

Time dependent mean-field games

Edgard Pimentel

(In collaboration with D. Gomes and H. Sánchez-Morgado)

Center for Mathematical Analysis, Geometry and Dynamical Systems, Instituto Superior Técnico, Universidade de Lisboa

epiment@math.tecnico.ulisboa.pt

Mean-field games (MFG) systems

- 1. Differential games with a (very) large number of rational, indistinguishable and intelligent players;
- 2. Introduced in the trailblazing work of J-M. Lasry and P-L. Lions and M. Huang, P. Caines and R. Malhamé;
- 3. (Stochastic) Optimal control problem coupled with the transport of a density through the mean-field hypothesis and the feedback optimal control (Nash equilibrium).
- A model MFG system is the following:

$$\begin{cases} -u_t + H(x, Du) = \Delta u + g[m] & \text{on } \mathbb{T}^d \times [0, T] \\ m_t - \operatorname{div}(D_p H m) = \Delta m & \text{on } \mathbb{T}^d \times [0, T] \end{cases}, \tag{1}$$

equipped with the initial-terminal boundary conditions

$$\begin{cases} u(x,T) = u_T(x) \\ m(x,0) = m_0(x), \end{cases}$$
 (2)

where

- 1. g[m] is the mean-field coupling,
- 2. \mathbb{T}^d is the d-dimensional torus, and
- 3. T > 0 is a fixed terminal instant.

Motivation for the MFG problem

The (stochastic) optimal control setting

Consider

$$\begin{cases} d\mathbf{x}_t = \mathbf{v}dt + \sqrt{2}dW_t \\ \mathbf{x}_0 = \mathbf{x}, \end{cases} \tag{3}$$

and

$$J(\mathbf{x}, \mathbf{v}, m) = \mathbb{E}^{\mathbf{x}} \left[\int_0^T L(\mathbf{x}_s, \mathbf{v}_s) + g[m](\mathbf{x}, s) ds + u_T(\mathbf{x}_T) \right].$$
 (4)

We know that a (viscosity) solution to (1) is the value function of the optimal control problem described by (3)-(4). Also, the feedback optimal control is given by

$$\mathbf{v}^* = -D_p H(\mathbf{x}, Du).$$

The mass-transport problem

The population governed by (3) evolves according to

 $m_t + \operatorname{div}(\mathbf{v}m) = \Delta m.$

However, every agent knows that the feedback optimal control is given by

$$\mathbf{v}^* = -D_p H(\mathbf{x}, Du).$$

The former equation becomes then

$$m_t - \operatorname{div}(D_p H m) = \Delta m.$$

Main Assumptions

• We assume that g is a local power-like non-linearity, i.e.,

$$g[m](x,t) \doteq m^{\alpha}(x,t); \tag{5}$$

• The Hamiltonian *H* is supposed to be subquadratic, i.e.,

$$H(x,p) \le C|p|^{\gamma} + C,$$

$$|D_p H| \le C|p|^{\gamma-1} + C,$$

for $1 < \gamma < 2$;

• The Hamiltonian H is supposed to be superquadratic, i.e.,

$$C_1|p|^{2+\mu}+C_1\leq H(x,p)\leq C_2|p|^{2+\mu}+C_2,$$
 $|D_pH|^2\leq C|p|^{\mu}H+C,$

for $0 < \mu < 1$;

- u_T and m_0 are supposed to be smooth functions on \mathbb{T}^d and $m_0 \geq \kappa_0$, where $\kappa_0 > 0$;
- We also consider additional technical assumptions, which include a wide class of problems and examples.

Model Hamiltonians

The following are typical model Hamiltonians satisfying our Assumptions:

 $H_s(x,p) = a(x) \left(1 + |p|^2\right)^{\frac{\gamma}{2}} + V(x).$

$$\Pi_s(x,p) = a(x) \left(1 + |p| \right) + v(x).$$

2. Superquadratic case:

1. Subquadratic case:

$$H_S(x,p) = a(x) \left(1 + |p|^2\right)^{\frac{2+\mu}{2}} + V(x).$$

Previous results

Existence of solutions - stationary case

- 1. Existence of weak solutions,
- J-M. Lasry and P-L. Lions, 2006.
- 2. Existence of smooth solutions,
 - D. Gomes, G. Pires and H. Sánchez-Morgado, 2012;
 - D. Gomes and H. Sánchez-Morgado, 2013;
 - D. Gomes, S. Patrizi and V. Voskanyan, 2013.

