lemma 3.3). If {cn} is a sequence in X such that cn
∗
⇀ c ∈ X

and ‖cn‖ → ‖c‖, then cn → c strongly in X.

The subset of X formed by the sequences of nonnegative terms will be referred
to as X+:

X+ := {{cj}j≥1 ∈ X | cj ≥ 0 ∀ j ≥ 1} .
We will ask for any solution {cj(t)}j≥1 to be, for each fixed time t, in X+; this

is natural, given that densities should be positive and that the sum
∑∞

j=1 j cj(t)
represents the total density of particles at time t (or total mass, depending on the
interpretation given to the cj’s). More precisely, we will use the following concept
of solution from [4], section 2:

Definition 6.2.2. A solution on the interval [0, T [ (for a given T > 0 or T = ∞) of
(6.1) is a function c : [0, T [→ X+ such that, if we put c(t) = {cj(t)}j≥1 for t ∈ [0, T [,

1. cj : [0, T [→ R is absolutely continuous for all j ≥ 1 and ‖c(t)‖ is bounded on
[0, T [,
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2. for all j = 1, 2, . . . , the sums
∑∞

k=1 aj,kck(t) and
∑∞

k=1 bj,kcj+k(t) are finite for
almost all t ∈ [0, T [,

3. and equations (6.1) hold for almost all t ∈ [0, T [.

Remark 6.2.3. For convenience, this definition has been slightly changed with respect
to that in [4]: it has been stated for the generalized Becker-Döring system instead of
the full coagulation equations, and conditions have been phrased in different terms,
but it can easily be checked that if the coefficients ajk, bjk satisfy hypothesis 6.2.6
below then this concept of solution is equivalent to that in [4]. Hence, results from
[4] are also applicable in our case, a fact that we will use later.

As we do not know of a uniqueness result that can be applied under the above
hypotheses we need to define a concept of admissibility to precise which solutions
our result applies to. In [16] this is done by choosing solutions which are limits
of solutions to the finite set of equations obtained by truncating system (6.1). We
will call these solutions Carr–da Costa admissible. Here we will define a slight
modification of this concept: an admissible solution will be one which is the limit of
Carr–da Costa admissible solutions with truncated initial data. The concept must
of course be the same under any set of conditions that ensure uniqueness, but we
have not found a sufficiently general uniqueness result and thus the following will
be needed:

Definition 6.2.4. Take T > 0 or T = +∞. An admissible solution of the general-
ized Becker-Döring equations (6.1) on [0, T [ with initial data c0 = {c0j}j≥1 ∈ X+ is
a solution c which is a limit in L∞

loc([0, T [, X) of Carr–da Costa admissible solutions
cn = {cjn}j≥1 of (6.1) with truncated initial data c0,n given by

c0,n
j := c0j for j ≤ n

c0,n
j := 0 for j > n.

Remark 6.2.5. The above convergence is uniform in compact subsets of [0, T [, in the
sense of the norm ‖·‖ in X; in particular, the functions cnj in the definition converge
uniformly when n→ ∞ in compact subsets of [0, T [ to cj .

Below we state the conditions on the coefficients under which we will prove our
result. Though in the equations only the coefficients ajk, bjk with min{j, k} ≤ N
appear, for convenience we will use coefficients ajk, bjk defined for all j, k ≥ 1 and
simply set ajk = bjk = 0 if min{j, k} > N . Thus we have hypothesis 6.2.6:

Hypothesis 6.2.6 (Generalized Becker-Döring). There exists an N ≥ 2 such that
ajk = bjk = 0 if min{j, k} > N , and ajk, bjk > 0 otherwise.

Detailed balance is a physical assumption also used, for example, in [5, 16], which
expresses the principle of microscopic reversibility from chemical kinetics; essentially,
it states that equilibria of a certain form exist (see theorem 6.2.19 below):
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Hypothesis 6.2.7 (Detailed Balance). There exists a positive sequence {Qj}j≥1

with Q1 = 1 such that for all j, k ≥ 1,

ajkQjQk = bjkQj+k. (6.2)

A certain bound on the growth rate of coefficients is known to be necessary to
ensure the existence of density-conserving solutions [4, 33] (in other situations den-
sity is only conserved for a finite time after which density decreases, a phenomenon
known as gelation); for our main result to be true (theorem 6.2.20) it is evidently
necessary that density is conserved, so we impose a condition ensuring this.

Hypothesis 6.2.8 (Growth of coefficients). For some constants K > 0 and 0 ≤
α < 1,

ajk ≤ K(jα + kα),

bjk ≤ K(jα + kα).

In the next hypothesis, (6.3) is a physical condition that asserts that any cluster
has a lower free energy than its pieces taken separately (see [16], Remark 5.1); (6.4)
will be seen to imply the existence of a critical density ρs (the relationship between
the following zs and this critical density is given below in 6.2.19):

Hypothesis 6.2.9. The sequence Qj satisfies:

logQj + logQk ≤ logQj+k for all j, k ≥ 1, (6.3)

0 < lim
j→∞

Qj

Qj+1
:= zs <∞. (6.4)

Remark 6.2.10. This implies that limj→∞
Qj

Qj+m
= zm

s for m ≥ 1 and that

lim
j→∞

Q
1/j
j =

1

zs
.

We also need to assume, as new hypotheses, a certain regularity of the coeffi-
cients:

Hypothesis 6.2.11. For j,m = 1, . . . , N ,

ajk

aj,k+m
→ 1 when k → ∞

Hypothesis 6.2.12. For some constant Ka, j,m = 1, . . . , N and k ≥ 1,

|ajk − aj,k+m| ≤ Ka.

Observe that hypotheses 6.2.11 and 6.2.12 are independent; for example, for
j = 1, . . . , N and k ≥ 1, ajk = exp(−j−k) satisfies the second one but not the first;
and ajk = [log(j + k)]

√
j + k (with [x] being the integer part of x) satisfies the first

but not the second.
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Remark 6.2.13. The kind of coefficients allowed by the previous hypotheses are,
for example, ajk ≤ C(jα + kα) for j = 1, . . . , N and k ≥ 1, sufficiently regular
to fulfill hypotheses 6.2.11 and 6.2.12, and bjk given by hypothesis 6.2.7 with any
choice of Qj satisfying (6.3) and (6.4). Note that (6.3) implies that bjk ≤ ajk, so
bjk ≤ C(jα + kα) also. For a concrete example, pick C1, C2 > 0 and α, δ ∈ [0, 1[ and
define the following coefficients for min{j, k} ≤ N :

ajk := C1(j
α + kα)

bjk := C1(j
α + kα)exp

(

C2

(

(j + k)δ − jδ − kδ
))

.

The coefficients are taken to be zero when min{j, k} > N . These correspond to
Qj = exp

(

C2(j − jδ)
)

and have zs = e−C2 .

We borrow known existence results for the kind of admissible solutions of defi-
nition 6.2.4 from [4]:

Theorem 6.2.14 ([4], Theorems 2.4, 3.6 and 5.4). Assume hypotheses 6.2.6 and
6.2.8, and take c0 ∈ X+. Then there exists an admissible solution c to (6.1) on
[0,+∞[ with c(0) = c0. Furthermore, under hypothesis 6.2.6 all solutions to (6.1)
are density-conserving.

Remark 6.2.15. Theorem 2.4 in [4] gives the existence of a solution (in fact, a Carr–
da Costa admissible solution by the method of construction). Theorem 3.6 from [4]
proves this solution conserves density. Finally, Theorem 5.4 in the same paper gives
the existence of a solution that can be obtained as the uniform limit in compact
sets of [0, T [ of Carr–da Costa admissible solutions with truncated initial data, thus
giving the existence of an admissible solution in the sense used here.

Lemma 6.2.16. Assume hypotheses 6.2.6 and 6.2.8. Take µ > 1 and suppose that
c = {cj}j≥1 is an admissible solution to (6.1) on [0, T [ for some T > 0 with initial
data c(0) = c0 such that

∑∞
j=1 j

µc0j < +∞. Then
∑∞

j=1 j
µcj(t) is finite for all

0 ≤ t < T .

Proof. This is just Theorem 3.3 in [16], stated for admissible solutions in the sense
we use here. As Carr–da Costa admissible solutions satisfy the estimate given in
the proof of the above theorem in [16] (which depends only on

∑∞
j=1 j

µc0j ), we can
pass to the limit and thus prove that our admissible solutions also satisfy it.

Hypotheses 6.2.6–6.2.9 imply those of Theorems 5.1 and 5.2 in [16]: (1.7) and
(H2) in [16] are always fulfilled if we assume hypothesis 6.2.6; (H1) is our 6.2.8 and
(H3), (H4) from [16] are contained in hypotheses 6.2.6 and 6.2.9 here, respectively.
This enables us to use these theorems here (recall remark 6.2.3); we will need the
following one about the equilibrium solutions of (6.1).

Definition 6.2.17. An equilibrium of (6.1) is a solution of (6.1) that does not
depend on time. The density of an equilibrium c is the norm of c in X,

∑∞
j=1 j cj.
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Definition 6.2.18. The critical density ρs is defined to be

ρs :=

∞
∑

j=1

Qjz
j
s , (0 < ρs ≤ ∞).

Theorem 6.2.19 ([16], Theorem 5.2). Assume hypotheses 6.2.6–6.2.9.

1. For 0 ≤ ρ ≤ ρs (and also ρ < +∞ if ρs = +∞), there exists exactly one
equilibrium {cρj} of (6.1) with density ρ, which is given by

cρj = Qjz
j ∀ j ≥ 1,

where z is the only positive number such that
∑∞

j=1 jQjz
j = ρ.

2. For ρs < ρ < +∞ there is no equilibrium of (6.1) with density ρ.

Observe that when ρs is finite and {cρs

j }j≥1 represents the critical equilibrium
(the one with density ρs), zs is the single particle density cρs

1 of this equilibrium.
The main result in this chapter is the following:

Theorem 6.2.20. Assume hypotheses 6.2.6-6.2.12, and let c = {cj}j≥1 be an ad-
missible solution of the generalized Becker-Döring equations (6.1) (whose existence
is given by theorem 6.2.14). Call ρ0 :=

∑∞
j=1 jcj(0), the initial density.

1. If 0 ≤ ρ0 ≤ ρs then c converges strongly in X to the equilibrium with density
ρ0.

2. If ρs < ρ0 then c converges in the weak-∗ topology to the equilibrium with
density ρs.

6.3. Proofs

The following result from [16] already gives part of Theorem 6.2.20. Again, note
that the hypotheses in [16] are contained in those here:

Theorem 6.3.1 ([16], Theorem 6.1). Assume hypotheses 6.2.6-6.2.9. Let c = {cj}
be a solution of (6.1) on [0,∞[, and call ρ0 :=

∑∞
j=1 j cj.

Then there exists 0 ≤ ρ ≤ min {ρ0, ρs} such that c
∗
⇀ cρ, where cρ is the only

equilibrium of (6.1) with density ρ (given by Theorem 6.2.19).

With Theorem 6.3.1, the next result will be enough to complete a proof of
Theorem 6.2.20:

Theorem 6.3.2. Assume hypotheses 6.2.6–6.2.12 hold. Suppose that c is an ad-
missible solution to the generalized Becker-Döring equations (6.1) with initial data
c0 ∈ X+ such that c converges weak-∗ to an equilibrium with density ρ < ρs. Then,
c converges strongly to this equilibrium (and in particular, ρ is the density of the
solution c, i.e. ρ = ρ0).



136 CHAPTER 6. ASYMPTOTIC BEHAVIOR

Hence, the aim of the rest of this section will be to prove Theorem 6.3.2. The
following key result gives a bound on the solutions that will easily imply the pre-
compactness of the orbits, which in turn implies Theorem 6.3.2. Call, for i ≥ 1,

Gi(t) ≡
∞
∑

j=i

jcj(t).

Proposition 6.3.3. Let c = {cj}j≥1 be an admissible solution of the generalized
Becker-Döring equations (6.1). Assume hypotheses 6.2.6-6.2.12.

Suppose that for some z < zs

cj(t) ≤ zj := zjQj for all j = 1, . . . , N and all t ≥ 0.

Suppose that {ri}i≥1 is a strictly decreasing sequence of positive numbers that
satisfy, for some λ with 1 < λ < zs/z:

rk−1 − rk

rk − rk+1
< λ for all k

and such that Gi(0) ≤ ri for all i.
Then there exist a positive integer k0 and a constant C > 0 such that Gi(t) ≤ Cri

for all i ≥ k0 and all positive times.

The proof of proposition 6.3.3, which contains the core of the argument, is a
generalization of a method used in unpublished notes by Ph. Laurençot and S.
Mischler [80]. This method is inspired by the proof of uniqueness of solutions to
the Becker-Döring equation in [55]. The use of this kind of argument can be traced
back to [3].

Note that the condition on {rk} in proposition 6.3.3 is not very stringent as the
following lemma states:

Lemma 6.3.4. Given λ > 1 and a positive sequence {gk}k≥1 which tends to zero as
k tends to infinity, there exists a strictly decreasing positive sequence {rk}k≥1 which
converges to zero, such that gk ≤ rk and

rk−1 − rk

rk − rk+1

≤ λ for all k

Proof. Define

ḡ1 := sup
j≥1

{gj} + 1

ḡk := sup
j≥k

{gj}, for k ≥ 2

hk := ḡk − ḡk+1, for k ≥ 1.
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Then ḡk is decreasing, tends to zero and for all k we have ḡk =
∑∞

j=k hj . Define sk

recursively as:

s1 := h1

sk+1 := max
{sk

λ
, hk+1

}

.

Then sk > 0 for all k (it is to ensure this that we added 1 to ḡ1) and we can see that
∑

k≥1 sk converges. For this, note that sk+1 ≤ (sk/λ) + hk+1 and write for m ≥ 2:

m+1
∑

k=1

sk = s1 +

m
∑

k=1

sk+1 ≤ h1 +

m
∑

k=1

hk+1 +
1

λ

m
∑

k=1

sk ≤ ḡ1 − ḡm+2 +
1

λ

m
∑

k=1

sk,

so we have that
(

1 − 1

λ

) m
∑

k=1

sk ≤ ḡ1,

which proves the summability of {sk} since λ > 1. (I thank the referees for suggest-
ing a simpler version of this proof).

Clearly, sk ≥ hk. Let us finally define

rk :=
∞
∑

j=k

sj ≥
∞
∑

j=k

hj = ḡk ≥ gk,

which is positive, greater than gk, strictly decreasing, tends to zero as k → ∞ and

rk−1 − rk

rk − rk+1

=
sk−1

sk

≤ λ.

6.3.1. Proof of the proposition

We will prove the proposition for solutions whose initial data is a truncation
at a sufficiently large finite size of {ci(0)}i≥1, with constants C and k0 that do not
depend on the size of this truncation; then the proposition follows for general initial
data by a standard approximation argument using definition 6.2.4 of an admissible
solution.

Take an L ≥ 1 and consider a solution {cLi }i≥1 with initial data cLi (0) = ci(0) for
i = 1, . . . , L and cLi (0) = 0 for i > L. It is again enough to prove the bound in the
result up to a finite time T > 0, with a constant that does not depend on T . So fix
T > 0, and let us find C and k0 (independent of L and T ) such that

cLi (t) ≤ Cri for all i ≥ k0, t ∈ [0, T ] and L sufficiently large.
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By the admissibility of c we know that the functions cLj converge uniformly in [0, T ]
to cj as L→ ∞ (see remark 6.2.5), so the hypotheses of the proposition imply that
for sufficiently large L

cLj (t) < zjQj for j = 1, . . . , N, t ∈ [0, T ].

In the following L will always be large enough for this to hold (note that the choice
of L depends also on T ).

Furthermore, GL
i (0) ≤ Gi(0) ≤ ri for all i (where we have denoted GL

i =
∑∞

j=i jc
L
j , the corresponding to Gi for the solution {cLi }).

From now, to simplify the notation a bit, we will omit the L in both cLj and GL
j ,

as the full cj and Gj will not be mentioned anymore. Wjk will be used to denote
ajkc

L
j c

L
k − bjkc

L
j+k.

For any sequence {Ψj}j≥1 it holds formally that:

d

dt

∞
∑

j=1

Ψjcj =
1

2

∞
∑

j,k=1

(Ψj+k − Ψj − Ψk)Wjk

Figure 6.1: Values of Ψj+k − Ψj − Ψk

In particular we can apply the previous relation to Ψj = j · χj≥i (i ≥ 1) to get:

d

dt

∞
∑

j=i

jcj =
1

2

i−1
∑

j=1

i−1
∑

k=i−j

(j + k)Wjk +
i−1
∑

j=1

∞
∑

k=i

jWjk, (6.5)

and this equality is rigorously justified because the solution {ci} has finite moments
∑∞

j=1 j
µcLj (t) of every order µ ∈ R for every positive time t (see lemma 6.2.16), so the

sums on both sides of the previous equality converge uniformly and we can obtain
the equation by means of standard results on differentiation of uniformly convergent
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series of functions. One way to obtain the expression on the right hand side is to
write the sum over j, k as a sum over the regions depicted in figure 6.1, where the
value of Ψj+k − Ψj − Ψk is indicated in each of them.

