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Mean-field games (MFG) systems

1. Differential games with a (very) large number of rational, indistinguishable
and intelligent players;

2. Introduced in the trailblazing work of J-M. Lasry and P-L. Lions and M.
Huang, P. Caines and R. Malhamé;

3. (Stochastic) Optimal control problem coupled with the transport of a density
through the mean-field hypothesis and the feedback optimal control (Nash
equilibrium).

A model MFG system is the following:

—uy + H(z, Du) = Au+glm]  on T x [0,T]
{mt — div(D,Hm) = Am on T? x [0,77],
equipped with the initial-terminal boundary conditions
u(x, T) = up(x)
{m(«fm 0) = mo(x),
where
1. gm] is the mean-field coupling,
2. T is the d-dimensional torus, and
3. T > 0 is a fixed terminal instant.

Motivation for the MFG problem

The (stochastic) optimal control setting

Consider
{dxt = vdt + /2dW, (3)
X) = X,
and .
J(x,v,m)=E* [/0 L(xs,Vs) + glm](x, s)ds + up(x7)| . (4)

We know that a (viscosity) solution to (1) is the value function of the optimal
control problem described by (3)-(4). Also, the feedback optimal control is
given by

v' = —D,H(x, Du).

The mass-transport problem

The population governed by (3) evolves according to
my + div(vm) = Am.
However, every agent knows that the feedback optimal control is given by
v' = —-D,H(x, Du).
The former equation becomes then
my — div(D,Hm) = Am.

Main Assumptions

e We assume that ¢ is a local power-like non-linearity, i.e.,
glm|(z,t) = m"(z,1); (5)

e The Hamiltonian H is supposed to be subquadratic, i.e.,
H(z,p) < Clp|” + C,
[ DyH| < Clp"™ + C,
forl <~ <2;
e The Hamiltonian H is supposed to be superquadratic, i.e.,
Cilp|*™ + C1 < H(z,p) < Cylp|*™ + s,
D, H|* < Clp]"'H + C.
for0 < u < 1;

e u7 and mg are supposed to be smooth functions on T¢ and my > o, where
ko > 0;

e We also consider additional technical assumptions, which include a wide
class of problems and examples.

Model Hamiltonians
The following are typical model Hamiltonians satisfying our Assumptions:

1. Subquadratic case:
2
Hy(w,p) = a(z) (1 + [p[*)” + V(x).

2. Superquadratic case:
2+4p

Hg(z,p) = a(z) (1+|p|*) 7 + V().

Previous results

Existence of solutions - stationary case

1. Existence of weak solutions,
e J-M. Lasry and P-L. Lions, 2006.
2. Existence of smooth solutions,

e D. Gomes, G. Pires and H. Sanchez-Morgado, 2012;
e D. Gomes and H. Sanchez-Morgado, 2013;
e D. Gomes, S. Patrizi and V. Voskanyan, 2013.

Existence of solutions - time dependent case

1. Existence of weak solutions to (1)-(2),
e J-M. Lasry and P-L. Lions, 2006.
2. Existence of weak solutions to the planning problem,
e A. Porreta, 2013.
3. Smooth solutions for quadratic Hamiltonians,
e P. Cardaliaguet, J-M. Lasry, P-L. Lions and A. Porreta, 2012.
4. Hamiltonians with quadratic or subquadratic growth and g[m| = m®:

Time dependent mean-field games
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e Existence of smooth solutions for o > 0 provided that

1
el1,1+—].
Y ( +d+1)

e Existence of smooth solutions for

provided that

e P-L. Lions, 2012

Subquadratic case

Theorem 1 (Gomes-P.-Sanchez-Morgado, Comm. in PDE, 2014). Let g be
given as in (5) and assume that H is subquadratic. Then, there exists a clas-
sical solution (u,m) for (1) with the initial-terminal boundary conditions (2),
provided that

Q< Oy g,

where
2

Qg > ——.
,}/7d d . 2
In particular, we have:

lim oy g = +o00,
y—1

and

limao, g = ——.
2 d— 2

Superquadratic case

Theorem 2 (Gomes-P.-Sanchez-Morgado, 2013). Let g be given as in (5) and
assume that H is superquadratic. Then, there exists a classical solution (u, m)
for (1) with the initial-terminal boundary conditions (2), provided that

2
a < .
d(1+p) —2
Notice that 5
pi R
and
lim o, 7 = L
s R

Strategy of the proofs

A regularization argument

To prove these results, a regularization of (1) is considered. It is done by
replacing g|m| by the nonlocal operator

gelm| = ne * g[ne * m),

where 7, is a standard mollifying kernel, which in particular is symmetric. This
yields the system

(6)

—u$ + H(x, Du) = Au‘ + g/mf|
ms — div(D,Hm) = Am°.