Existence of solutions - time dependent case

- 1. Existence of weak solutions to (1)-(2),
- J-M. Lasry and P-L. Lions, 2006. 2. Existence of weak solutions to the planning problem,
- A. Porreta, 2013.
- 3. Smooth solutions for quadratic Hamiltonians,
 - P. Cardaliaguet, J-M. Lasry, P-L. Lions and A. Porreta, 2012.
- 4. Hamiltonians with quadratic or subquadratic growth and $g[m] = m^{\alpha}$:

- Existence of smooth solutions for $\alpha > 0$ provided that
 - $\gamma \in \left(1, 1 + \frac{1}{d+1}\right).$
- Existence of smooth solutions for

$$\alpha < \frac{2}{d-2}$$

provided that

$$\gamma \in \left(1 + \frac{1}{1 + 1}, 2\right)$$

• P-L. Lions, 2012

Main Results

Subquadratic case

Theorem 1 (Gomes-P.-Sánchez-Morgado, *Comm. in PDE*, 2014). *Let g be* given as in (5) and assume that H is subquadratic. Then, there exists a classical solution (u, m) for (1) with the initial-terminal boundary conditions (2), provided that

$$\alpha < \alpha_{\gamma,d},$$

$$\alpha_{\gamma,d} > \frac{2}{d-2}.$$

In particular, we have:

where

and

$$\lim_{\gamma \to 1} \alpha_{\gamma, d} = +\infty,$$

$$\lim_{\gamma \to 2} \alpha_{\gamma, d} = \frac{2}{d - 2}.$$

Superquadratic case

Theorem 2 (Gomes-P.-Sánchez-Morgado, 2013). Let g be given as in (5) and assume that H is superquadratic. Then, there exists a classical solution (u, m)for (1) with the initial-terminal boundary conditions (2), provided that

$$\alpha < \frac{2}{d(1+\mu)-2}.$$

Notice that

$$\lim_{\mu \to 0} \alpha_{\mu,d} = \frac{2}{d-2},$$

 $\lim_{\mu \to 1} \alpha_{\mu,d} = \frac{1}{d-1}.$

and

Strategy of the proofs

A regularization argument

To prove these results, a regularization of (1) is considered. It is done by replacing g[m] by the nonlocal operator

$$g_{\epsilon}[m] = \eta_{\epsilon} * g[\eta_{\epsilon} * m],$$

where η_{ϵ} is a standard mollifying kernel, which in particular is symmetric. This yields the system

$$\begin{cases} -u_t^{\epsilon} + H(x, Du^{\epsilon}) = \Delta u^{\epsilon} + g_{\epsilon}[m^{\epsilon}] \\ m_t^{\epsilon} - \operatorname{div}(D_p H m^{\epsilon}) = \Delta m^{\epsilon}. \end{cases}$$
(6)

We use the convention $g_0 = g$

Subquadratic case

Theorem 3 (Polynomial estimates for the Fokker-Planck equation). Let $(u^{\epsilon}, m^{\epsilon})$ be a solution of (6) and $\|m^{\epsilon}\|_{L^{\infty}([0,T],L^{\beta_0}(\mathbb{T}^d))} \leq C$, for some $\beta_0 \geq 1$. Suppose further that $p > \frac{d}{2}$ and

$$r = \frac{p(d(\theta - 1) + 2)}{2p - d}.$$

Then,

$$\int_{\mathbb{T}^d} (m^{\epsilon})^{\beta_n} (\tau, x) dx \le C + C \left\| |D_p H|^2 \right\|_{L^r(0, T; L^p(\mathbb{T}^d))}^{r_n},$$

where

$$r_n = r \frac{\theta^n - 1}{\theta - 1}, \ \theta > 1,$$

and

$$\theta = r \frac{\theta}{\theta - 1}, \ \theta > 1,$$

Lemma 1 (Upper bounds for the Hamilton-Jacobi equation). Let $(u^{\epsilon}, m^{\epsilon})$ be a solution of (6) and assume that H is subquadratic. Let $a,\ b>1$ satisfy

 $\beta_n = \theta^n \beta_0$.

