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Mean-field games (MFG) systems

1. Differential games with a (very) large number of rational, indistinguishable
and intelligent players;

2. Introduced in the trailblazing work of J-M. Lasry and P-L. Lions and M.
Huang, P. Caines and R. Malhamé;

3. (Stochastic) Optimal control problem coupled with the transport of a density
through the mean-field hypothesis and the feedback optimal control (Nash
equilibrium).

A model MFG system is the following:{
−ut + H(x,Du) = ∆u + g[m] on Td × [0, T ]

mt − div(DpHm) = ∆m on Td × [0, T ] ,
(1)

equipped with the initial-terminal boundary conditions{
u(x, T ) = uT (x)

m(x, 0) = m0(x),
(2)

where

1. g[m] is the mean-field coupling,
2. Td is the d-dimensional torus, and
3. T > 0 is a fixed terminal instant.

Motivation for the MFG problem

The (stochastic) optimal control setting
Consider {

dxt = vdt +
√

2dWt

x0 = x,
(3)

and

J(x,v,m) = Ex

[∫ T

0

L(xs,vs) + g[m](x, s)ds + uT (xT )

]
. (4)

We know that a (viscosity) solution to (1) is the value function of the optimal
control problem described by (3)-(4). Also, the feedback optimal control is
given by

v∗ = −DpH(x, Du).

The mass-transport problem
The population governed by (3) evolves according to

mt + div(vm) = ∆m.

However, every agent knows that the feedback optimal control is given by

v∗ = −DpH(x, Du).

The former equation becomes then

mt − div(DpHm) = ∆m.

Main Assumptions

•We assume that g is a local power-like non-linearity, i.e.,

g[m](x, t)
.
= mα(x, t); (5)

• The Hamiltonian H is supposed to be subquadratic, i.e.,

H(x, p) ≤ C|p|γ + C,

|DpH| ≤ C|p|γ−1 + C,

for 1 < γ < 2;
• The Hamiltonian H is supposed to be superquadratic, i.e.,

C1|p|2+µ + C1 ≤ H(x, p) ≤ C2|p|2+µ + C2,

|DpH|2 ≤ C|p|µH + C,

for 0 < µ < 1;
• uT and m0 are supposed to be smooth functions on Td and m0 ≥ κ0, where
κ0 > 0;
•We also consider additional technical assumptions, which include a wide

class of problems and examples.

Model Hamiltonians
The following are typical model Hamiltonians satisfying our Assumptions:

1. Subquadratic case:

Hs(x, p) = a(x)
(
1 + |p|2

)γ
2 + V (x).

2. Superquadratic case:

HS(x, p) = a(x)
(
1 + |p|2

)2+µ
2 + V (x).

Previous results

Existence of solutions - stationary case

1. Existence of weak solutions,
• J-M. Lasry and P-L. Lions, 2006.

2. Existence of smooth solutions,
• D. Gomes, G. Pires and H. Sánchez-Morgado, 2012;
• D. Gomes and H. Sánchez-Morgado, 2013;
• D. Gomes, S. Patrizi and V. Voskanyan, 2013.

Existence of solutions - time dependent case

1. Existence of weak solutions to (1)-(2),
• J-M. Lasry and P-L. Lions, 2006.

2. Existence of weak solutions to the planning problem,
• A. Porreta, 2013.

3. Smooth solutions for quadratic Hamiltonians,
• P. Cardaliaguet, J-M. Lasry, P-L. Lions and A. Porreta, 2012.

4. Hamiltonians with quadratic or subquadratic growth and g[m] = mα:

• Existence of smooth solutions for α > 0 provided that

γ ∈
(

1, 1 +
1

d + 1

)
.

• Existence of smooth solutions for

α <
2

d− 2
,

provided that

γ ∈
(

1 +
1

d + 1
, 2

)
.