Due to hypothesis 6.2.6, Wjk = 0 if min{j, k} > N . Hence, for i > 2N the first
sum in (6.5) (which comprises all pairs j, k < i such that j + k ≥ i) can be broken
into those terms where j ≤ N and those where k ≤ N :

1

2

i−1
∑

j=1

i−1
∑

k=i−j

(j + k)Wjk =
1

2

N
∑

j=1

i−1
∑

k=i−j

(j + k)Wjk +
1

2

i−1
∑

j=i−N

i−1
∑

k=i−j

(j + k)Wjk

=
1

2

N
∑

j=1

i−1
∑

k=i−j

(j + k)Wjk +
1

2

N
∑

k=1

i−1
∑

j=i−k

(j + k)Wjk

=

N
∑

j=1

i−1
∑

k=i−j

(j + k)Wjk,

where we have changed the order of the double sum and used the symmetry of
(j + k)Wjk. If i > N , the second sum in (6.5) is nonzero only if j ≤ N , so for
i > 2N we have

d

dt

∞
∑

j=i

jcj =

N
∑

j=1

i−1
∑

k=i−j

(j + k)Wjk +

N
∑

j=1

∞
∑

k=i

jWjk. (6.6)

We rewrite the latter double sum:

N
∑

j=1

∞
∑

k=i

jWjk =

N
∑

j=1

∞
∑

k=i

j(ajkcjck − bjkcj+k)

=
N
∑

j=1

∞
∑

k=i−j

jaj,j+kcjcj+k −
N
∑

j=1

∞
∑

k=i

jbjkcj+k

=

N
∑

j=1

i−1
∑

k=i−j

jaj,j+kcjcj+k +

N
∑

j=1

∞
∑

k=i

jcj+k(aj,j+kcj − bjk)

=: S1 + S2 (6.7)

where we have denoted the two double sums as S1, S2 to mention them later.
We know that

cj(t) ≤ Qjz
j for all j = 1, . . . , N and t ∈ [0, T ].

Hence, as z < zs, we see that thanks to hypothesis 6.2.7 and for j ∈ {1, . . . , N},

aj,j+kcj − bjk ≤ aj,j+kQjz
j − ajkQj

Qk

Qj+k

= Qjaj,j+k

(

zj − ajk

aj,j+k

Qk

Qj+k

)

.
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Note that the term in parenthesis tends to zj − zj
s as k → ∞ (thanks to hypotheses

6.2.11 and 6.2.9), so S2 ≤ 0 for t ∈ [0, T ] and i sufficiently large. Then, continuing
from (6.6), using (6.7) and omitting S2, we have for i large that

d

dt

∞
∑

j=i

jcj ≤
N
∑

j=1

i−1
∑

k=i−j

(j + k)Wjk +
N
∑

j=1

i−1
∑

k=i−j

jaj,j+kcjcj+k (6.8)

Using again cj ≤ zj := zjQj for j = 1, . . . , N and

ck =
1

k
(Gk −Gk+1) for all k,

rewrite (6.8) as:

d

dt
Gi(t)

≤
N
∑

j=1

i−1
∑

k=i−j

(j + k)

(

ajkcj
Gk −Gk+1

k
− bjk

Gj+k −Gj+k+1

j + k

)

+

N
∑

j=1

i−1
∑

k=i−j

jaj,j+kcj
1

j + k
(Gj+k −Gj+k+1)

≤
N
∑

j=1

i−1
∑

k=i−j

(j + k)

(

ajkzj
Gk −Gk+1

k
− bjk

Gj+k −Gj+k+1

j + k

)

+

N
∑

j=1

i−1
∑

k=i−j

jaj,j+kzj
1

j + k
(Gj+k −Gj+k+1)

=
N
∑

j=1

i−1
∑

k=i−j

(Ajk(Gk −Gk+1) −Bjk(Gj+k −Gj+k+1)) (6.9)

Where

Ajk :=
(j + k)ajkzj

k

Bjk :=
(j + k)bjk − jaj,j+kzj

j + k
.

Now we take any λ < λ̄ < zs

z
(recall λ appears in the condition on ri), and note

that the following holds for k large enough:

Bjk ≥ λ̄jAjk for j = 1, . . . , N. (6.10)
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The proof of this is easy, as (note that we can divide by ajk by hypothesis 6.2.6):

Bjk

Ajk
=

kbjk
(j + k)ajkzj

− jkaj,j+kzj

(j + k)2ajkzj

=
kajkQjQk

(j + k)ajkQj+kQjzj
− jkaj,j+k

(j + k)2ajk

=
k

j + k

Qk

Qj+k

1

zj
− jkaj,j+k

(j + k)2ajk
, (6.11)

where the detailed balance hypothesis 6.2.7 has been used to pass to the second
line. Now observe that the term with the negative sign converges to 0 thanks to
hypothesis 6.2.11, and that the other term

lim
k→∞

k

j + k

Qk

Qj+k

1

zj
=
(zs

z

)j

> λ̄j (6.12)

because of hypothesis 6.2.9. Hence we have (6.10).
So, thanks to (6.10), we can continue from (6.9) and get, for i large enough:

d

dt
Gi ≤

N
∑

j=1

i−1
∑

k=i−j

Ajk

(

Gk −Gk+1 − λ̄j(Gj+k −Gj+k+1)
)

(6.13)

It is easy to see from hypothesis 6.2.11 that for j,m = 1, . . . , N ,

Ajk

Aj,k+m

→ 1 as k → ∞.

This means that for small variations of k, Ajk changes little when k is large. Take
ǫ such that

1 − ǫ

1 + ǫ
≥ λ

λ̄
. (6.14)

We can then find an i0 > 2N such that (6.13) holds for i ≥ i0 and we have, also for
i ≥ i0:

(1 − ǫ)Aj,i−j ≤ Ajk ≤ (1 + ǫ)Aj,i−j for j = 1, . . . , N, k = i− j, . . . , i− 1 (6.15)

So for i ≥ i0 we can write from (6.13):

d

dt
Gi

≤
N
∑

j=1

Aj,i−j

i−1
∑

k=i−j

(

(1 + ǫ)(Gk −Gk+1) − (1 − ǫ)λ̄j(Gj+k −Gj+k+1)
)

=
N
∑

j=1

Aj,i−j

[

(1 + ǫ)(Gi−j −Gi) − (1 − ǫ)λ̄j(Gi −Gi+j)
]

(6.16)
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From the hypothesis on ri, for j = 1, . . . , N and i > j,

ri−j − ri =

j
∑

k=1

(ri−k − ri−k+1)

≤
j
∑

k=1

λ(ri−k+1 − ri−k+2) = λ(ri−j+1 − ri+1)

Apply this j times to get:

ri−j − ri ≤ λj(ri − ri+j) ≤ λ̄j 1 − ǫ

1 + ǫ
(ri − ri+j) , (6.17)

where we used (6.14) together with λ/λ̄ < 1 to say that

1 − ǫ

1 + ǫ
≥
(

λ

λ̄

)j

.

If the sequence {ri} satisfies (6.17) then {Cri} also satisfies it, for any positive
C. Take C > 1 sufficiently large so that

Cri > M0 ≥ Gi(t) for i < i0 and t ≤ T , (6.18)

where by M0 we mean the density of the full initial data with no truncation. Now
define

Mi := Gi − Cri, (6.19)

Hi := (Gi − Cri)+ (6.20)

We know Hi(t) = 0 for i < i0 and t < T because of (6.18).
As the Cri satisfy (6.17) we can write, continuing from (6.16), for i ≥ i0:

d

dt
Mi ≤

N
∑

j=1

Aj,i−j

[

(1 + ǫ)(Mi−j −Mi) − (1 − ǫ)λ̄j(Mi −Mi+j)
]

(6.21)

Then, the same inequality holds forHi: note that most of the previous reorganization
was done in order to have the term inMi as the only term with negative sign in (6.21).
Otherwise we cannot justify writing the inequality in terms of Hi as is done next:

d

dt
Hi = χMi>0

d

dt
Mi ≤

≤ χMi>0

N
∑

j=1

Aj,i−j

[

(1 + ǫ)(Mi−j −Mi) − (1 − ǫ)λ̄j(Mi −Mi+j)
]

≤
N
∑

j=1

Aj,i−j

[

(1 + ǫ)(Hi−j −Hi) − (1 − ǫ)λ̄j(Hi −Hi+j)
]

. (6.22)
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(We have used χMi>0Mi = Hi and χMi>0Mk ≤ Hk for any i, k). Now we can sum this
from i = i0 to infinity (note again that the sums are all convergent, as the solution
{cj} with truncated initial data has finite moments of all orders) and reorganize the
terms:

d

dt

∞
∑

i=i0

Hi ≤
∞
∑

i=i0

N
∑

j=1

Aj,i−j

[

(1 + ǫ)(Hi−j −Hi) − (1 − ǫ)λ̄j(Hi −Hi+j)
]

=

N
∑

j=1

∞
∑

i=i0−j

Hi

(

(1 + ǫ)Aji − (1 − ǫ)λ̄jAj,i−j

)

−
N
∑

j=1

∞
∑

i=i0

Hi(1 + ǫ)Aj,i−j

+
N
∑

j=1

∞
∑

i=i0+j

Hi(1 − ǫ)λ̄jAj,i−2j

=
N
∑

j=1

i0−1
∑

i=i0−j

Aji(1 + ǫ)Hi +
∞
∑

i=i0

Hi(1 + ǫ)
N
∑

j=1

[Aji − Aj,i−j]

+
∞
∑

i=i0

Hi(1 − ǫ)
N
∑

j=1

λ̄j [Aj,i−2j − Aj,i−j] −
N
∑

j=1

i0+j−1
∑

i=i0

HiAj,i−2jλ̄
j(1 − ǫ)

=: T1 + T2 + T3 + T4, (6.23)

where the Ti (i=1,2,3,4) are the sums above. Observe that T4 is negative and T1

only contains terms in Hi for i < i0, so it is directly zero (recall (6.18)). Also, note
that for j = 1, . . . , N and i ≥ i0 we have, by using hypothesis 6.2.12, that

|Aji − Aj,i−j| =

∣

∣

∣

∣

j + i

i
ajizj −

i

i− j
aj,i−jzj

∣

∣

∣

∣

≤ zjaji

∣

∣

∣

∣

j + i

i
− i

i− j

∣

∣

∣

∣

+ zj
i

i− j
|aji − aj,i−j|

≤ zjK(i+ j)
j2

i(i− j)
+ zj

i

i− j
Ka,

which is easily seen to be bounded by a certain constant A′ for j = 1, . . . , N and
i > N . Hence, the coefficient of Hi in T2 and T3 is bounded by a certain constant A
independent of j and i and then

d

dt

∞
∑

i=i0

Hi ≤ A
∞
∑

i=i0

Hi.

Gronwall’s lemma then shows that Hi(t) = 0 for i ≥ i0 and t ∈ [0, T ]; that is to say
Gi(t) ≤ Cri. This proves our claim.
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6.3.2. Proof of the main theorem

Finally, we arrive at the proof of theorems 6.3.2 and 6.2.20, which is not difficult
once the proposition of the previous section has been established.

Proof of Theorem 6.3.2. Let c be an admissible solution that converges weak-∗ in
X to an equilibrium of mass ρ < ρs, which must be given by {Qj z̄

j}j≥1 for some
0 ≤ z̄ < zs (see theorem 6.2.19). We will prove that the orbit of any such solution
must be relatively compact in X and hence the convergence must be strong.

Pick z ∈]z̄, zs[. As we know that cj → Qj z̄
j when t→ ∞ for all j, we can find a

t0 > 0 so that
cj(t) ≤ Qjz

j for all j = 1, . . . , N and t ≥ t0.

As Lemma 6.3.4 ensures, we can always find a sequence {ri} tending to zero as i→ ∞
that satisfies the conditions in Proposition 6.3.3 with Gi(t0) instead of Gi(0). We
can apply the proposition, with the z we have chosen, to {cj(t+ t0)}j≥1 (which is a
translation in time of the solution c and thus is a solution itself) and deduce that
for some C > 0, k0 ≥ 1 and all t > t0,

Gi(t) ≤ Cri for i ≥ k0.

As {ri} tends to zero, this bound says that the solution c is relatively compact in
X+, and we have finished.

Proof of Theorem 6.2.20. Suppose that c is an admissible solution of (6.1) in [0,+∞[
with initial data c(0) = c0 ∈ X+. Theorem 6.3.1 shows that c converges weak-∗ in
X to an equilibrium of mass ρ for some 0 ≤ ρ ≤ ρ0.

If ρ0 < ρs, then this convergence is also strong (by theorem 6.3.2) and hence
ρ = ρ0.

If ρ0 = ρs (with ρs <∞), then ρ ≤ ρs. But if ρ < ρs then again the convergence
must be strong and ρ = ρs, which is a contradiction. Hence, ρ = ρ0 = ρs and we see
the convergence is strong because of lemma 6.2.1.

Finally, if ρ0 > ρs, then ρ ≤ ρs and it must be ρ = ρs or otherwise the convergence
is strong, which is not possible given that ρ0 > ρ.



Chapter 7

Asymptotic analysis and numerical

simulation of a simple case

This chapter presents the results obtained together with Luis Bonilla and John
Neu, which were published in [73].

7.1. Description of the equations

Finding a manageable approximation to the behavior of the coagulation-frag-
mentation equations is both a very interesting and very challenging task. Here we
present such an approximation by means of an asymptotic analysis in a case which
is simple enough to be studied but still realistic enough to be a good candidate as
a model for certain physical processes. Results will be checked against numerical
solutions to the equations. We will deal with the Becker-Döring equations when the
binding energy depends linearly on the cluster size; this is,

ǫk = (k − 1)αkT, (7.1)

where αkT is the monomer-monomer binding energy (k is Boltzmann’s constant
and T the temperature). As we are considering the Becker-Döring model, we are
taking into account only reactions between monomers (individual particles) and
other clusters. This expression for the binding energy is suitable for aggregates of
certain kinds of lipids when these form rodlike clusters. The molecules of these lipids
typically have a hydrophilic head and a hydrophobic tail, so in aqueous solution they
spontaneously arrange themselves so that tails are away from the surrounding water
and heads are in contact with it. Depending on the shape of the particular molecule,
they can form spherical aggregates with tails pointing inwards and heads pointing
outwards, or form lipid bilayers such as those found in cell membranes, where lipid
molecules form a double layer with heads on the external surface and tails on the
inside. Clusters formed by lipids in aqueous solution are called micelles, and the
process by which they form is called micellization.

145
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In order to model the kinetics of the system with the Becker-Döring equations
we need to give the value of the coagulation and fragmentation coefficients. We will
assume that the detailed balance hypotheses holds (cf. hypotheses 6.2.7). Under this
condition, recall the relationship between the binding energy and the coagulation
and fragmentation coefficients given in (2.18):

Qi = e−
ǫi
kT .

Here ǫi is the binding energy of an i-cluster and the Qi are the coefficients in the
detailed balance condition, so that coagulation coefficients ai and fragmentation
coefficients bi are related by

Qiai = Qi+1bi.

The Becker-Döring equations (eqs. (1.1)) take the following form when the above is
taken into account:

d

dt
ρk = jk−1 − jk, k ≥ 2, (7.2)

jk := bk

(

e
ǫk+1−ǫk

kT ρ1ρk − ρk+1

)

, k ≥ 1, (7.3)

and c1 evolves so that the total density remains constant. Note that we write ρk

here instead of ck in (1.1).
To completely specify the equations we need to give the fragmentation coefficient

bk (or, equivalently, the coagulation coefficient, as they are related by the detailed
balance hypothesis). The simplest possible model is obtained by setting bk = 1 for
all k (actually, we could set bk to some other constant, but a time rescaling leaves
the same equations as for bk = 1). Hence we will set bk = 1 for simplicity and rewrite
equations (7.2), (7.3) using (7.1) as

d

dt
ρk + (eαρ1 − 1)(ρk − ρk−1) = ρk+1 − 2ρk + ρk−1 k ≥ 2. (7.4)

At an initial condition at time t = 0 we will assume that there are only monomers:
ρ1(0) = ρ > 0 and ρk(0) = 0 for all k ≥ 2.

For the asymptotic analysis we will consider the limit in which ρ ≫ e−α, where
the initial concentration is much larger than the critical monomer concentration.
The parameters ρ and α are not really independent. If we rescale the cluster densities
with ρ so that

ρk = ρ rk,

and define a scaled time

τ ≡ eαρ t ≡ t

ǫ
,

then the rescaled problem contains the single parameter

ǫ ≡ e−α

ρ
≪ 1.