$$\frac{d}{2} < \frac{b(a-1)}{a}.$$

Then there exists C > 0 such that

$$||u^{\epsilon}||_{L^{\infty}(0,T;L^{\infty}(\mathbb{T}^d))} \le C + C||g_{\epsilon}(m)||_{L^{a}(0,T;L^{b}(\mathbb{T}^d))}.$$

Theorem 4 (Gagliardo-Nirenberg inequality). Let $(u^{\epsilon}, m^{\epsilon})$ be a solution of (6) and assume that H is subquadratic. For $1 < p, r < \infty$ there are positive constants *c* and *C* such that

$$||D^{2}u^{\epsilon}||_{L^{r}(0,T;L^{p}(\mathbb{T}^{d}))} \leq c||g_{\epsilon}(m^{\epsilon})||_{L^{r}(0,T;L^{p}(\mathbb{T}^{d}))} + c||u^{\epsilon}||_{L^{\infty}(0,T;L^{\infty}(\mathbb{T}^{d}))}^{\frac{\gamma}{2-\gamma}} + C$$

Superquadratic case

Theorem 5 (Polynomial estimates for the Fokker-Planck equation). Let $(u^{\epsilon}, m^{\epsilon})$ be a solution of (6). Assume that H is superquadratic. Assume further that $0 < \mu < 1 < \beta_0, \ \theta, \ p, \ r$, and $0 \le v \le 1$ satisfy

$$\alpha p = \frac{\theta^n \beta_0}{\theta^n + \upsilon - \theta^n \upsilon},$$

 $r = \frac{d(\theta - 1) + 2}{2}.$

and

Then

$$\frac{(2+2\mu)(\theta^n-1)rvc}{\theta^n(\theta^n-1)}$$

Lemma 2 (Upper bounds for the Hamilton-Jacobi equation). Suppose $(u^{\epsilon}, m^{\epsilon})$ is a solution of (6) and H is superquadratic. Then, if

$$p > \frac{d}{2}$$

$$||u^{\epsilon}||_{L^{\infty}(\mathbb{T}^{d}\times[0,T])} \leq C + C||g_{\epsilon}(m)||_{L^{\infty}(0,T;L^{p}(\mathbb{T}^{d}))}.$$

Furthermore, if

$$\frac{1}{s} + \frac{1}{s} = \frac{1}{p} + \frac{1}{q} = 1$$

and

$$\frac{p}{s} > \frac{d}{2},$$

we have

$$||u^{\epsilon}||_{L^{\infty}(\mathbb{T}^{d}\times[0,T])} \leq C + C||g_{\epsilon}(m)||_{L^{r}(0,T;L^{p}(\mathbb{T}^{d}))}.$$

Theorem 6 (Estimates by the non-linear adjoint method). Suppose that H is superquadratic. Let $(u^{\epsilon}, m^{\epsilon})$ be a solution of (6) and assume that p > d. Then

$$||Du^{\epsilon}||_{L^{\infty}(0,T;L^{\infty}(\mathbb{T}^{d}))} \leq C + C||g_{\epsilon}(m)||_{L^{\infty}(0,T;L^{p}(\mathbb{T}^{d}))}^{\frac{1}{1-\mu}} + C||g_{\epsilon}(m)||_{L^{\infty}(0,T;L^{p}(\mathbb{T}^{d}))}^{\frac{1}{1-\mu}}||u||_{L^{\infty}(0,T;L^{\infty}(\mathbb{T}^{d}))}^{\frac{1}{1-\mu}}.$$

Further regularity

Bootstrapping regularity and passing to the limit

- 1. Lipschitz regularity for u^{ϵ}
- 2. Bounds for m^{ϵ} from below
- 3. Regularity for $(u^{\epsilon}, m^{\epsilon})$ in Sobolev spaces
- 4. Additional estimates allowing one to pass to the limit $\epsilon \to 0$

Regularity for the Fokker-Planck equation in Sobolev spaces

Corollary 1. Let $(u^{\epsilon}, m^{\epsilon})$ be a solution of (6) with initial-terminal conditions (2). Assume that $g[m] = m^{\alpha}$ and that H is either sub or superquadratic. Then

- ullet $D^2_{xx}m^\epsilon, m^\epsilon_t \in L^2(\mathbb{T}^d \times [0,T])$, and $D_xm^\epsilon \in L^\infty([0,T],L^2(\mathbb{T}^d))$;
- ullet $D^3_{xxx}m^\epsilon, D^2_{xt}m^\epsilon \in L^2(\mathbb{T}^d imes [0,T])$ $D^2_{xx}m^\epsilon \in L^\infty([0,T],L^2(\mathbb{T}^d))$ and ullet there is r>d such that $D_xm^\epsilon,D^2_{xx}m^\epsilon,m^\epsilon_t\in L^r(\mathbb{T}^d imes[0,T])$ and then $m^{\epsilon} \in C^{0,1-d/r}(\mathbb{T}^d \times [0,T])$.