We use the convention gy = g

Subquadratic case

Theorem 3 (Polynomial estimates for the Fokker-Planck equation). Let (u¢, m©)
be a solution of (6) and |[m*|[ ;o7 rso(rey < C, for some fy, > 1. Suppose

further thatp > 4 and
pld(0 = 1) +2)

T =

2p — d
Then,
/Td(m) (1,2)dx < C+ C'|||D,H| L (0.120(74))
where PO
n — — ; 17
r 7“(9_1 0 >
and
5n:9n50-

Lemma 1 (Upper bounds for the Hamilton-Jacobi equation). Let (u¢, m®) be a
solution of (6) and assume that H is subquadratic. Let a, b > 1 satisfy

d bla—
— < La 1).
2 a

Then there exists C' > () such that

HUEHLOO(O,T;LOO(W)) <C+ Cng<m)HLCL(O,T;Lb(Td))°

Theorem 4 (Gagliardo-Nirenberg inequality). Let (u, m®) be a solution of (6)
and assume that H is subquadratic. For 1 < p,r < oo there are positive
constants ¢ and C such that

||D2U€HU(0,T;LP(’JI‘CZ)) < Cng(me)HU"(O,T;LP(W))
°
2—y

+ C||u€||LOO(O’T;LOO(Td

Superquadratic case

Theorem 5 (Polynomial estimates for the Fokker-Planck equation). Let (u¢, m©)
be a solution of (6). Assume that H is superquadratic. Assume further that
O<pu<1l<pfy0,p r,and0 <wv <1 satisfy
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Lemma 2 (Upper bounds for the Hamilton-Jacobi equation). Suppose (u¢, m°)
is a solution of (6) and H is superquadratic. Then, if

d
p>_7

2
||U€||Loo(de[o,T]) <C+ CHgﬁ(m)HLOO(O,T;LP(’JI‘d))'
Furthermore, if
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we have

HUGHLOO(TdX[o,T]) <C+ OHQE(m)HLT(O,T;LP(’JI‘d))'

Theorem 6 (Estimates by the non-linear adjoint method). Suppose that H is
superquadratic. Let (uf, m®) be a solution of (6) and assume thatp > d. Then
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Further regularity

Bootstrapping regularity and passing to the limit

1. Lipschitz regularity for ¢

2. Bounds for m* from below

3. Regularity for (u, m®) in Sobolev spaces

4. Additional estimates allowing one to pass to the limit e — 0

Regularity for the Fokker-Planck equation in Sobolev spaces

Corollary 1. Let (u, m®) be a solution of (6) with initial-terminal conditions (2).
Assume that gim| = m“ and that H is either sub or superquadratic. Then
e D2 m,m¢ € L*(T? x [0,7)), and D,m¢ € L>([0,T), L*(T));
e D3 mf D m e LATx [0,T]) D?> m¢ e L>([0,T], L*(T%) and
e there is r > d such that D,m¢, D> m‘,m{ € L"(T¢ x [0,T]) and then
m¢ € CO=4r(Td % [0, T)).

Regularity by the Hopf-Cole transformation

Consider the following Hopf-Cole transformation:
w = Inm".

Lemma 3. Let (uf, m®) be a solution of (6) with initial-terminal conditions (2).
Assume that glm] = m® and that H is either sub or superquadratic. Then In m*
Is Lipschitz and, therefore, m is bounded by above and below.

In particular the Lemma ensures that m* is bounded away from zero

Regularity for the Hamilton-Jacobi equation

Lemma 4. Let (u, m®) be a solution of (6) with initial-terminal conditions (2).
Assume that gim| = m® and that H is either sub or superquadratic. Then

o D2 uf uf € L'(T? x [0,T1]), forany r < oo;

o D3 wuf D u‘ e LA(TYx [0,T]) Dyput € L>=([0,T), LA(TY));

e There exists v € (0,1) such thatu® € C* (T x [0,T1).

Passing to the limit

We observe that

1. There exists u such that u¢ — w in C°7 (T x [0,T]) through some sub-
sequence, uniformly in compacts;

2. Compactness imply that we also have Du® — Du;

3. There exists m such that m® — m in C%7 (T? x [0,T1]) through some sub-
sequence, uniformly in compacts.

Follow-up work: forward-forward mean-field

games

Forward-forward mean-field games

e Long-time behavior of MFG systems, T' — oo
e Convergence to the equilibrium problem - numerical methods
— Reverse time in the Hamilton-Jacobi equation
— Prescribe initial-initial conditions for the MFG systems
Consider the following variation of the original MFG system
us + H(z, Du) = Au+glm]  on T x [0, 7]
my — div(D,Hm) = Am on T x [0, 7],
equipped with initial-initial boundary conditions:

O p—
m(x,0) = mgy(x).
e Main difficulty: Fokker-Planck is no longer the (formal) adjoint equation to
the Hamilton-Jacobi

A result on existence of classical solutions

Theorem 7 (Gomes-P.). Let g be given as in (5) and assume that H is sub-
quadratic. Then, there exists a classical solution (u, m) for (7) with the initial-
initial boundary conditions (8), provided that

< Oy g,

where 5
Oé%d > g .
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