7.2. NUMERICAL RESULTS 147

Equations (7.4) become then

drk

dτ
+ (r1 − ǫ)(rk − rk−1) = ǫ (rk+1 − 2rk + rk−1), k ≥ 2 (7.5)

while the density conservation condition becomes

∞
∑

k=1

k rk = 1 (7.6)

and our initial conditions are, in terms of the rk,

r1(0) = 1, rk(0) = 0 for k ≥ 2. (7.7)

Finally, let us define the total density of clusters as

rc :=

∞
∑

k=1

rk. (7.8)

Then, two identities are easily derived from (7.5) and (7.6):

dr1
dτ

+ r1(r1 + rc) + ǫ(r1 − r2 − rc) = 0, (7.9)

drc

dτ
+ r1rc + ǫ(r1 − rc) = 0. (7.10)

7.2. Numerical results

The numerical solution of the initial value problem given by equations (7.5)–(7.7)
clearly expresses the phenomenology of micellization, and backs up the singular
perturbation analysis carried out in section 7.3. Figures 7.1 (a) and 7.2–7.4 are
histograms of rk as a function of k at different times, and figure 7.5 records the
time-dependent behavior of the average cluster size 〈k〉.

Figure 7.1 (a) depicts an early stage of the kinetics. The sequences of small dots
at each k record the values of rk at times between τ = 0 and τ = 2, in increments
of ∆τ = 0.2, and the larger dots joined by straight lines record the values of rk at
τ = 10. The direction of increasing time is generally clear. As indicated in figure 7.1
(b), the monomer concentration rapidly decreases to a small fraction of its initial
value r1 = 1, so that the time orientation on the line k = 1 is downward. Many
small clusters of sizes 2 ≤ k ≤ 5 are simultaneously created, so the time orientation
on the lines of these k is generally upwards. Notice that ρ2 reaches a maximum and
then decreases to a constant value, as can be seen in figure 7.1 (c). By the end of
the initial stage at time τ = 10, the creation of smaller clusters (with 2 ≤ k ≤ 5) has
slowed down greatly relative to the initial rate for times 0 < τ < 2. Furthermore,
the number of clusters with more than five monomers is negligible. At τ = 10,
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Figure 7.1: (a) Scaled cluster size distribution ρk/ρ as a function of k for 0 ≤ τ ≤ 10. At
time τ = 10, the values of ρ1/ρ, ρ2/ρ, etc., have been joined by straight lines as a guide
to the eye. (b) Evolution of the scaled monomer concentration ρ1/ρ. (c) Evolution of the
scaled dimer concentration ρ2/ρ. Parameter values are α = 10 and ρ = 0.1.

〈k〉 ≈ 2.69, much smaller than the equilibrium value 〈k〉 ≈ √
ρeα = ǫ−1/2 ≈ 46.9.

To determine the time scales appropriate for exploring the subsequent kinetics, it is
highly instructive to plot the average cluster size 〈k〉 as a function of time, based
on the numerical solution. Figure 7.5 is a log-log plot of 〈k〉 /e as a function of
τ . It reveals an initial rapid growth of 〈k〉 to a “plateau value” close to e, roughly
located in the interval 10 < τ < 100. In the subsequent growth after the plateau,
large clusters with k ≫ 1 eventually appear. Figure 7.5 indicates that by time
τ = 5 × 104, k clusters having 〈k〉 = 10 are prevalent.

Figure 7.2 shows frames at times τ = 20, 104 and 2 × 104, thereby continuing
those in figure 7.1. The heavy dots correspond to τ = 20, which is well inside the
plateau phase. The histograms at τ = 104 and 2× 104 indicate the clear emergence
of a continuum limit of the kinetics.

In the time interval 2×104 < τ < 5×105, the log-log plot of 〈k〉 /e as a function
of τ in figure 7.5 is close to a straight line of slope 1/2. This strongly supports the
existence of a self-similar stage of the kinetics. The line graphs in figure 7.4 depict
〈k〉2 rk as a function of x = k/ 〈k〉 for the times τ = 0.5 × 105, 105 and 1.5 × 105.
They are nearly superimposed on top of each other. The heavy dots correspond to
the plateau time τ = 20, so the change in the distribution shape over the whole time
span 20 < τ < 1.5 × 105 is not very great.

The self-similar stage is not the final chapter of the kinetics story either. By
τ = 106, the linear dependence of log(〈k〉 /e) with logτ breaks down. In fact, at
τ = 106, 〈k〉 ≈ 31.1, which is comparable to the equilibrium value of 46.9 mentioned
before. Evidently, there is a final stage of kinetics in which the size distribution
asymptotes to its equilibrium form. Figure 7.3 is the final era of cluster aggregation,
continued from figure 7.2, in which the snapshots of the size distribution are taken
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Figure 7.2: Same as figure 7.1 (a), for the times τ = 20, 104 and 2×104. At the two later
times, we have joined values of ρk/ρ corresponding to neighboring k’s by straight lines as
a guide to the eye.
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Figure 7.3: Same as figure 7.1 (a), starting at τ = 2 × 105. Snapshots of the size
distribution have been taken at time intervals of τ = 2 × 105, until a time τ = 16 × 105.
The last snapshot corresponds to τ = 40 × 105.

at τ increments of 0.2×106, from 0.2×106 to 4×106. Convergence to an exponential
distribution with 〈k〉 equal to the equilibrium value is clear.

7.3. Asymptotic approximation

In this section we will interpret the numerical results shown in section 7.2 by
using singular perturbation methods.

7.3.1. Initial transient

Initially, r1(0) = 1, and there are no multiparticle aggregates. As we have seen
in section 7.2, the numerical solution of the complete model shows that there is an
initial transient stage during which dimers, trimers, etc. form at the expense of
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Figure 7.4: Approximate self-similar behavior of the size distribution at times τ =
50000, 100000, and 150000 (solid lines). Notice that 〈k〉2 rk is approximated by the same
function of k/ 〈k〉 at different times. The dots correspond to τ = 20.

the monomers, and that rk ≈ 0 for sufficiently large k. Taking the ǫ → 0 limit of
equations (7.9) and (7.10) yields the following planar dynamical system:

dr1
ds

= −(r1 + rc) (7.11)

drc

ds
= −rc (7.12)

ds

dτ
= r1 (7.13)

in the adaptive time s =
∫ τ

0
ρ1 dτ . The general solution of the linear system (7.11)–

(7.12) is
r1 = (a− bs)e−s, rc = be−s,

where a an b are arbitrary constants. Our initial condition yields a = b = 1, so that

r1 = (1 − s)e−s, rc = e−s, (7.14)

and from equation (7.13),

τ =

∫ s

0

es

1 − s
ds. (7.15)

Clearly, τ → ∞ corresponds to s → 1−. At s = 1, equation (7.14) yields r1 = 0,
rc = e−1, which are the limiting values of the variables r1 and rc at the end of the
initial stage. Equation (7.5) with ǫ = 0 becomes d(rke

s)/ds = rk−1e
s, which can be

solved recursively to yield

rk =

(

sk−1

(k − 1)!
− sk

k!

)

e−s. (7.16)

As τ → ∞, rk → (k − 1)e−1/k!. Since r6(1) = 0.00255, after the initial transient
stage there are insignificant numbers of aggregates with more than five monomers.
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Figure 7.5: Evolution of the average cluster size 〈k〉 /e as a function of the scaled time τ
(thick solid line). The dotted line corresponds to the solution of the system 7.21 below with
an initial condition corresponding to the dot. The straight line of slope 1/2 corresponds
to the self-similar continuum size distribution given by 7.29.

In fact, the average aggregate cluster size is 〈k〉 = 1/rc = e; whereas at equilibrium,
〈k〉 ∼ √

ρeα ≫ 1. We therefore conclude that there must be succesive transients on
time scales much larger than t = O(ǫ).

7.3.2. Intermediate transient

Examination of the exact equation (7.5) shows that when r1 decreases to size
O(ǫ), but r2, r3, . . . are of order 1, all terms in its right hand side are O(ǫ). This
suggests rescaling r1 = ǫR1, so that ρ1 = e−αR1, and using the original time t = ǫτ .
Equation (7.5) becomes

dr2
dt

= −(R1 − 1)(r2 − ǫR1) + r3 − 2r2 + ǫR1, (7.17)

drk

dt
= −(R1 − 1)(rk − rk−1) + rk+1 − 2rk + rk−1, k ≥ 2. (7.18)

The global identities (7.9) and (7.10) become

(R1 − 1)rc − r2 + ǫ

(

dR1

dt
+R2

1 +R1

)

= 0, (7.19)

drc

dt
+ (R1 − 1)rc + ǫR1 = 0, (7.20)

where now rc = ǫR1 +
∑∞

k=2 rk ≈∑∞
k=2 rk, as ǫ → 0. In the limit ǫ → 0, R1 − 1 =

r2/rc and equation (7.18) becomes

drk

dt
= −r2(rk − rk−1)

rc
+ rk+1 − 2rk + rk−1, k ≥ 2. (7.21)



152 CHAPTER 7. ASYMPTOTIC ANALYSIS

20 40 60 80100120140
k

0
0.0001
0.0002
0.0003
0.0004
0.0005
0.0006

Ρk
������
Ρ

Τ=1000000

25 50 75100125150175200
k

0

0.0001

0.0002

0.0003

0.0004

Ρk
������
Ρ

Τ=6000000

10 20 30 40 50 60 70 80
k

0

0.001

0.002

0.003

0.004

Ρk
������
Ρ

Τ=100000

20 40 60 80 100120
k

0
0.0002
0.0004
0.0006
0.0008
0.001

Ρk
������
Ρ

Τ=500000

Figure 7.6: Comparison of the approximation 7.49 (dashed line) to the numerical solution
of the full kinetic model (solid line) for four different times τ : (a) 100 000, (b) 500 000,
(c) 1 000 000, (d) 3 000 000. Notice that the agreement improves as the equilibrium
distribution is approached.

This is a closed system of equations for r2, r3, . . . , to be solved with the asymp-
totic values rk = (k − 1)e−1/k! as initial conditions. It can be shown that the
reduced versions of equation (7.20) (ṙc = −(R1 − 1)rc) and the conservation condi-
tion

∑∞
k=2 krk = 1, are upheld automatically by the solution of equation (7.21), so

that they are redundant for this stage.

The numerical solution of the reduced system of equations (7.21) for rk, k ≥ 2
closely approximates that of the full system of kinetic equations at this stage. It can
be seen that more and more of the rk become different from zero as t increases, and
that rk − rk−1 becomes small. This strongly suggests that rk can be approximated
by a continuum limit for long times. To find the continuum limit, we set

rk(t) ≈ δar(x, T ), x = δk, T = δbt. (7.22)

Here δ → 0 fixes the scale of k = O(1/δ), so that x is fixed at some value of order 1;
a and b are positive exponents to be determined. To find a, we use the conservation
condition

∑∞
k=2 krk = 1:

1 = δa−2

∞
∑

k=2

(kδ)r(kδ, T )δ ∼
∫ ∞

0

xr(x, T ) dx,
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provided a = 2. The limiting form of the particle conservation is thus

∫ ∞

0

x r(x, T ) dx = 1. (7.23)

A similar calculation for the total number of clusters yields rc ∼ δ
∫∞
0
r(x, T ) dx,

which suggests the definition

rc ∼ δRc, Rc ≡
∫ ∞

0

r(x, T ) dx. (7.24)

We now substitute equation (7.22) in (7.21) and use (7.24) instead of rc. The result
is

δb ∂r

∂T
∼ −δ

2r(2δ, T )(r(x, T )− r(x− δ, T ))

δRc
+ r(x+ δ, T )

− 2r(x, T ) + r(x− δ, T ).

The right hand side of this expression is of order O(δ2), so that the following dis-
tinguished limit is obtained if we set b = 2 and take δ → 0:

∂r(x, T )

∂T
= −r(0, T )

Rc(T )

∂r(x, T )

∂x
+
∂2r(x, T )

∂x2
. (7.25)

For k = 2, equation (7.21) and the scaling (7.22) with a = b = 2 imply that
r(0, T ) = 0. Therefore equation (7.25) becomes the simple diffusion equation

∂r

∂T
=
∂2r

∂x2
, (7.26)

for x > 0, t > 0 to be solved with boundary condition r(0, T ) = 0.

The numerical solution of the discrete equations (7.21) show that large aggregates
do not emerge until t ≫ 1. This suggests that the appropriate solution of (7.26)
should be concentrated around x = 0 as T → 0+. That solution is proportional to
the x derivative of the diffusion kernel,

r(x, T ) = − ∂

∂x

(

e−x2/4T

√
πT

)

x

2
√
πT 3/2

e−x2/4T . (7.27)

The numerical factor is chosen so that particle conservation, given by equation
(7.23), holds. It follows from equation (7.24) that Rc = (πT )−1/2. Hence the average
aggregate size is

〈k〉 =
1

δRc
=

√
πT

δ
. (7.28)
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In terms of the original variables k,t and rk, the previous expressions are

rk(t) ∼
k

2
√
πt3/2

e−k2/4t, (7.29)

〈k〉 ∼
√
πt, (7.30)

as t→ ∞. These two equations yield

〈k〉2 rk ∼ πk

2 〈k〉exp

(

−π
4

(

k

〈k〉
2))

, (7.31)

which resembles the behavior of the numerical solution of the full kinetic model as
indicated in figure 7.4. Notice that the average cluster size 〈k〉 corresponding to the
solution of equations (7.21) (dotted line in figure 7.5) approaches the value (7.30)
(straight line of slope 1/2 in figure 7.5).

7.3.3. Equilibrium transient

The large time limit of equation (7.29) does not match the equilibrium size
distribution, which is rk ∼ ǫ e−k

√
ǫ in the same scaled units; see section 2.5. Thus

the limit given by equation (7.29) is expected to break down when it predicts an
average 〈k〉 of the order of the equilibrium length 1/

√
ǫ. According to equation

(7.30), this occurs at a time
√
t = O(ǫ−1/2), this is, t = O(ǫ−1). In this third and

final transient towards equilibrium, we set

rk(t) = ǫr(x, t), x =
√
ǫk, T = ǫt. (7.32)

This is the same scaling as in equation (7.22) with a = b = 2 and δ =
√
ǫ, and

therefore we use here the same notation for the variables. With this scaling, the
scaled particle conservation is

1 =
∞
∑

k=1

krk = ǫ1/2
∞
∑

k=1

ǫ1/2kr(x, T ),

and the limit ǫ→ 0 yields
∫ ∞

0

xr(x, T ) dx = 1. (7.33)

Similarly,

rc ∼ ǫ1/2

∫ ∞

0

r(x, T ) dx ≡ ǫ1/2Rc. (7.34)

The scaled version of the global identity (7.8) is

Rc(R1 − 1) + ǫ1/2R1 + ǫ
dRc

dT
= 0. (7.35)
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Here r10ǫR1 = ǫr(ǫ1/2, T ). It follows from (7.35) that

R1 − 1 = −ǫ
1/2

Rc

+O(ǫ). (7.36)

The scaled kinetic equation (7.5) is

ǫ3
∂r

∂T
= −ǫ2(R1 − 1)

(

r(x, T ) − r(x− ǫ1/2, T )
)

+ ǫ2
(

r(x+ ǫ1/2, T ) − 2r(x, T ) + r(x− ǫ1/2, T )
)

.

We now substitute equation (7.36) in this expression, divide it by ǫ3, and take the
limit ǫ→ 0. The result is

∂r

∂T
=

1

Rc(T )

∂r

∂x
+
∂2r

∂x2
.

In these units, the average aggregate length is 〈x〉 = 1/Rc, and the last equation
can be rewritten as

∂r

∂T
= 〈x〉 ∂r

∂x
+
∂2r

∂x2
, (7.37)

to be solved with the boundary condition

r(0, T ) = 1, (7.38)

which follows from equation (7.36) with ǫ → 0. It can be readily checked that
(d/dT )

∫∞
0
x r(x, T ) dx = 0, and therefore

∫∞
0
x r(x, T ) dx = 1, provided r(x, 0)

satisfies this particle conservation condition.
We now have to show two things:

1. As T → 0+, the solution of equations (7.37) and (7.38) is asymptotic to the
right hand side of equation (7.27), the self-similar limiting solution of the
intermediate transient stage.

2. The solution of equations (7.37) and (7.38) tends to the equilibrium size dis-
tribution as T → ∞.

This completes the description of the dynamics of the aggregate size distribution.