Regularity by the Hopf-Cole transformation

Consider the following Hopf-Cole transformation:

$$w \doteq \ln m^{\epsilon}.$$

Lemma 3. Let $(u^{\epsilon}, m^{\epsilon})$ be a solution of (6) with initial-terminal conditions (2). Assume that $g[m] = m^{\alpha}$ and that H is either sub or superquadratic. Then $\ln m^{\epsilon}$ is Lipschitz and, therefore, m^{ϵ} is bounded by above and below.

In particular the Lemma ensures that m^{ϵ} is bounded away from zero Regularity for the Hamilton-Jacobi equation

Lemma 4. Let $(u^{\epsilon}, m^{\epsilon})$ be a solution of (6) with initial-terminal conditions (2). Assume that $g[m] = m^{\alpha}$ and that H is either sub or superquadratic. Then

- $ullet D^2_{rr} u^\epsilon, u^\epsilon_t \in L^r(\mathbb{T}^d \times [0,T])$, for any $r < \infty$;
- $D^3_{rrr}u^{\epsilon}, D^2_{rt}u^{\epsilon} \in L^2(\mathbb{T}^d \times [0,T]) \ D_{xx}u^{\epsilon} \in L^{\infty}([0,T],L^2(\mathbb{T}^d));$
- There exists $\gamma \in (0,1)$ such that $u^{\epsilon} \in \mathcal{C}^{0,\gamma} (\mathbb{T}^d \times [0,T])$.

Passing to the limit

We observe that

- 1. There exists u such that $u^{\epsilon} \to u$ in $\mathcal{C}^{0,\gamma}\left(\mathbb{T}^d \times [0,T]\right)$ through some sub-
- sequence, uniformly in compacts; 2. Compactness imply that we also have $Du^{\epsilon} \to Du$;
- 3. There exists m such that $m^{\epsilon} \to m$ in $\mathcal{C}^{0,\gamma}\left(\mathbb{T}^d \times [0,T]\right)$ through some subsequence, uniformly in compacts.

Follow-up work: forward-forward mean-field games

- Forward-forward mean-field games
- Long-time behavior of MFG systems, $T \to \infty$ • Convergence to the equilibrium problem - numerical methods

Prescribe initial-initial conditions for the MFG systems

- Reverse time in the Hamilton-Jacobi equation

Consider the following variation of the original MFG system
$$\int u_t + H(x,Du) = \Delta u + g[m] \qquad \text{on } \mathbb{T}^d \times [0,T]$$

 $m_t - \operatorname{div}(D_p H m) = \Delta m$ on $\mathbb{T}^d \times [0, T]$, equipped with *initial-initial* boundary conditions:

$$\begin{cases} u(x,0) = u_0(x) \\ m(x,0) = m_0(x) \end{cases}$$
 (8)

 Main difficulty: Fokker-Planck is no longer the (formal) adjoint equation to the Hamilton-Jacobi

A result on existence of classical solutions

Theorem 7 (Gomes-P.). Let g be given as in (5) and assume that H is subquadratic. Then, there exists a classical solution (u, m) for (7) with the initialinitial boundary conditions (8), provided that

 $\alpha < \alpha_{\gamma,d}$

$$lpha_{\gamma,d}$$
 .

where

Acknowledgements

E. Pimentel is a Post-Doctoral fellow at CAMGSD-IST-UL, Portugal, financed by project UTA-CMU/MAT/0007/2009.

 $||g_{\epsilon}||_{L^{\infty}(0,T;L^{p}(\mathbb{T}^{d}))} \leq C + C ||Du^{\epsilon}||_{L^{\infty}(0,T;L^{\infty}(\mathbb{T}^{d}))}^{\frac{(2+2\mu)(\theta^{n}-1)rv\alpha}{\theta^{n}\beta_{0}(\theta-1)}}.$