• P-L. Lions, 2012

Main Results

Subquadratic case
Theorem 1 (Gomes-P.-Sánchez-Morgado, Comm. in PDE, 2014). Let g be
given as in (5) and assume that H is subquadratic. Then, there exists a clas-
sical solution (u,m) for (1) with the initial-terminal boundary conditions (2),
provided that

α < αγ,d,

where
αγ,d >

2

d− 2
.

In particular, we have:
lim
γ→1

αγ,d = +∞,

and
lim
γ→2

αγ,d =
2

d− 2
.

Superquadratic case

Theorem 2 (Gomes-P.-Sánchez-Morgado, 2013). Let g be given as in (5) and
assume thatH is superquadratic. Then, there exists a classical solution (u,m)
for (1) with the initial-terminal boundary conditions (2), provided that

α <
2

d(1 + µ)− 2
.

Notice that
lim
µ→0

αµ,d =
2

d− 2
,

and
lim
µ→1

αµ,d =
1

d− 1
.

Strategy of the proofs

A regularization argument
To prove these results, a regularization of (1) is considered. It is done by
replacing g[m] by the nonlocal operator

gε[m] = ηε ∗ g[ηε ∗m],

where ηε is a standard mollifying kernel, which in particular is symmetric. This
yields the system {

−uεt + H(x,Duε) = ∆uε + gε[m
ε]

mε
t − div(DpHm

ε) = ∆mε.
(6)

We use the convention g0 = g

Subquadratic case
Theorem 3 (Polynomial estimates for the Fokker-Planck equation). Let (uε,mε)
be a solution of (6) and ‖mε‖L∞([0,T ],Lβ0(Td)) ≤ C, for some β0 ≥ 1. Suppose
further that p > d

2 and

r =
p(d(θ − 1) + 2)

2p− d
.

Then, ∫
Td

(mε)βn (τ, x) dx ≤ C + C
∥∥∥|DpH|2

∥∥∥rn
Lr(0,T ;Lp(Td))

,

where
rn = r

θn − 1

θ − 1
, θ > 1,

and
βn = θnβ0.

Lemma 1 (Upper bounds for the Hamilton-Jacobi equation). Let (uε,mε) be a
solution of (6) and assume that H is subquadratic. Let a, b > 1 satisfy

d

2
<
b(a− 1)

a
.

Then there exists C > 0 such that

‖uε‖L∞(0,T ;L∞(Td)) ≤ C + C‖gε(m)‖La(0,T ;Lb(Td)).

Theorem 4 (Gagliardo-Nirenberg inequality). Let (uε,mε) be a solution of (6)
and assume that H is subquadratic. For 1 < p, r < ∞ there are positive
constants c and C such that

‖D2uε‖Lr(0,T ;Lp(Td)) ≤ c‖gε(mε)‖Lr(0,T ;Lp(Td))
+ c‖uε‖

γ
2−γ
L∞(0,T ;L∞(Td)) + C

.

Superquadratic case
Theorem 5 (Polynomial estimates for the Fokker-Planck equation). Let (uε,mε)
be a solution of (6). Assume that H is superquadratic. Assume further that
0 < µ < 1 < β0, θ, p, r, and 0 ≤ υ ≤ 1 satisfy

αp =
θnβ0

θn + υ − θnυ
,

and
r =

d(θ − 1) + 2

2
.

Then

‖gε‖L∞(0,T ;Lp(Td)) ≤ C + C ‖Duε‖
(2+2µ)(θn−1)rυα

θnβ0(θ−1)
L∞(0,T ;L∞(Td)) .

Lemma 2 (Upper bounds for the Hamilton-Jacobi equation). Suppose (uε,mε)
is a solution of (6) and H is superquadratic. Then, if

p >
d

2
,

‖uε‖L∞(Td×[0,T ]) ≤ C + C‖gε(m)‖L∞(0,T ;Lp(Td)).

Furthermore, if
1

r
+

1

s
=

1

p
+

1

q
= 1

and
p

s
>
d

2
,

we have

‖uε‖L∞(Td×[0,T ]) ≤ C + C‖gε(m)‖Lr(0,T ;Lp(Td)).