Matching with the intermediate transient stage

We represent r(x, T ) as

r(x, T ) =
1

T
h(ζ, T ), ζ =

x√
T
. (7.39)
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With the factor 1/T , the particle conservation equation (7.6) and the total cluster
density adopt the invariant forms

∫ ∞

0

ζh(ζ, T ) dζ = 1, (7.40)

Rc(T ) =

∫ ∞

0

r(x, T ) dx =
1√
T

∫ ∞

0

h(ζ, T ) dζ =
hc(T )√
T
. (7.41)

Then

〈x〉 =

√

T

hc(T )
. (7.42)

Inserting this equation together with equation (7.39) in equation (7.37) we obtain

∂2h

∂ζ2
+ h+

1

2
ζ
∂h

∂ζ
= T

(

∂h

∂T
+
ζh

hc

)

, (7.43)

to be solved with the boundary condition indicated by equations (7.38) and (7.39),

h(0, T ) = T. (7.44)

Asymptotic similarity as T → 0 means that h(ζ, T ) in equation (7.39) has a limit
H(ζ) as T → 0. The limit equations obtained from equations (7.40)–(7.44) are

∂2H

∂ζ2
+H +

1

2
ζ
∂H

∂ζ
= 0 for ζ > 0,

H(0) = 0,
∫ ∞

0

ζH(ζ) dζ = 1.

The unique solution of these equations is

H(ζ) = ζ
e−ζ2/4

2
√
π
,

which is the right hand side of equation (7.27).

Trend towards equilibrium

The stationary solution of equation (7.37) with the condition (7.38) is re = e−x〈x〉,
and the particle conservation condition gives 〈x〉2 = 1, so that 〈x〉 = 1. Then the
stationary solution of equation (7.37) is re = e−x, which is the sought equilibrium
solution. To show that r(x, T ) → re(x) as T → ∞, we define the associated free
energy

f [r] =

∫ ∞

0

(

−r + rlog

(

r

r0

))

dx− 1 (7.45)

r0 = e−x, (7.46)
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and show that it is a Lyapunov functional for equation (7.37). Notice that we have
∫∞
0
rlogr0 dx = −

∫∞
0
xr dx = −1, and therefore f [r] is the usual free energy,

f [r] =

∫ ∞

0

(rlogr − r) dx.

First, the standard inequality xlogx ≥ x − 1 for positive x = r/r0 yields f ≥
−
∫∞
0
e−x dx − 1 = −2, and therefore f is bounded below. Notice that f [r0] = −2

at equilibrium.

Second, time differentiation of equation (7.46) yields

df

dT
=

∫ ∞

0

∂r

∂T
log

(

r

r0

)

dx.

If we now substitute equation (7.37), integrate by parts, and use r(0, T ) = r0(0) = 1
and

∫∞
0
r dx = 1

〈x〉 , we obtain

df

dT
= 〈x〉 −

∫ ∞

0

1

r

(

∂r

∂T

)2

dx = 〈x〉
(

1 −
∫ ∞

0

r dx

∫ ∞

0

1

r

(

∂r

∂T

)2

dx

)

. (7.47)

The right hand side of this equation is less than or equal to zero because of the
Cauchy-Schwarz inequality

1 = r(0, T )2 =

(
∫ ∞

0

∂r

∂x
dx

)2

≤
(
∫ ∞

0

∣

∣

∣

∣

∂r

∂x

∣

∣

∣

∣

dx

)2

≤
∫ ∞

0

r dx

∫ ∞

0

1

r

(

∂r

∂x

)2

dx.

Therefore, we have proved that the free energy is a Lyapunov functional. We can
rewrite equation (7.47) in an equivalent form by defining r̃0 = exp−x 〈x〉, and using
the identities

〈x〉 = 〈x〉2
∫ ∞

0

r dx =

∫ ∞

0

r

(

∂log r̃0
∂x

)2

dx,

〈x〉 = −〈x〉
∫ ∞

0

∂r

∂x
dx =

∫ ∞

0

r
∂log r

∂x

∂log r̃0
∂x

dx,

to obtain
df

dT
= −

∫ ∞

0

r

(

∂

∂x
log

(

r

r̃0

))2

dx ≤ 0. (7.48)

This equation shows that r → r̃0 as T → ∞. The particle conservation condition
∫∞
0
xr̃0 dx = 1 yields 〈x〉2 = 1, and therefore r̃0 = e−x.
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7.3.4. Approximation of the size distribution function by

matched asymptotic expansions

An uniformly valid approximation to the size distribution function can be easily
formed from

r
(1)
k (τ), given by equations (7.15) and (7.16),

r
(2)
k (τ), which solves the approximate system of equations (7.21), and rc =
∑∞

k=2 rk with the initial conditions rk(0) = (k − 1)e−1/k!,

and r(x, T ), which solves the nonlinear Fokker-Planck equation (7.37) with
the condition (7.38), and matches equation (7.26) as T → 0+.

The result is

r
(unif)
k = r

(1)
k (τ) + r

(2)
k (ǫτ) + ǫr(

√
ǫk, ǫ2τ) − k − 1

k!e

− k

2
√
π(ǫτ)3/2

exp

(

− k2

4ǫτ

)

. (7.49)

Figure 7.6 compares the distribution function given by equation (7.49) to the nu-
merical solution of the complete model equations in times corresponding to the end
of the intermediate stage and the beginning of the equilibration stage. We observe
a good agreement between approximate and numerical solutions, which improves as
the time elapses and the equilibrium distribution is approached.

7.4. Conclusions

On the basis of a simple kinetic model and starting from the initial state of pure
monomers, we have shown that the process of micellization of rodlike aggregates at
high critical micelle concentration occurs in three separated stages or eras. In the
first era, many clusters of small size are produced while the number of monomers
decreases sharply. During the second era, aggregates are increasing steadily in size
and their distribution approaches a self-similar solution of the diffusion equation.
Before the continuum limit can be realized, the average size of the nuclei becomes
comparable to its equilibrium value, and a simple mean-field Fokker-Planck equation
describes the final era until the equilibrium distribution is reached. A continuum size
distribution does not describe micellization until the third era has started; during
the first two eras the effects of discreteness dominate the dynamics.

In order to validate out theory by an experiment, it would be important to
measure the average cluster size as a function of time, as in figure 7.5; the multiscale
behavior is more clearly seen in this figure. To determine the time scale, we need a
measure of the cluster diffusion coefficient d that was set equal to 1 in section 7.1.
A convenient relation could be equation (7.30), which in dimensional units is 〈k〉 ≈
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√
dπt. In case the self-similar size distribution is not reached during the intermediate

phase, another way to determine d is to study the equilibration era and compare the
experimentally obtained size distribution with the numerical solution of the model.
At equilibrium, 〈k〉2 ≈ ρeα, and this relation determines the dimensionless binding
energy α.
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Chapter 8

Existence theory in L1 for the

Wigner-Poisson-Fokker-Planck

system

In this chapter we present the results obtained in collaboration with Juan José
Nieto and José Luis López, published in [13].

8.1. Introduction and main result

As explained in section 1.2 of the introduction, we are interested in the following
initial value problem for the function W (t, x, ξ) with x, ξ ∈ R

3 and t ≥ 0:

∂W

∂t
+ (ξ · ∇x)W + Θ[V ]W =

Dpp

m2
∆ξW + 2λdivξ(ξW ) +Dqq∆xW (8.1)

W (x, ξ, 0) = W0(x, ξ) , (8.2)

where the self-consistent electrostatic potential V is given by the Poisson equation:

V (x, t) =
1

4π

∫

R3
y

n(y, t)

|x− y| dy , (8.3)

with

n(x, t) =

∫

R3
ξ

W (x, ξ, t) dξ . (8.4)

Here, Θ[V ] stands for the pseudo–differential operator

Θ[V ]W (x, ξ, t) =
i

(2π)3

∫

R3
η

∫

R3

ξ′

V (x+ ~

2m
η, t) − V (x− ~

2m
η, t)

~

×W (x, ξ′, t)e−i(ξ−ξ′)·η dξ′ dη , (8.5)

161
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with ~ denoting the reduced Planck constant and m the effective mass of the parti-
cles, while λ,Dpp, Dqq are positive constants related to the interactions between the
particles and the reservoir (cf. [24]):

λ =
η

2m
, Dpp = ηkBT , Dqq =

η~2

12m2kBT
, (8.6)

where η > 0 is the coupling (damping) constant of the bath, kB the Boltzmann
constant and T the temperature of the bath.

We prove the following new result:

Theorem 8.1.1. Let W0 ∈ L1(R3
x × R

3
ξ) ∩ L1(R3

ξ;L
2(R3

x)) be such that
∫

R3
x

∫

R3
ξ

|ξ|2W0(x, ξ) dξ dx <∞.

Then, the Wigner–Poisson–Fokker–Planck equation (8.1)–(8.6) admits a unique
global mild solution

W ∈ C([0,∞);L1(R3
x × R

3
ξ)) ∩ C([0,∞);L1(R3

ξ;L
2(R3

x))) .

Moreover,
W ∈ C((0,∞);W 1,1 ∩W 1,∞(R3

x × R
3
ξ)) .

Also, the charge density (8.4) and the electric potential (8.3) satisfy the following
Hölder–regularity properties: for all t > 0,

n(·, t) ∈ C0,α(R3
x) with 0 < α <

1

2
, V (·, t) ∈ C1,β(R3

x) with 0 < β <
1

3
.

This chapter is structured as follows: in Section 2 we construct the fundamental
solution of the linear kinetic Fokker–Planck operator and establish its main prop-
erties. Section 3 concerns the local existence and uniqueness of solutions to the 3D
WPFP system with nonvanishing friction. In Section 4 we show some regularization
effects of the Fokker–Planck kernel on the Wigner function, the charge density and
the electric potential. Finally, Section 5 is devoted to prove that the solution found
in Section 3 exists globally in time.

8.2. On the fundamental solution

This section is devoted to the description of the fundamental solution of the
quantum Fokker–Planck model (8.1)–(8.5) and the derivation of some of its main
properties. The Green function G associated with the linear kinetic Wigner–Fokker–
Planck equation under study is the fundamental solution of

L[W ] :=
∂W

∂t
+ (ξ · ∇x)W − Dpp

m2
∆ξW − 2λdivξ(ξW ) −Dqq∆xW = 0 . (8.7)
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Lemma 8.2.1. The fundamental solution of the linear operator (8.7) is given by

G(x, ξ, z, v, t) = G0

(

x− z −
(1 − e−2λt

2λ

)

v, ξ − e−2λtv, t
)

, (8.8)

where
G0(x, ξ, t) = d(t) exp

{

−a(t)|x|2 + b(t)(x · ξ) − c(t)|ξ|2
}

(8.9)

with coefficients

a(t) =
m2λ3

Dpp

(1 − e−4λt)

D(t)
, (8.10)

b(t) =
m2λ2

Dpp

(1 − e−2λt)2

D(t)
, (8.11)

c(t) =
m2λ

4Dpp

(

4λt
(

1 + 4λ2m2 Dqq

Dpp

)

− (1 − e−2λt)(3 − e−2λt)
)

D(t)
, (8.12)

d(t) =

(

√

4a(t)c(t) − b(t)2

2π

)3

=

(

m2λ2

πDpp

√

D(t)

)3

, (8.13)

and where

D(t) = λ
(

1 + 4λ2m2Dqq

Dpp

)

t(1 − e−4λt) − (1 − e−2λt)2 . (8.14)

Notice that D(t) and 4a(t)c(t) − b(t)2 are positive functions for all positive times.
The proof is based on the Fourier transformation of Eq. (8.7) with respect to

the (x, ξ)–variables and then integration of the resulting linear first order hyperbolic
problem for Ĝ(y, η, t)

∂Ĝ

∂t
− (y · ∇η)Ĝ+ 2λ(η · ∇η)Ĝ+

Dpp

m2
η2Ĝ +Dqqy

2Ĝ = 0 ,

Ĝ(y, η, 0) = 1 ,

along the characteristics η 7→ e2λtη + 1
2λ

(1 − e2λt)y, where we denoted

Ĝ(y, η, t) = Fx 7→y,ξ 7→ηG(y, η, t) =

∫

R3
x

∫

R3
ξ

G(x, ξ, t)ei(x·y+ξ·η) dξ dx .

From now on, when there is no possible confusion we shall denote

Lp = Lp(R3
x × R

3
ξ), Lq,p = Lq(R3

ξ;L
p(R3

x)) .

In the following result we list some of the properties of G that will be useful in the
sequel to deal with mild solutions of the system (8.1)–(8.5). We have



164 CHAPTER 8. THE WIGNER-POISSON SYSTEM

Lemma 8.2.2. The fundamental solution G of the linear kinetic Fokker–Planck
equation (8.7), given by formulae (8.8)–(8.14), satisfies the following properties for
any t ≥ 0:

(i)

∫

R3
x

∫

R3
ξ

G(x, ξ, z, v, t) dξ dx = 1 for all z, v ∈ R
3.

(ii) ‖G0(t)‖Lq,p ≤ C(q, p) a(t)
3

2
( 1

q
− 1

p
) d(t)1− 1

q for all 1 ≤ q, p <∞.

(iii) For all 1 ≤ q ≤ p <∞, we have

‖∇(x,ξ)G0(t)‖Lp(R3
x;Lq(R3

ξ
)) ≤ C(p, q)

[(

2a(t) + b(t)
)

d(t)
2

3
− 1

p c(t)
1

2(1+ 3

p
− 3

q )

+
(

2c(t) + b(t)
)

d(t)
2

3
− 1

q a(t)
1

2(1+ 3

q
− 3

p)
]

.

In particular, for q = p we have

‖∇(x,ξ)G0(t)‖Lp ≤ C(p)d(t)
2

3
− 1

p

[(

2a(t) + b(t)
)

√

c(t) +
(

2c(t) + b(t)
)

√

a(t)
]

.

Proof. The proof follows from elementary computations. We just make a few re-
marks on the proof of (iii). First we observe that

|∇(x,ξ)G0(x, ξ, t)| ≤
[(

2a(t) + b(t)
)

|x| +
(

2c(t) + b(t)
)

|ξ|
]

G0(x, ξ, t) .

Then, we can estimate

‖∇(x,ξ)G0(t)‖Lp(R3
x;Lq(R3

ξ
)) ≤

(

2a(t) + b(t)
)

‖|x|G0(t)‖Lp(R3
x;Lq(R3

ξ
))

+
(

2c(t) + b(t)
)

‖|ξ|G0(t)‖Lq,p ,

where we have used Minkowski’s inequality to reverse the order of the norms acting
on |ξ|G0.

8.3. Existence of local–in–time mild solutions

In this section we prove the existence and uniqueness of local–in–time mild solu-
tions to the 3D WPFP system (8.1)–(8.6) by application of a fixed–point argument of
contractive type. Local existence was also dealt with in [2] for the simplest friction-
less Wigner–Fokker–Planck model (1.7). By a mild solution W (x, ξ, t) of the WPFP
system (8.1)–(8.2) we understand that satisfying the following integral equation:

W (x, ξ, t) =

∫

R3
v

∫

R3
z

G(x, ξ, z, v, t)W0(z, v) dz dv

−
∫ t

0

∫

R3
v

∫

R3
z

G(x, ξ, z, v, t− s)Θ[V ]W (z, v, s) dz dv ds . (8.15)



8.3. LOCAL–IN–TIME MILD SOLUTIONS 165

Clearly, from the concept of mild solution we may consider W to be split into two
parts: the linear part, only depending on the initial data W0, and the nonlinear part
depending upon the potential V through the pseudo–differential operator Θ[V ]W .
Also, we observe that the first term in the above decomposition actually solves the
linear Wigner–Fokker–Planck problem (8.7) with initial data W0.

Henceforth in the paper the following identity for the nonlinear term constitutes
a crucial ingredient (see [2]):

Θ[V ]W = H ∗ξ W,

where

H(x, ξ, t) =
i

(2π)3

∫

R3
η

V (x+ ~

2m
η, t) − V (x− ~

2m
η, t)

~
e−iξ·η dη

= 16
(m

~

)3

Re

{

i ei 2m
~

x·ξ F−1
x 7→ξV

(2m

~
ξ, t
)

}

.

In fact, it is a simple matter to conclude that

|H(x, ξ, t)| ≤ 16
(m

~

)3∣
∣

∣
F−1

x 7→ξV
(2m

~
ξ, t
)
∣

∣

∣
, (8.16)

where we denoted F−1
x 7→yf = 1

(2π)3

∫

R3
x

f(x)e−ix·y dx the inverse Fourier transform of

f . We also introduce the following notation for convenience: given f ∈ L1, define
the uniparametric semigroup G(t) acting on f as the integral operator

G(t)[f ] =

∫

R3
v

∫

R3
z

G(x, ξ, z, v, t)f(z, v) dz dv .

Now, the mild WPFP equation (8.15) may be rewritten as

W (t) = G(t)[W0] −
∫ t

0

G(t− s)[(H ∗ξ W )(s)] ds . (8.17)

We first proceed to derive a priori bounds on W . In the sequel we shall denote
by C various positive constants. We have the following

Lemma 8.3.1. Let G(t) denote the Green function operator. Let also 1 ≤ p, q <∞
and 1 + 1

p
= 1

r
+ 1

l
, 1 + 1

q
= 1

s
+ 1

m
, with m ≤ l. Then, the following estimates

(i) ‖G(t)[f ]‖Lq,p ≤ e6λ(1− 1

m
)t‖G0‖Ls,r‖f‖Lm,l,

(ii) ‖∇(G(t)[f ])‖Lp(R3
x;Lq(R3

ξ
)) ≤ e6λ(1− 1

m
)t‖∇G0‖Lr(R3

x;Ls(R3
ξ
))‖f‖Lm,l,

(iii) ‖H‖L1(R3
ξ
) ≤ C(‖n‖L1(R3) + ‖n‖L2(R3)) ≤ C(‖W‖L1 + ‖W‖L1,2),
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hold true. Here, the symbol ∇ denotes any first order derivative. Furthermore, in
the particular case p = q = 1 in (i) we have

‖G(t)[f ]‖L1 ≤ ‖f‖L1 .

Proof. (i) follows from the change of variables z +
(

1−e−2λt

2λ

)

v 7→ z, then e−2λtv 7→
v. The proof concludes after application of Young’s inequality for the resulting
convolution and Minkowski’s inequality for the norm of f . The particular case
p = q = 1 is a direct consequence of Lemma 8.2.2 (i). The calculations leading to
(ii) are analogous to those of (i). Finally, (iii) follows from (8.16) by the identity
(see [2])

‖F−1
x 7→yV (·, t)‖L1(R3) =

1

4π

∥

∥

∥
F−1

x 7→y

( 1

|x| ∗ n
)

(·, t)
∥

∥

∥

L1(R3)

=
∥

∥

∥

1

| · |2 (F−1
x 7→yn)(·, t)

∥

∥

∥

L1(R3)
.

Indeed, we first estimate the L1 norm of | · |−2(F−1
x 7→yn)(·, t) outside and inside the

3D unit ball B. We have
∥

∥

∥

1

| · |2 (F−1
x 7→yn)(·, t)

∥

∥

∥

L1(R3\B)
≤ C‖F−1

x 7→yn(·, t)‖L2(R3) ≤ C‖n(·, t)‖L2(R3) .

Likewise, inside B we get
∥

∥

∥

1

| · |2 (F−1
x 7→yn)(·, t)

∥

∥

∥

L1(B)
≤ C‖F−1

x 7→yn(·, t)‖L∞(R3) ≤ C ‖n(·, t)‖L1(R3).

Finally, bounding the norms of n by those of W

‖n(·, t)‖L1(R3) ≤ ‖W (t)‖L1 , ‖n(·, t)‖L2(R3) ≤ ‖W (t)‖L1,2 ,

we conclude (iii).
Let T > 0. In the sequel we shall manipulate functions W (x, ξ, t) defined on the

Banach space C([0, T ];L1 ∩ L1,2), endowed with the norm

‖W‖ := sup
0≤t≤T

(

‖W (t)‖L1 + ‖W (t)‖L1,2

)

.

More precisely, we shall restrict ourselves to the following closed, bounded subset of
C([0, T ];L1 ∩ L1,2):

XT
K =

{

W ∈ C([0, T ];L1 ∩ L1,2) : W (t = 0) = W0; ‖W‖ ≤ K
}

and define the map Γ : XT
K → C([0, T ];L1 ∩ L1,2) by

Γ(W )(t) = G(t)[W0] −
∫ t

0

G(t− s)[(H ∗ξ W )(s)] ds .
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We first notice that Γ is well–defined. Indeed, from Lemma 8.3.1 (i) and (iii) we
have

‖G(t)[W0]‖L1 ≤ ‖W0‖L1 ,

‖G(t− s)[(H ∗ξ W )(s)]‖L1 ≤ C ‖W‖ ‖W (s)‖L1, (8.18)

where we estimated
‖H ∗ξ W‖L1 ≤ ‖H‖L1(R3

ξ
)‖W‖L1

by Young’s inequality. On the other hand, the same type of estimates are also true
for the L1,2 norm. Again from Lemma 8.3.1 (i) and (iii) we have

‖G(t)[W0]‖L1,2 ≤ ‖W0‖L1,2 ,

‖G(t− s)[(H ∗ξ W )(s)]‖L1,2 ≤ C ‖W‖ ‖W (s)‖L1,2. (8.19)

Now, having chosen K = 2‖W0‖T and T ≤ 1

4CK
, it is clear that Γ maps XT

K

onto itself and

‖Γ(W1) − Γ(W2)‖T ≤ 1

2
‖W1 −W2‖T ∀ W1,W2 ∈ XT

K .

Hence Γ : XT
K → XT

K is a contractive map, so it has a unique fixed point W ∈ XT
K .

This is equivalent to saying that there exists a unique solution W (t) ∈ L1 ∩ L1,2

of the WPFP system (8.1)–(8.2) defined on [0, T ], for sufficiently small T > 0 only
depending on W0. Actually (see [77]), there is a maximum time of existence Tmax

which is either Tmax = ∞ or Tmax < ∞ and ‖W‖ → ∞ when T → Tmax. In the
last section we shall prove that the second possibility cannot occur, hence global
existence is attained.

8.4. Smoothing effects and regularity

The purpose of this section is to take advantage of the regularization properties
of the Fokker–Planck operator in order to derive some smoothing effects on the
(Wigner function) solution under the only assumption that the initial data is in
L1 ∩ L1,2.

We first introduce some useful notations and results.

Definition 8.4.1. Let T > 0 and f , g be continuous functions in (0, T ). We will

say that f(t) is equivalent to g(t) at t = 0 (and denote it by f(t)
t=0∼ g(t)) if there

exist three positive constants c1, c2 and t0 such that

c1 f(t) ≤ g(t) ≤ c2 f(t) , for all 0 < t ≤ t0 .

This concept allows to easily identify the rates of time growth/decay near t = 0
of the coefficients of the fundamental solution G0. We have the following
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Lemma 8.4.2. Let a(t), b(t), c(t), d(t) and D(t) be given by formulae (8.13)–(8.14).
Then

D(t)
t=0∼ t2 , a(t)

t=0∼ c(t)
t=0∼ 1

t
, d(t)

t=0∼ 1

t3
, b(t)

t=0∼ 1 .

Proof. For a(t) we observe that (1/a)(0) = 0 and (1/a)′(0) = 4Dqq. Then, a simple
integration allows to deduce that

1

6Dqq t
≤ a(t) ≤ 1

2Dqq t

is satisfied in (0, t0), for some t0 > 0. Analogously, we observe that the first non-
vanishing derivative of 1/c at t = 0 is (1/c)′(0) and that of 1/d is (1/d)′′′(0). For
b(t) we directly check that 0 < b(0) < ∞. Finally, D′′(0) is the first nonvanishing
derivative of D(t) at t = 0. The proof concludes after integration.

We summarize the main regularity properties of W (x, ξ, t), n(x, t) and V (x, t) in
the following

Proposition 8.4.3. Let 0 < T < Tmax and let also W (x, ξ, t) be the solution of
(8.1)–(8.2) given by (8.15). Then,

(i) W ∈ C((0, T );L∞(R3
x × R

3
ξ)),

(ii) W ∈ C((0, T );W 1,1 ∩W 1,∞(R3
x × R

3
ξ)).

Also, the following Hölder regularity is achieved for the density and the potential:

(iii) n(t) ∈ C0,α(R3
x), for all t ∈ (0, T ) and 0 < α < 1

2
,

(iv) V (t) ∈ C1,β(R3
x), for all t ∈ (0, T ) and 0 < β < 1

3
.

Besides,

(v) ∇xV ∈ L2 ∩ L∞(R3
x × R

3
ξ) ,

(vi) ∇xn ∈ L2(R3
x × R

3
ξ) ,

(vii) ξ W ∈ L1(R3
x × R

3
ξ)

3 for all t ∈ (0, T ). Actually,

‖ξW‖L1(R3
x×R3

ξ
)3 ≤ K eC t , 0 < t < T , (8.20)

where K and C are positive constants depending on ‖W‖T .

Proof. The first result is reached as a consequence of Lemmata 8.2.2 and 8.3.1

by using that d(t)
t=0∼ t−3, then d(t)

1

p′ ∈ L1(0, T ) for 1 ≤ p < 3
2
. We prove (i) in four

steps. The first step consists of estimating

‖W (t)‖Lp ≤ ‖G(t)[W0]‖Lp +

∫ t

0

‖G(t− s)[(H ∗W )(s)]‖Lp ds

≤ C‖W0‖L1 d(t)
1

p′ + C ‖W‖2

∫ t

0

d(s)
1

p′ ds.
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Then, we deduce that W ∈ C((0, Tmax);L
p) for all 1 ≤ p < 3

2
. In the second step we

start from an arbitrarily small time ǫ > 0, that is, rewrite W (t) for t > ǫ as

W (t) = G(t− ǫ)[W (ǫ)] −
∫ t

ǫ

G(t− s)[(H ∗W )(s)] ds,

then we estimate ‖W (t)‖Lq with q < 3 as

‖W (t)‖Lq ≤ Cd(t− ǫ)
1

p′ ‖W (ǫ)‖Lp + C ‖W‖
∫ t

ǫ

d(t− s)
1

p′ ‖W (s)‖Lp ds.

The third step is analogous. Indeed, for r < ∞ and t > 2ǫ we can now estimate
‖W (t)‖Lr as

‖W (t)‖Lr ≤ Cd(t− 2ǫ)
1

p′ ‖W (2ǫ)‖Lq + C ‖W‖
∫ t

2ǫ

d(t− s)
1

p′ ‖W (s)‖Lq ds .

Finally, in a fourth step we obtain a uniform bound for W by writing

‖W (t)‖L∞ ≤ Cd(t− 3ǫ)
1

p′ ‖W (3ǫ)‖Lr + C ‖W‖
∫ t

3ǫ

d(t− s)
1

p′ ‖W (s)‖Lr ds

for any t > 3ǫ. Notice that p, q and r are linked by Young’s relations at every step.
The arbitrariness of ǫ allows us to conclude. Also note that we have repeatedly used
the property G(t)[G(s)[f ]] = G(t + s)[f ] of evolution semigroups. Finally, Pazy’s
results (see § 6 of [77]) ensure the continuity of the Green function operator G(t),
thus of the Wigner function.

To prove (ii), we first take gradients in the mild equation (8.17) and obtain

∇(x,ξ)W (t) = ∇(x,ξ)G(t)[W0] −
∫ t

0

∇(x,ξ)G(t− s)[H ∗W (s)] ds .

As for (i) we can prove (ii) in several steps, depending on the time integrability of
‖∇(x,ξ)G(x, ξ, z, v, t)‖Lp = ‖∇(x,ξ)G0(x, ξ, t)‖Lp. Using Lemma 8.2.2 (iii) with q = p
and Lemma 8.4.2 we conclude that

‖∇(x,ξ)G0(x, ξ, t)‖Lp ≤ C t
3

p
− 7

2 .

Therefore, ‖∇(x,ξ)G0(x, ξ, t)‖Lp ∈ L1(0, T ) for 1 ≤ p < 6
5
. Using now the same ideas

as before, (ii) can be reached in seven steps. The time continuity is deduced as
before.

To prove (iii) we first observe that Morrey’s Theorem (see for example [10])
yields

|n(x, t) − n(y, t)| ≤ ‖∇xn(·, t)‖Lp(R3)|x− y|1− 3

p , for p > 3 .
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Then, it suffices to control ‖∇xn(·, t)‖Lp(R3) for some p > 3. To this aim, we shall
show that ‖∇xW (t)‖Lp(R3

x;L1(R3
ξ
)) is bounded. By using Lemmata 8.2.2 (iii) and 8.3.1,

we have

‖∇xW (t)‖Lp(R3
x;L1(R3

ξ
)) ≤ ‖∇xG0(t)‖Lq(R3

x;L1(R3
ξ
))‖W0‖L1,2

+ ‖W‖2

∫ t

0

‖∇xG0(s)‖Lq(R3
x;L1(R3

ξ
)) ds

≤ ‖W0‖L1,2 t
3

2q
−2 + C ‖W‖2 t

3

2q
−1

with 1+ 1
p

= 1
q
+ 1

2
. Now, choosing 6

5
< q < 3

2
and then 3 < p < 6 we get the desired

bound with α = 1 − 3
p
. We notice that the above inequality is still valid for p = 2

(q = 1), then assertion (vi) holds.
We prove (iv) by using the convolution form (8.3) of V and splitting the integral

into two parts:

|V (x, t) − V (z, t)| ≤ C

∫

R3

|n(x− y, t) − n(z − y, t)|
|y| dy ≤

∫

|y|<R

+

∫

|y|≥R

≤ C‖∇xn(·, t)‖Lp|x− z|1− 3

p

∫

|y|<R

1

|y| dy

+
1

R

∫

R3

|n(x− y, t) + n(z − y, t)| dy

≤ CR2‖∇xn(·, t)‖Lp|x− z|1− 3

p +
2Q

R
.

Then, optimizing over R we get

|V (x, t) − V (z, t)| ≤ CQ
2

3‖∇xn(·, t)‖
1

3

Lp|x− z| 13− 1

p ,

thus the continuity of V . For the first order derivative we may analogously write

|∇xV (x, t) −∇xV (z, t)| ≤ C

∫

R3

|n(x− y, t) − n(z − y, t)|
|y|2 dy

≤ CQ
1

3‖∇xn(·, t)‖
2

3

Lp|x− z| 23− 2

p ,

which yields the Hölder continuity of ∇xV . This concludes the proof of (iv) with
β = 2

3
− 2

p
.

To prove (v), we first notice that

‖∇xV ‖L2 ≤ C
(

‖n‖L1 + ‖n‖L2

)

.

Also, the boundedness of ∇xV is a straightforward consequence of ∇xV ∈ L2 and
the Hölder regularity ∇xV ∈ C0,β.
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Finally, (vii) follows by multiplying Eq. (8.15) against ξ and taking L1 norms.

Then, using (vi), Lemma 8.4.2 and the fact that ‖ξH‖L1 ≤ C
(

‖W‖T + ‖∇xn‖L2

)

we get

‖ξW (·, ·, t)‖L1 ≤ sup
0<t<T

F (t) + C‖W‖T

∫ t

0

e−2λ(t−s)‖ξW (·, ·, s)‖L1 ds ,

with

F (t) = C‖W0‖L1

√
t+ e−2λt‖ξW0‖L1 + C‖W‖2

T t
3

2

+C‖W‖2
T t+

∫ t

0

e−2λ(t−s) ‖∇xn(·, s)‖L2 ds .

Now, Gronwall’s inequality applies to yield (8.20).

8.5. Existence of global solutions

This section is devoted to prove that the solution obtained in Section 3 is actually
defined in [0,∞), that is, Tmax = ∞. To this aim, we shall equivalently show that
the norm in L1 ∩ L1,2 cannot blow up in finite time.

We start with some considerations concerning the kinetic energy of the system.

Lemma 8.5.1. Consider the electron kinetic energy associated with f(x, ξ, t) to be
defined by

E[f ](t) =

∫

R3
x

∫

R3
ξ

|ξ|2
2
f(x, ξ, t) dξ dx .

Let W and WH be the solution of the WPFP system (8.1)–(8.5) and its correspond-
ing Hussimi transform (cf. (1.14)), respectively. The following assertions hold true:

(i) E[W ](t) < +∞ for all 0 < t < T .

(ii) E[W ] solves

d

dt

(

E[W ](t) +
1

2m
‖∇xV (·, t)‖2

L2(R3)

)

= 3
Dpp

m2
Q− 4λE[W ](t) − Dqq

m
‖n(·, t)‖2

L2(R3) .

(iii) The Husimi kinetic energy E[WH ] is connected to E[W ] through the following
relation

E[WH ](t) = E[W ](t) +
3~

2m
Q .

(iv) E[W ] is bounded from below. In fact,

E[W ](t) ≥ − 3~

2m
Q , ∀t > 0 .
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Proof. (i) follows from Eq. (8.15) by integrating against |ξ|2 and estimating

E[W ](t) ≤ e−4λtE[W ](0) + ‖|ξ|2G0(t)‖L1‖n‖L1

+

∫ t

0

‖|ξ|2G0(t− s)‖L1‖(H ∗ξ W )(s)‖L1 ds

+

∫ t

0

e−4λ(t−s)

∫

R3
x

∫

R3
ξ

|ξ|2(H ∗ξ W ) dξ dx ds

≤ E[W ](0) + C t ‖n‖L1 + C t2‖W‖2
T

+

∫ t

0

∫

R3
x

∫

R3
ξ

|ξ|2(H ∗ξ W ) dξ dx ds

≤ C(T ) +

∫ t

0

(

∫

R3
x

J · ∇xV dx
)

ds,

where we have used again Lemma 8.4.2. Then, Proposition 8.4.3 (v) and (vii) allows
to conclude.