Theorem 6 (Estimates by the non-linear adjoint method). Suppose that H is
superquadratic. Let (uε,mε) be a solution of (6) and assume that p > d. Then

‖Duε‖L∞(0,T ;L∞(Td)) ≤C + C‖gε(m)‖
1

1−µ
L∞(0,T ;Lp(Td))

+ C‖gε(m)‖
1

1−µ
L∞(0,T ;Lp(Td))‖u‖

1
1−µ
L∞(0,T ;L∞(Td)).

Further regularity

Bootstrapping regularity and passing to the limit

1. Lipschitz regularity for uε

2. Bounds for mε from below
3. Regularity for (uε,mε) in Sobolev spaces
4. Additional estimates allowing one to pass to the limit ε→ 0

Regularity for the Fokker-Planck equation in Sobolev spaces
Corollary 1. Let (uε,mε) be a solution of (6) with initial-terminal conditions (2).
Assume that g[m] = mα and that H is either sub or superquadratic. Then

•D2
xxm

ε,mε
t ∈ L2(Td × [0, T ]), and Dxm

ε ∈ L∞([0, T ], L2(Td));
•D3

xxxm
ε, D2

xtm
ε ∈ L2(Td × [0, T ]) D2

xxm
ε ∈ L∞([0, T ], L2(Td)) and

• there is r > d such that Dxm
ε, D2

xxm
ε,mε

t ∈ Lr(Td × [0, T ]) and then
mε ∈ C0,1−d/r(Td × [0, T ]).

Regularity by the Hopf-Cole transformation
Consider the following Hopf-Cole transformation:

w
.
= lnmε.

Lemma 3. Let (uε,mε) be a solution of (6) with initial-terminal conditions (2).
Assume that g[m] = mα and that H is either sub or superquadratic. Then lnmε

is Lipschitz and, therefore, mε is bounded by above and below.

In particular the Lemma ensures that mε is bounded away from zero

Regularity for the Hamilton-Jacobi equation
Lemma 4. Let (uε,mε) be a solution of (6) with initial-terminal conditions (2).
Assume that g[m] = mα and that H is either sub or superquadratic. Then

•D2
xxu

ε, uεt ∈ Lr(Td × [0, T ]), for any r <∞;
•D3

xxxu
ε, D2

xtu
ε ∈ L2(Td × [0, T ]) Dxxu

ε ∈ L∞([0, T ], L2(Td));
• There exists γ ∈ (0, 1) such that uε ∈ C0,γ

(
Td × [0, T ]

)
.

Passing to the limit
We observe that

1. There exists u such that uε → u in C0,γ
(
Td × [0, T ]

)
through some sub-

sequence, uniformly in compacts;
2. Compactness imply that we also have Duε → Du;
3. There exists m such that mε → m in C0,γ

(
Td × [0, T ]

)
through some sub-

sequence, uniformly in compacts.

Follow-up work: forward-forward mean-field
games

Forward-forward mean-field games

• Long-time behavior of MFG systems, T →∞
• Convergence to the equilibrium problem - numerical methods

– Reverse time in the Hamilton-Jacobi equation
– Prescribe initial-initial conditions for the MFG systems

Consider the following variation of the original MFG system{
ut + H(x,Du) = ∆u + g[m] on Td × [0, T ]

mt − div(DpHm) = ∆m on Td × [0, T ] ,
(7)

equipped with initial-initial boundary conditions:{
u(x, 0) = u0(x)

m(x, 0) = m0(x).
(8)

•Main difficulty: Fokker-Planck is no longer the (formal) adjoint equation to
the Hamilton-Jacobi

A result on existence of classical solutions
Theorem 7 (Gomes-P.). Let g be given as in (5) and assume that H is sub-
quadratic. Then, there exists a classical solution (u,m) for (7) with the initial-
initial boundary conditions (8), provided that

α < αγ,d,

where
αγ,d >

2

d
.
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