Multiplying Eq. (8.1) by |ξ|2, integrating against x and ξ and using the Poisson
equation ∆xV = n leads to (ii). (iii) follows from a straightforward calculation.
(iv) is a simple consequence of (iii) given that the Husimi function WH is positive.

We first remark that the density function n(x, t) is nonnegative (see for example
[2, 62]). Then, integrating Eq. (8.15) in x and ξ shows that the total charge of the
system

Q =

∫

R3
x

n(x, t) dx =

∫

R3
x

∫

R3
ξ

W (x, ξ, t) dξ dx

is preserved along the time evolution.
Now we are ready to finish the proof of Theorem 8.1.1. We only need to show

the existence of a solution as stated in the theorem. To this aim, estimating as in
(8.18) and (8.19) and using Lemma 8.3.1 (iii), we find

‖W (t)‖L1 + ‖W (t)‖L1,2 ≤ ‖W0‖L1 + ‖W0‖L1,2

+C

∫ t

0

(

‖n(s)‖L1(R3) + ‖n(s)‖L2(R3)

)(

‖W (s)‖L1 + ‖W (s)‖L1,2

)

ds .

Now it is enough to prove that
∫ t

0

(

‖n(s)‖L1(R3) + ‖n(s)‖L2(R3)

)

ds

is finite for finite time, as in that case we finish by using Gronwall’s lemma. As
‖n(t)‖L1(R3) = Q is constant in time, the problem is reduced to showing that
∫ t

0
‖n(s)‖L2(R3) ds remains bounded on bounded time intervals.
Now, integrating (ii) in Lemma 8.5.1 between 0 and t and using the lower bound

for the kinetic energy given in Lemma 8.5.1 (iv), we get
∫ t

0

‖n(s)‖L2(R3) ds ≤ t+

∫ t

0

‖n(s)‖2
L2(R3) ds ≤ C(W0) + C(λ,Dpp, Dqq) t
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after some simple estimates. This implies that
∫ t

0
‖n(s)‖L2(R3) ds cannot blow up at

finite time. Now we are done with the proof of Theorem 8.1.1.

Remark 8.5.2. Notice that the same proof applies to the general WPFP equation
with nonvanishing friction (1.6), with inessential modifications (in the sense of esti-
mates and time integrability) in the expression for the fundamental solution due to
the additional term 2Dpq

m
divx(∇ξW ). In fact, we find again

G(x, ξ, z, v, t) = G0

(

x− z −
(1 − e−2λt

2λ

)

v, ξ − e−2λtv, t
)

,

where now

G0(x, ξ, t) = δ(t) exp
{

−α(t)|x|2 + β(t)(x · ξ) − γ(t)|ξ|2
}

with

α(t) = m2λ3Dpp
(1 − e−4λt)

∆(t)
,

β(t) = m2λ2

(

Dpp(1 − e−2λt)2 + 8mλ2Dpqt
)

∆(t)
,

γ(t) =
m2λDpp

4

(

4λt
(

1 + 4λ2m2 Dqq

Dpp

)

− (1 − e−2λt)(3 − e−2λt)
)

∆(t)
,

δ(t) =

(

m2λ2

πDpp

√

∆(t)

)3

,

∆(t) = D2
ppD(t) − 4mλ2Dpqt

(

Dpp(1 − e−2λt)2 +mλ2Dpq

)

.

On the contrary, the ideas employed in the proof of Theorem 8.1.1 cannot be
extended to the frictionless WPFP system (1.7) because of the lack of elliptic reg-
ularization in the x–direction. This problem will be tackled by the authors in a
forthcoming paper.

Remark 8.5.3. The regularity properties proved in Theorem 8.1.1 allow to rigorously
justify all the a priori estimates derived on the Wigner function, the density and the
potential. In particular, the energy equation established in Lemma 8.5.1 (i) makes
full sense. Indeed, it is clear that

‖n(t)‖L2(R3) ≤ ‖W (t)‖L1,2 .

Also, from standard elliptic estimates we have

‖∇xV (t)‖L2(R3) ≤ C ‖n(t)‖
L

6
5 (R3)

≤ C Q
2

3‖n(t)‖
1

3

L2(R3) .
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Remark 8.5.4. Some (exponential) control of the growth in time of the kinetic energy
is also possible. Indeed, one can easily deduce from the energy equation stated in
Lemma 8.5.1 (i) the following bound

E[W ](t) ≤ C(W0) + 3
Dpp

m2
Qt+ 4λ

∫ t

0

|E[W ](s)| ds .

Then, once we know from Lemma 8.5.1 (iii) that E[W ] cannot be “very negative”,
it is clear that a (sufficiently large) positive constant (denoted again by C(W0) for
simplicity) must exist such that the above inequality is still valid for |E[W ](t)|.
Consequently, Gronwall’s lemma applies to give

E[W ](t) ≤ C(W0, λ,Dpp)
(

1 + t e4λt
)

.



Chapter 9

Appendix A: Some results from

functional analysis

In this chapter we gather some results used in the proofs of the main results in
this thesis. All of them are known, but either they are difficult to find, or they are
not common, or they cannot be found in the particular form we need, so they are
included here for the convenience of the reader. In each of them we indicate other
sources where one can obtain more complete information.

9.1. Integrable majorants of integrable functions

We present here a version of the classical lemma of de la Vallée-Poussin; a similar
one can be found in [22].

Proposition 9.1.1. Take a positive Borel measure µ on (0,+∞), and a nonnegative
µ-integrable function f : (0,+∞) → R. Then there is a measurable function Φ :
[0,+∞) → [0,+∞) which is increasing, such that limy→∞ Φ(y) = ∞, and

∫ ∞

0

Φfµ < +∞.

In addition, the function Φ can be chosen so that it is strictly increasing, Φ(0) = 0,
Φ is C∞, concave, and such that Φ(y) ≤ y for all y ≥ 0.

If G : [0,+∞) → R is a nonnegative function such that limy→∞G(y) = +∞
and, for some ǫ > 0 and all y ∈ [0, ǫ], G(y) ≥ ǫy, then Φ can be also chosen to be
less than G.

Proof. Define

F (x) :=

∫ ∞

x

fµ

which is a decreasing function and tends to zero as x → ∞ (as f is integrable).
Define

an := inf{x > 0 | F (x) < 1/n2} ∈ R, n ≥ 1,

175
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and consider the increasing sequence {xn}n≥0 given by

x0 := 0

xn+1 := max{xn + 1, an+1 + 1}.
The point of this sequence is that xn → ∞ when n → ∞ (which is not necessarily
true of an) and that

F (xn) ≤ 1

n2
.

Finally, we can define φ:

χn := χ[xn,∞) for n ≥ 0

φ :=

∞
∑

n=0

χn.

The function φ is well defined because for every x > 0, φ(x) is given by a finite sum.
Actually, we could define φ equivalently as

φ(x) = n + 1 for x ∈ [xn, xn+1), n ≥ 0.

It is clear that limx→∞ φ(x) = ∞, as φ(x) > n+ 1 for x > xn. Also, the integral of
φf is finite because
∫ ∞

0

φfµ =

∫ ∞

0

(

∑∞
n=0 χn

)

fµ =
∞
∑

n=0

∫ ∞

0

χnfµ =
∞
∑

n=0

F (xn) ≤
∞
∑

n=0

1

n2
< +∞.

(The monotone convergence theorem justifies the interchange of sums and integral
here.)

Now, let us find a function Φ in these conditions, which is also concave and
strictly increasing, with Φ(0) = 0 and Φ(y) ≤ y for y ≥ 0. With the help of φ and
the above sequence {xn}, we will define Φ recursively as follows:

d0 := 1;

Φ(0) = 0;

dn+1 := min
{

dn,
n+ 1 − Φ(xn)

xn+1 − xn

}

for n ≥ 0

Φ(x) := Φ(xn) + dn+1(x− xn) for n ≥ 0, x ∈ [xn, xn+1].

First, note that Φ is continuous and Φ(0) = 0 by definition. Its derivative on
the interval (xn, xn+1) is dn+1; as {dn} is decreasing and positive, Φ is concave and
strictly increasing, and as d0 = 1, we have Φ(y) ≤ y for y ≥ 0. Also, Φ(x) is smaller
than φ(x), as for x on the interval [xn, xn+1) (n ≥ 0) one has

Φ(x) = Φ(xn) + dn+1(x− xn)

≤ Φ(xn) +
n + 1 − Φ(xn)

xn+1 − xn

(xn+1 − xn) = n+ 1 = φ(x).
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Figure 9.1: Definition of Φ. The step function is φ, and the piecewise linear one is
Φ. The scales on the axes are not the same.

So the function Φf is still µ-integrable (as φf is). Note that the latter inequality,
written for x = xn+1, also proves that Φ(xn) ≤ n for n ≥ 0. Also, limx→∞ Φ(x) = ∞.
To prove this, observe that dn is always positive (as Φ(xn) ≤ n < n + 1), so Φ is
strictly increasing. Consider the set of the n such that dn+1 is different from dn; if
it is finite, then from some point on Φ has a constant positive slope and hence it
tends to ∞; if it is infinite, then for all such n one has

Φ(xn+1) = Φ(xn) + dn+1(xn+1 − xn)

= Φ(xn) +
n+ 1 − Φ(xn)

xn+1 − xn
(xn+1 − xn) = n + 1.

(The equality holds because dn+1 is not dn, so it must be the other quantity in the
minimum). So limx→∞ Φ(x) = ∞.

Now we can find a function Ψ with the same properties as Φ, and which is also
C∞: extend Φ to all of R as

Φ(x) := d1x for x ≤ 0.

Take a “bump function” ρ : R → R which is C∞, nonnegative, with integral 1,
symmetric about the x = 0 axis and with support contained in [−1/2, 1/2]. The
function

Ψ(x) := (Φ ∗ ρ)(x) =

∫ ∞

−∞
Φ(x− y)ρ(y) dy =

∫ ∞

−∞
Φ(y)ρ(x− y) dy

is the one we are looking for: Ψ(0) = 0, as Φ is equal to d1y on the interval [−1/2, 1/2]
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(recall that x1 ≥ 1) and ρ is symmetric, so

Ψ(0) =

∫ ∞

−∞
Φ(y)ρ(−y) dy = d1

∫ 1/2

−1/2

yρ(−y) dy = 0.

Ψ is C∞, being a regularization of Φ by a C∞ function; it is less than x, as for
0 ≤ x ≤ 1/2 we know that Ψ(x) = d1x ≤ x, and for x ≥ 1/2 we have, using the
symmetry of ρ and the bound for Φ,

Ψ(x) =

∫ ∞

−∞
ρ(y)Φ(x− y) dy ≤

∫ ∞

−∞
ρ(y)(x− y) dy

= x

∫ ∞

−∞
ρ(y) dy −

∫ ∞

−∞
ρ(y)y dy = x.

(Note that Φ(x) is not less than x for x < 0, so this calculation does not work for
0 ≤ x < 1/2). Ψ is concave and strictly increasing because Φ is, and convolution
with a positive function preserves this; Ψ(x) tends to ∞ when x → ∞, and if we
observe that for x ≥ 0

Ψ(x) =

∫ ∞

−∞
Φ(y)ρ(x− y) dy ≤ ‖ρ‖∞ Φ(x+ 1/2) ≤ ‖ρ‖∞ (Φ(x) + Φ(1/2)), (9.1)

(note that Ψ is sublinear, as it is concave and Ψ(0) = 0, so Ψ(x+ y) ≤ Ψ(x) + Ψ(y)
for x, y ≥ 0), then it is clear that Ψf is integrable on (0,+∞).

Finally, let us see that Ψ can be chosen to be less than a G in the conditions of
the statement. Call

bn := inf{x ∈ [0,+∞) | G(x) > n+ 1} < +∞.

In the definition at the beginning of the proof, put yn := maxxn, bn + 1, and define
φ using yn instead of xn. Then,

φ(x) ≤ G(x) + 1 for x ≥ x1.

Define Φ accordingly (so Φ(x) ≤ G(x) + 1 for x ≥ x1), and choose δ > 0 such that

δ ≤ min{1, 1/ ‖ρ‖∞ , 1/(‖ρ‖∞ Φ(1/2))}.
Then define Ψ as the convolution above, times δ:

Ψ := δΦ ∗ ρ.
The bound in (9.1) proves that Ψ(y) ≤ G(y) for y ≥ x1, and this Ψ still satisfies all
the other properties of the proposition. Now we only have to choose another δ > 0
such that

δΨ′(0) ≤ ǫ

δΨ(x) ≤ G(x) for ǫ ≤ x ≤ x1,

and then δΨ is less than G (recall that G(x) ≥ ǫx for x ∈ [0, ǫ] and Ψ is concave)
and satisfies all the other properties.
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In the rest of this section, S will be a set, A will be a σ-algebra of subsets of S
and µ be a positive measure on A.

Proposition 9.1.2. Consider the positive measure space (S,A, µ). If f : S → R is a
nonnegative µ-integrable function, then there is a continuous function Λ : [0,+∞) →
[0,+∞) which is increasing, such that limy→∞ Λ(y)/y = ∞, and

∫ ∞

0

Λ(f(y))µ(y) < +∞.

The function Λ can be chosen so that Λ(0) = 0, Λ is C∞, and strictly convex.
If H : [0,+∞) → R is an absolutely continuous function so that G = H ′ is in

the conditions of G in proposition 9.1.1, then Λ can be chosen to be less than H.

This result is a corollary of the previous proposition if one uses the concept of
the distribution function of a given function f :

Definition 9.1.3. If f : S → R is a nonnegative µ-integrable function, then its
distribution function is the function Ff : (0,+∞) → [0,+∞) given by

Ff(λ) := µ{y ∈ X | f(y) > λ} for λ > 0.

Note that the set {y ∈ X | f(y) > λ} is measurable, as f is. It is clear that
Ff is decreasing, so in particular it is Borel measurable. The following lemma gives
a way to calculate the integral of ϕ(f) for suitable functions φ knowing only the
distribution function Ff .

Lemma 9.1.4. Let ϕ : [0,+∞) → [0,+∞) be a nonnegative C1 function such that
ϕ(0) = 0, and f : S → R a nonnegative µ-integrable function. Then

∫

S

ϕ(f(x))µ(x) =

∫ ∞

0

Ff(λ)ϕ′(λ) dλ.

Proof. To prove this, note first that the function

G : S × [0,+∞) → R

(x, t) 7→ f(x) − t

is measurable for the product σ-algebra A ⊗ B, as it is a sum of two measurable
functions. Hence, the set {(x, t) ∈ S × [0,+∞) | f(x) < t} is measurable, and
therefore the function

χ : S × [0,+∞) → R

(x, t) 7→
{

1 if f(x) < t

0 if f(x) ≥ t
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is measurable. Observe that

Ff (λ) =

∫

S

χ(x, λ)µ(x) for λ > 0.

Hence we can apply Fubini’s theorem and write

∫ ∞

0

Ff(λ)ϕ′(λ) dλ =

∫ ∞

0

∫

S

χ(x, λ)µ(x)ϕ′(λ) dλ

=

∫

S

∫ ∞

0

χ(x, λ)ϕ′(λ) dλµ(x) =

∫

S

∫ f(x)

0

ϕ′(λ) dλµ(x) =

∫

S

ϕ(f(x))µ(x).

This proves the lemma.

Now we can prove proposition 9.1.2:

Proof of proposition 9.1.2. The previous lemma proves that
∫

S
fµ =

∫∞
0
Ff(λ) dλ,

so Ff is integrable. Proposition 9.1.1 then shows that there is a C∞ nonnegative
concave function on [0,+∞), which we call Λ′, such that Λ′(0) = 0, limλ→∞ Λ′(λ) =
+∞ and

∫ ∞

0

Ff(λ)Λ′(λ) dλ < +∞.

We define Λ as its primitive:

Λ(λ) :=

∫ λ

0

Λ′(y) dy.

Then Λ clearly fulfills the requirements of the proposition; in particular,

∫

S

Λ(f(x))µ(x) =

∫ ∞

0

Ff (λ)Λ′(λ) dλ < +∞,

and also, using l’Hôpital’s rule,

lim
λ→∞

Λ(λ)/λ = lim
λ→∞

Λ′(λ) = +∞.

Finally, if H is in the conditions of the proposition, we may choose Λ′ less than
H ′ and the result follows.

9.2. Weak compactness in L1

The following characterizations of weak compactness are needed in the proofs of
chapter 5. First we give a general theorem on weak compactness for sets of integrable
functions in a general measure space, and then a more concrete one which is more
convenient for our aims.
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Theorem 9.2.1 (Dunford-Pettis). Let (S,A, µ) be a positive measure space. A
subset K of L1(S, µ) is weakly sequentially compact if and only if it is bounded and
for each decreasing sequence {En} ⊆ A with empty intersection the limit

lim
n

∫

En

fµ = 0 uniformly for f ∈ K.

An easy consequence is the following:

Theorem 9.2.2. Let (S,A, µ) be a positive measure space. A set K ⊆ L1(S, µ) is
weakly sequentially compact if and only if it is bounded and

lim
µ(E)→0

∫

E

fµ = 0 uniformly for f ∈ K

and there exists a sequence {An} of measurable sets of finite measure such that

lim
n→∞

∫

S\An

fµ = 0 uniformly for f ∈ K.

Under stronger conditions on the measure space we have a more direct result:

Theorem 9.2.3. Let X be a locally compact topological space, and µ a regular
positive measure on B, the Borel sets of X. Then a subset K ⊆ L1(X,µ) is weakly
compact if and only if

1. K is bounded,

2. for any compact set C ⊆ X and any ǫ > 0 there is a δ > 0 such that if E ∈ B
with E ⊆ C and µ(E) < δ, then

∫

E

|f |µ < ǫ for all f ∈ K,

3. for any ǫ > 0 there is a compact set C ⊆ X such that

∫

X\C
|f |µ < ǫ for all f ∈ K.

The first of these results and its proof can be found in [32, IV.8.9]; it was first
proved by Dunford [30, p. 643] for a finite measure, and by Dunford and Pettis [31,
p. 376] for a σ-finite measure. The second is stated as an exercise in [32, IV.13.54],
and the third one was proved by Dieudonné [23, p. 93].

When proving the convergence of nonlinear expressions of a sequence {fn} in
a certain Banach space X, one frequently uses the following result: if {fn} ⇀ f
weakly in X and φn → φ in its dual X ′, then φn(fn) → φ(f). For the space L1(U),
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with U an open bounded subset of R
N , this means that when fn ⇀ f weakly in

L1(U) and φn → φ ∈ L∞(U) uniformly, then
∫

U

fnφn →
∫

U

fφ.

In this case, the conditions for this to hold can be weakened, as stated by the
following lemma. Its proof can be found in [54, Lemma A.2].

Lemma 9.2.4. Let U be an open bounded subset of R
N , N ≥ 1. Suppose that vn, v

are functions in L1(U) and wn, w are in L∞(U) for n ≥ 1, such that

vn ⇀ v weakly in L1(U)

{wn} is uniformly bounded in L∞(U)

wn(x) → w(x) a.e. in U.

Then,
∫

U

|vn| |wn − w| → 0

and in particular, vnwn ⇀ vw weakly in L1(U).

9.3. Compactness in C([0, T ], L1 − weak)

In nonlinear evolution equations it is often useful to obtain a certain time reg-
ularity of solutions. The following result gives a way of proving that a sequence of
solutions converges in the space C([0, T ], L1(µ)−weak), where µ is a positive Borel
measure on an open set Ω ⊆ R

N . The conditions in it are not optimal, but are easy
to prove in some interesting cases. A more complete treatment of similar results can
be found in [88].

If Ω ⊆ R
N is an open set and µ is a positive Borel measure on Ω, the space

C([0, T ], L1(µ)−weak) is the set of functions f : [0, T ] → L1(µ) which are continuous
when one considers the weak topology on L1(µ) (we call them weakly continuous
functions). That f is weakly continuous is equivalent to saying that for all Ψ ∈
L∞(µ),

t 7→
∫

f(t)Ψ dµ is continuous on [0, T ].

Take {Vi}i∈I a fundamental system of neighborhoods of 0 in L1(µ) for the weak topol-
ogy. We consider the topology on C([0, T ], L1(µ) − weak) for which a fundamental
system of neighborhoods of 0 is formed by the sets C([0, T ], Vi−weak), for i ∈ I, and
a fundamental system of neighborhoods of other points is obtained by translation. It
can be shown that a sequence of functions {fn} in C([0, T ], L1(µ)−weak) converges
to a function f in this space if and only if for all Ψ ∈ L∞(µ),

∫

fn(t)Ψ dµ→
∫

f(t)Ψ dµ uniformly for t ∈ [0, T ].
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Proposition 9.3.1. Let (X,A, µ) be a positive measure space and {fn} a sequence
of functions in C([0, T ], L1(µ)−weak). Suppose that there is a set K ⊆ L1(µ) which
is weakly compact and such that

fn(t) ∈ K for all t ∈ [0, T ] and all n.

Suppose also that there is a function f : [0, T ] → L1 such that for all φ ∈ C∞
c (Ω),

∫

fn(t)φ dµ→
∫

f(t)φ dµ uniformly in [0, T ].

Then f is weakly continuous from [0, T ] to L1 and fn → f in C([0, T ], L1(µ)−weak).

Proof. We need to prove that for all Ψ ∈ L∞(µ),
∫

fn(t)Ψ dµ→
∫

f(t)Ψ dµ uniformly in [0, T ].

Then, as the convergence is uniform and each function is continuous on [0, T ], we
have that t 7→

∫

f(t)Ψ dµ is continuous on [0, T ], so f is weakly continuous. This
same convergence proves that fn → f in C([0, T ], L1(µ) − weak).

First, suppose that Ψ has support contained in a set A of finite measure. Then
Ψ is integrable and, as C∞

c is dense in L1(µ), given a δ > 0 we can find a function
φ ∈ D and a set E ⊆ A such that

µ(E) ≤ δ

|Ψ(y) − φ(y)| ≤ δ for all y ∈ A \ E
‖φ‖∞ ≤ ‖Ψ‖∞ .

(Thanks to Egorov’s theorem, as A has finite measure; such a φ can be found by
convolution with a regularizing sequence of functions, and then the last condition
also holds.) Now, as fn(t) ∈ K for all n and t, Dunford-Pettis’ theorem 9.2.2 proves
that for any ǫ > 0 we can choose δ < ǫ such that for all sets F ⊆ A with µ(F ) ≤ δ
we have

∫

F

|fn| dµ ≤ ǫ for all n
∫

F

|f | dµ ≤ ǫ.

So take any ǫ > 0; we choose δ < ǫ such that the latter is satisfied, and then choose
φ ∈ D so that the previous equations are also satisfied. Then, for t ∈ [0, T ],

∣

∣

∣

∫

Ψfn(t) dµ−
∫

Ψf(t) dµ
∣

∣

∣

≤
∫

A

|Ψ − φ| |fn(t)| dµ+
∣

∣

∣

∫

φ (fn(t) − f(t)) dµ
∣

∣

∣
+

∫

A

|φ− Ψ| |f(t)| dµ.
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Choose n so that the middle term is less than ǫ for all t ∈ [0, T ]. The other two
terms can be bounded as follows:
∫

A

|Ψ − φ| |fn(t)| dµ

≤
∫

A\E
|Ψ − φ| |fn| dµ+

∫

E

|Ψ| |fn| dµ+

∫

E

|φ| |fn| dµ

≤ δ ‖fn‖1 + ‖Ψ‖∞ ǫ+ ‖φ‖∞ ǫ ≤ ǫ(‖fn‖1 + 2 ‖Ψ‖∞).

As K is weakly compact, it is bounded in L1(µ), so ‖fn‖1 ≤ C for some C > 0 and
all n. Hence, the previous quantity tends to 0 uniformly in n when ǫ → 0 and we
have proved that for all functions Ψ ∈ L∞(µ) with support of finite measure,

∫

fn(t)Ψ dµ→
∫

f(t)Ψ dµ uniformly in [0, T ].

Now take any function Ψ ∈ L∞(µ). For any ǫ > 0, using again Dunford-Pettis’
theorem we can find a compact set A ⊆ Ω such that for all t ∈ [0, T ],

∫

Ω\A
|fn(t)| dµ ≤ ǫ for all n

∫

Ω\A
|f(t)| dµ ≤ ǫ.

Then,

∣

∣

∣

∫

Ψfn(t) dµ−
∫

Ψf(t) dµ
∣

∣

∣

≤
∣

∣

∣

∫

A

Ψfn(t) dµ−
∫

A

Ψf(t) dµ
∣

∣

∣
+

∫

Ω\A
|Ψ| |fn| dµ+

∫

Ω\A
|Ψ| |f | dµ

≤
∣

∣

∣

∫

A

Ψfn(t) dµ−
∫

A

Ψf(t) dµ
∣

∣

∣
+ 2ǫ.

Now by choosing n large enough so that the first term is smaller than ǫ we can see
that we have the same convergence as before for a general Ψ ∈ L∞. This proves the
result.

9.4. Young’s inequality for real numbers

Here we give a summary of the statement and results related to the well-known
Young’s inequality, used in the proofs in chapter 5. Proofs and sharper statements
can be found in [50].

The most familiar form of Young’s inequality, which is frequently used to prove
the well-known Hölder inequality for Lp functions, is the following:
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Theorem 9.4.1 (Young’s inequality). For a, b ≥ 0 and p, q ≥ 1 such that 1
p
+ 1

q
= 1

one has

ab ≤ 1

p
ap +

1

q
bq.

The next theorem is a generalization:

Theorem 9.4.2 (General Young’s inequality). Let c > 0 and f : [0, c] → R be
a strictly increasing continuous function such that f(0) = 0. Let a ∈ [0, c] and
b ∈ [0, f(c)]. Then,

ab ≤
∫ a

0

f(x) dx+

∫ b

0

f−1(x) dx (9.2)

Note that we obtain the previous inequality taking f(x) := xp−1.
In these conditions, if we call

Λ(x) :=

∫ x

0

f(y) dy

Λ∗(x) :=

∫ x

0

f−1(y) dy

then another way to state the same result is to say that:

ab ≤ Λ(a) + Λ∗(b).

As Λ∗ can be obtained from Λ, we can rewrite theorem 9.4.2 as follows:

Theorem 9.4.3 (General Young’s inequality, second form). Take c > 0 and let
Λ : [0, c] → R be C1 and strictly convex with Λ(0) = Λ′(0) = 0. Then for any
a ∈ [0, c] and b ∈ [0,Λ′(c)] it holds that

ab ≤ Λ(a) + Λ∗(b) (9.3)

where

Λ∗(x) :=

∫ x

0

(Λ′)−1(y) dy for x ∈ Λ([0, c]). (9.4)

The following is a useful identity relating Λ and Λ∗:

Lemma 9.4.4. Let c > 0 and Λ : [0, c] → R be a C1 and strictly convex with
Λ(0) = Λ′(0) = 0. Define Λ∗ by (9.4). Then,

xΛ′(x) = Λ(x) + Λ∗(Λ′(x)). (9.5)
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Chapter 10

Appendix B: Evolution equations

in a Banach space

This chapter contains well-known results on evolution equations which are used
elsewhere in this thesis. They are mainly based on personal notes by Stéphane
Mischler [70].

10.1. Solutions of an evolution equation in an ab-

stract separable Banach space

We are interested in defining the concept of solution to the following evolution
equation in a certain complete separable normed space X:

d

dt
f = F, (10.1)

where F : (0, T ) → X (for some 0 < T ≤ +∞). We also want to define a solution
of the initial value problem

d

dt
f = F (10.2)

f(0) = f 0 (10.3)

for some f 0 ∈ X.1

There are many concepts of solution that occur naturally, and in many situations
one cannot just stick to one of them and study solutions in that sense. It is good
to be able to find solutions with strong differentiability, but it might be difficult to
prove their existence, so one usually needs to find solutions in a weaker sense first.
Actually, it may happen that some problems have solutions in a weak sense but not

1The theory developed here is valid for a general interval I ⊆ R instead of (0, T ) and a point
x0 ∈ Ī instead of 0, with minor modifications.

187
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strong solutions, so some of the properties and behavior of the equation is lost if we
only look at strong solutions.

Here we will always suppose that F : (0, T ) → X is integrable. Under this
regularity requirement we will be able to prove that all the concepts or solution of
equation (10.1) or the initial value problem (10.2) defined below are indeed the same
one. We will make use of the theory of integration of functions with values on a
Banach space; for an introduction see [32].

Let us first state the different definitions of solution we will consider. In the
following, X is a complete separable normed space, T ∈ (0,+∞], f is a function
f : (0, T ) → X (with no particular regularity assumed) and F : (0, T ) → X is in
L1((0, T ), X). Here we mean a concrete function F and not a class of functions in
L1((0, T ), X), though the following definitions are the same if F is changed in a set
of measure zero. We will denote the norm of X by ‖·‖.

Some of the definitions below have a distinctive name (such as “mild solution”
or “weak solution”) and others are stated simply as “solutions”. We will always
make clear which definition we are talking about when referring to these.

10.1.1. Definitions of solution to the equation

Definition 10.1.1 (Mild solution). We say that f : (0, T ) → X is a mild solution
(or solution in the sense of semigroups) to equation (10.1) if f is continuous in the
norm topology and

f(t2) = f(t1) +

∫ t2

t1

F (s) ds for all t1, t2 ∈ (0, T ). (10.4)

Definition 10.1.2 (Mild solution, no regularity). We say that f : (0, T ) → X is a
solution to equation (10.1) if

f(t2) = f(t1) +

∫ t2

t1

F (s) ds for almost all (t1, t2) ∈ (0, T )2. (10.5)

Definition 10.1.3 (Solution in the sense of moments). We say that f : (0, T ) → X
is a solution in the sense of moments to equation (10.1) if f is weakly continuous
and

〈f(t2), φ〉 = 〈f(t1), φ〉 +

∫ t2

t1

〈F (s), φ〉 ds for all t1, t2 ∈ (0, T ), φ ∈ X ′. (10.6)

Remark 10.1.4. By weakly continuous we mean that f : (0, T ) → X is continuous
when the weak topology in X is considered (and the usual one in (0, T )). This is
equivalent to the statement that t 7→ 〈f(t), φ〉 is continuous for all φ ∈ X ′.

Remark 10.1.5. Note that, for all φ ∈ X ′, s 7→ 〈F (s), φ〉 is integrable in (0, T ), since
F : (0, T ) → X is integrable (see [32], part I, III.2.19 (c)).
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Definition 10.1.6 (Solution in the sense of moments, no regularity). We say that
f : (0, T ) → X is a solution to equation (10.1) if for all φ ∈ X ′ it holds that

〈f(t2), φ〉 = 〈f(t1), φ〉 +

∫ t2

t1

〈F (s), φ〉 ds for almost all (t1, t2) ∈ (0, T )2. (10.7)

Definition 10.1.7. Let D ⊆ X ′ be dense in the weak-∗ topology. We say that
f : (0, T ) → X is a solution to equation (10.1) if the conditions in definition 10.1.6
hold for for all φ ∈ D (instead of all φ ∈ X ′).

Definition 10.1.8 (Weak solution). We say that f : (0, T ) → X is a weak solution
to equation (10.1) if for all φ ∈ X ′ we have that t 7→ 〈f(t), φ〉 is locally integrable
in (0, T ) and

∫ T

0

〈f(s), φ〉 d
ds
ψ(s) ds = −

∫ T

0

〈F (s), φ〉ψ(s) ds for all φ ∈ X ′ ψ ∈ C∞
c (0, T ).

(10.8)

Definition 10.1.9. Let D ⊆ X ′ be dense in the weak-∗ topology. We say that
f : (0, T ) → X is a solution to equation (10.1) if the conditions in definition 10.1.8
hold for for all φ ∈ D (instead of all φ ∈ X ′).

10.1.2. Definitions of solution to the initial value problem

The previous definitions can be easily modified to give definitions of solution to
the initial value problem (10.2); we state them here in the same order as before; note
that the conditions in the definitions below clearly include those in the corresponding
definition from the previous section.

Definition 10.1.10 (Mild solution). We say that f : (0, T ) → X is a mild solution
(or solution in the sense of semigroups) to the initial value problem (10.2) if f is
continuous in the norm topology and

f(t) = f 0 +

∫ t

0

F (s) ds for all t ∈ (0, T ). (10.9)

Definition 10.1.11 (Mild solution, no regularity). We say that f : (0, T ) → X is
a solution to the initial value problem (10.2) if

f(t) = f 0 +

∫ t

0

F (s) ds for almost all t ∈ (0, T ). (10.10)

Definition 10.1.12 (Solution in the sense of moments). We say that f : (0, T ) → X
is a solution in the sense of moments to the initial value problem (10.2) if f is weakly
continuous and

〈f(t), φ〉 =
〈

f 0, φ
〉

+

∫ t

0

〈F (s), φ〉 ds for all t ∈ (0, T ), φ ∈ X ′. (10.11)
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Definition 10.1.13 (Solution in the sense of moments, no regularity). We say that
f : (0, T ) → X is a solution to the initial value problem (10.2) if for all φ ∈ X ′ it
holds that

〈f(t), φ〉 =
〈

f 0, φ
〉

+

∫ t

0

〈F (s), φ〉 ds for almost all t ∈ (0, T ). (10.12)

Definition 10.1.14. Let D ⊆ X ′ be dense in the weak-∗ topology. We say that
f : (0, T ) → X is a solution to the initial value problem (10.2) if the conditions in
definition 10.1.13 hold for for all φ ∈ D (instead of all φ ∈ X ′).

Definition 10.1.15 (Weak solution). We say that f : (0, T ) → X is a weak solution
to the initial value problem (10.1) if for all φ ∈ X ′ we have that t 7→ 〈f(s), φ〉 is
locally integrable in (0, T ) and

∫ T

0

〈f(s), φ〉 d
ds
ψ(s) ds = −

〈

f 0, φ
〉

ψ(0) −
∫ T

0

〈F (s), φ〉ψ(s) ds

for all φ ∈ X ′ ψ ∈ C1
c ([0, T )). (10.13)

Definition 10.1.16. Let D ⊆ X ′ be dense in the weak-∗ topology. We say that
f : (0, T ) → X is a solution to the initial value problem (10.2) if the conditions in
definition 10.1.15 hold for for all φ ∈ D (instead of all φ ∈ X ′).

The following definitions are easily seen to be equivalent to definitions 10.1.10
and 10.1.12, respectively:

Definition 10.1.17. We say that f : (0, T ) → X is a mild solution (or solution in
the sense of semigroups) to the initial value problem (10.2) if it is a mild solution
to equation (10.1) and ‖f(t) − f 0‖ → 0 when t→ 0+.

Definition 10.1.18. We say that f : (0, T ) → X is a solution in the sense of
moments to the initial value problem (10.2) if it is a solution in the sense of moments
to equation (10.1) and f(t) ⇀ f 0 in the weak topology when t→ 0+.

10.1.3. Equivalence of the definitions

Under the previous assumptions, these definitions are equivalent: a solution in
the sense of any of them is also a solution in the sense of all the others, possibly
after being changed in a set of measure zero. The key assumption is the regularity
of the function F in equation (10.1); some of these solutions make sense when F is
less regular and then it may happen that not all of these concepts are equivalent;
however, they are when F is integrable.

Theorem 10.1.19 (Equivalence of the concepts of solution to the equation). If a
function f : (0, T ) → X is a solution to equation (10.1) in the sense of any of
the previous definitions, then it can be modified in a set of measure zero so that it
becomes a solution to equation (10.1) in the sense of all of the previous definitions.
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Theorem 10.1.20. If a function f : (0, T ) → X is a solution to the initial value
problem (10.2) in the sense of any of the definitions in section 10.1.2, then it can
be modified in a set of measure zero so that it becomes a solution to the initial value
problem in the sense of all of the definitions in section 10.1.2.

10.2. Solutions in L1

Let Ω be an open subset of R
N and µ a positive Borel measure on Ω. We can

put X = L1(Ω, µ) (which we denote as L1(Ω), understanding the measure µ) in the
previous section and obtain several definitions of solution of an evolution equation
in L1(Ω), which have been proved to be equivalent when the F in equation (10.1) is
regular enough. Here we want to particularize the definitions in this case and add
another one when µ is finite on compact sets, that of renormalized solution, which
does not have a direct analogy in an abstract Banach space.

Of course, definitions in the previous section do directly apply to the case
X = L1(Ω), but it is sometimes more convenient to phrase them in slightly dif-
ferent terms: equality between functions in L1 is usually expressed as equality a.e.,
and an integrable function F : (0, T ) → L1(Ω) is more commonly regarded as a
real integrable function on (0, T ) × Ω. We start by stating this latter relationship
precisely, after [32, theorem III.11.16]:

Theorem 10.2.1. Let 0 < T ≤ +∞ and (S,A, µ) be a positive measure space.
We consider the Lebesgue measure dt on (0, T ) and the product measure dt⊗ µ on
(0, T ) × S.

1. If f̃ : (0, T ) → L1(S) is integrable, then there exists an integrable function
f : (0, T ) × S → R such that f(t, ·) = f̃(t) for almost all t ∈ (0, T ).

2. Let f : (0, T ) × S → R be an integrable function. Then the function f̃ :
(0, T ) → L1(S) defined for almost all t ∈ (0, T ) by f̃(t) := f(t, ·) is integrable.

In any of these cases
∫ T

0
f(t, x) dt (which exists for almost all x ∈ S) is a.e.

equal to
∫ T

0
f̃(t) dt.

This enables us to speak interchangeably of integrable functions from (0, T ) to
L1(Ω) and integrable functions on (0, T )×Ω. Definitions 10.1.1–10.1.9 and the cor-
responding definitions of solution to the initial value problem can easily be rewritten
in this case.

10.2.1. Renormalized solutions

The following definition is different from the above ones:
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Definition 10.2.2 (Renormalized solution). We say that a measurable function
f : (0, T ) × Ω → R is a renormalized solution of equation (10.1) if, in the sense of
distributions in (0, T ) × Ω,

d

dt
β(f) = β ′(f)F for all β ∈ C1,b(R). (10.14)

Remark 10.2.3. The notation C1,b(A) represents the set of all bounded functions
with continuous and bounded first-order derivatives in a set A ⊆ R

N .

Remark 10.2.4. Note that the expressions in the definition make sense: β being
continuous and bounded, β(f) is measurable and bounded, so it is a distribution;
for similar reasons β ′(f) is in L∞((0, T )× Ω), so β ′(f)F is integrable on (0, T ) × Ω
and in particular is a distribution.

The following results are well-known:

Theorem 10.2.5. Let f be a renormalized solution to equation (10.1). If f is in
L1((0, T )×Ω), then f is almost everywhere equal to a solution to (10.1) in the sense
of all of our previous definitions.

Theorem 10.2.6. Let f be a solution in L1 to equation (10.1) in the sense of any
of the definitions 10.1.1–10.1.8. Then, f is also a renormalized solution to equation
(10.1).

Theorem 10.2.7. Let f be a mild solution to the initial value problem (10.2) in
the space X = L1(Ω). Then for all piecewise differentiable β : R → R such that
β ′(f)F ∈ L1((0, T ) × Ω) and β(f 0) ∈ L1(Ω) it happens that β(f) : (0, T ) → L1(Ω)
is continuous in the norm topology and

β(f(t)) = β(f 0) +

∫ t

0

β ′(f(s))F (s) ds for all t ∈ (0, T ). (10.15)

(This is, β(f) is a mild solution of the initial value problem d
dt
g = β ′(f)F , g(0) =

β(f 0); note that this is stronger than (10.14)). As a consequence, for all ψ ∈ L∞(Ω),
we have that

∫

Ω
β(f)ψ dµ(x) is absolutely continuous on [0, T ) and

d

dt

∫

Ω

β(f)ψ dµ(x) =

∫

Ω

β ′(f)Fψ dµ(x).
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Appendix D: Some useful

inequalities

When estimating the size of the coagulation and fragmentation terms in the
continuous coagulation-fragmentation equation, one often needs to find inequalities
of the kind

(xαyβ + yαxβ)((x+ y)k − xk − yk)) ≤ ±C (xµyν + yµxν) for x, y > 0, (11.1)

(xαyβ + yαxβ)((x+ y)k − xk − yk)) ≥ ±C (xµyν + yµxν) for x, y > 0, (11.2)

where α, β, k, µ, ν are real numbers and C > 0 is a positive constant. Sometimes the
inequality is needed only for small or large values of x, y. Here we deduce the optimal
exponents µ, ν for this kind of bound. Inequalities of this kind have been proved
in various works on the coagulation-fragmentation equations (e.g. [33, 20, 16, 34]),
but to our knowledge a complete study of the possible cases, though not difficult, is
new.

First of all, observe that for any x, y > 0,

(x+ y)k − xk − yk ≤ 0 if k ≤ 1

(x+ y)k − xk − yk ≥ 0 if k ≥ 1.

Hence, some inequalities of the kind 11.1, 11.2 are trivial; namely, the following hold
for any α, β, µ, ν ∈ R and any C, x, y > 0:

(xαyβ + yαxβ)((x+ y)k − xk − yk)) ≤ C (xµyν + yµxν) when k ≤ 1,

(xαyβ + yαxβ)((x+ y)k − xk − yk)) ≥ −C (xµyν + yµxν) when k ≥ 1.

We say that an inequality of the kind (11.1) or (11.2) is nontrivial when it is not one
of the above (this is, when both terms are of the same sign). Note that for k = 1
the inequality is always trivial: the left hand side is zero and the inequality has no
interest.

193



194 CHAPTER 11. APPENDIX D: SOME USEFUL INEQUALITIES

As the functions involved are all homogeneous, it is useful to write them in a
different form with a polar change of variables:

x := rcosθ ≡ rc

y := rsinθ ≡ rs.

(We write c for cosθ and s for sinθ for convenience in the calculations below.) Then,
one has

(xαyβ + yαxβ)((x+ y)k − xk − yk)) = rα+β+k
(

(cαsβ + sαcβ)((c+ s)k − ck − sk)
)

xµyν + yµxν = rµ+ν(cµsν + sµcν).

and the inequalities (11.1), (11.2) are translated into

rα+β+k
(

(cαsβ + sαcβ)((c+ s)k − ck − sk)
)

≤ ±C rµ+ν(cµsν + sµcν) (11.3)

rα+β+k
(

(cαsβ + sαcβ)((c+ s)k − ck − sk)
)

≥ ±C rµ+ν(cµsν + sµcν). (11.4)

Any of the inequalities (11.1), (11.2) holds for all x, y > 0 if and only if (11.3),
(11.4), respectively, holds for all r > 0 and all 0 < θ < π/2. Then it is clear that
the following are true:

Lemma 11.0.8. Suppose that any nontrivial inequality of the kind (11.1) or (11.2)
holds for all x, y > 0. Then,

α + β + k = µ+ ν.

To make notation easier, let us call

f(θ) := (cαsβ + sαcβ)((c+ s)k − ck − sk)

g(θ) := rµ+ν(cµsν + sµcν).

By fixing r or θ, it is also clear that a nontrivial inequality of the kind (11.1) or
(11.2) holds if and only if the inequalities

rα+β+k ≤ [≥]C ′rµ+ν

f(θ) ≤ [≥] ± C ′ g(θ)

hold for some other constant C ′, in the right direction (which can be easily deduced,
and which we do not explicitly list to avoid a cumbersome statement), and for the
same range of values of r, θ. As it is easy to compare rα+β+k and rµ+ν , all we need is
to be able to compare f(θ) and g(θ). Additionally, to compare these two functions
we only need to study their order near θ = 0, as they are positive for θ ∈ (0, π/2)
and symmetric about θ = π/4. We will do this next.
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In the following we repeatedly use that for θ < 0 sufficiently small (i.e. θ < π/8),
there is some constant 0 < C < 1 such that

Cθ ≤ s = sinθ < θ

C ≤ c = cosθ < 1.

We also assume that

α ≤ β

µ ≤ ν.

Bounds for g(θ)
For all θ sufficiently small, we have that

g(θ) ≤ θµ + θν ≤ 2θµ (11.5)

g(θ) ≥ Cµ+νθµ. (11.6)

Bounds for f(θ)
First of all, observe that thanks to the mean value theorem we can find positive

constants C1, C2 which depend on k ∈ R \ {0} such that, for all θ sufficiently small
(depending on k),

C1θ ≤ (s+ c)k − ck ≤ C2θ for k > 0

−C2θ ≤ (s+ c)k − ck ≤ −C1θ for k < 0.

(one can take C1 = |k|min{Ck−1, 2k−1}, C2 = |k|max{Ck−1, 2k−1}). Also, for all
k ∈ R \ {0} we can find constants C3, C4 (which depend on k) such that, for all θ
sufficiently small,

C3θ
k ≤ sk ≤ C4θ

k.

With these two bounds, by comparing the two powers θ and θk, it is easy to prove
the following:

For k > 1, there are constants C1, C2 > 0 and ǫ > 0 such that

C1θ < (s+ c)k − ck − sk < C2θ for 0 < θ < ǫ.

For k < 1, there are constants C1, C2 > 0 and ǫ > 0 such that

−C1θ
k < (s+ c)k − ck − sk < −C2θ

k for 0 < θ < ǫ.

This gives bounds for one of the factors in f(θ); observe that the other factor is of
the same form as g(θ) with different exponents, so (11.5) and (11.6) give bounds for
it (with α instead of µ). We deduce that

For k > 1, there are constants C1, C2 > 0 and ǫ > 0 such that

C1θ
α+1 < f(θ) < C2θ

α+1 for 0 < θ < ǫ.

For k < 1, there are constants C1, C2 > 0 and ǫ > 0 such that

−C1θ
α+k < f(θ) < −C2θ

α+k for 0 < θ < ǫ.
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11.1. Inequalities

With the bounds of the previous sections we can find which inequalities of the
kind (11.1), (11.2) hold for any range of values of y, y′; we will study them in
two different cases: for small y, y′ and for large y, y′ (in particular we obtain the
inequalities that hold for all y, y′ > 0).

First of all, observe that some expressions of the form xµyν+yµxν are comparable.
The bounds for g(θ) obtained before give the following:

Lemma 11.1.1. Take µ ≤ ν ∈ R, µ′ ≤ ν ′ ∈ R, and any R > 0. We consider
whether the following inequality holds for some C > 0 and y, y′ in some set:

xµyν + yµxν ≤ Cxµ′

yν′

+ yµ′

xν′

(11.7)

It happens that:

Inequality (11.7) holds for all y, y′ > 0 with y + y′ ≤ R and some constant
C > 0 if and only if

µ+ ν ≥ µ′ + ν ′

µ ≥ µ′.

Inequality (11.7) holds for all y, y′ > 0 with y + y′ ≥ R and some constant
C > 0 if and only if

µ+ ν ≤ µ′ + ν ′

µ ≥ µ′.

It is clear then that, for a given range of values of y, y′, some inequalities of the
kind (11.1), (11.2) are consequences of others by using the above inequalities. We
will say that a nontrivial inequality A of the form (11.1) or (11.2) is better than
another inequality B of the same form if B is directly deduced from A by one of the
inequalities in the previous lemma (this is, if their right hand sides are comparable
for the range of values of y, y′ in question).

Proposition 11.1.2 (Inequalities with ≤). Take α < β ∈ R, µ < ν ∈ R, k ∈ R,
R > 0.

If k > 1, we consider the inequality

(xαyβ + yαxβ)((x+ y)k − xk − yk)) ≤ C(xµyν + yµxν). (11.8)

• Inequality (11.8) holds for all y, y′ < R and some C > 0 if and only if

α + β + k ≥ µ+ ν

α + 1 ≥ µ.
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• Inequality (11.8) holds for all y, y′ ≥ R and some C > 0 if and only if

α + β + k ≤ µ+ ν

α + 1 ≥ µ.

If k < 1, we consider the inequality

(xαyβ + yαxβ)((x+ y)k − xk − yk)) ≤ −C(xµyν + yµxν). (11.9)

• Inequality (11.9) holds for all y, y′ < R and some C > 0 if and only if

α + β + k ≤ µ+ ν

α + k ≤ µ.

• Inequality (11.9) holds for all y, y′ ≥ R and some C > 0 if and only if

α + β + k ≥ µ+ ν

α + k ≤ µ.

Proposition 11.1.3 (Inequalities with ≥). Take α < β ∈ R, µ < ν ∈ R, k ∈ R,
R > 0.

If k > 1, we consider the inequality

(xαyβ + yαxβ)((x+ y)k − xk − yk)) ≥ C(xµyν + yµxν). (11.10)

• Inequality (11.10) holds for all y, y′ < R and some C > 0 if and only if

α + β + k ≤ µ+ ν

α + 1 ≤ µ.

• Inequality (11.10) holds for all y, y′ ≥ R and some C > 0 if and only if

α + β + k ≥ µ+ ν

α + 1 ≤ µ.

If k < 1, we consider the inequality

(xαyβ + yαxβ)((x+ y)k − xk − yk)) ≥ −C(xµyν + yµxν). (11.11)

• Inequality (11.11) holds for all y, y′ < R and some C > 0 if and only if

α + β + k ≥ µ+ ν

α + k ≥ µ.

• Inequality (11.11) holds for all y, y′ ≥ R and some C > 0 if and only if

α + β + k ≤ µ+ ν

α + k ≥ µ.
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In F. J. Higuera, J. Jiménez, and J. M. Vega, editors, Simplicity, Rigor and
Relevance in Fluid Mechanics. CIMNE, Barcelona, 2004.

[9] F. Bouchut. Smoothing effect for the non-linear Vlasov-Poisson-Fokker-Planck
equation. J. Diff. Eqs., 122:225–238, 1995.
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[56] P. Laurençot and S. Mischler. From the discrete to the continuous coagulation-
fragmentation equations. Proc. Roy. Soc. Edinburgh Sect. A, 132:1219–1248,
2002.
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