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Motivations

Describe natural bases in L2(µ) where computations are
easy to made.
Describe some measures µ hard to handle in high
dimensions through formal manipulations : in particular
compute moments.
Describe examples of Markov diffusions where one may
compute explicitly the spectral decomposition, and hence
heat kernel measures, etc.
Try to understand the underlying structure of sets on which
such measure exist.
Understand some specific properties of families of
orthogonal polynomials : generating functions, associated
Markov sequence problems, hypergroup properties, etc.
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Context

µ probability measure on R or Rd such that polynomials are
dense in L2(µ).

Natural basis for L2(µ) given by orthogonal polynomials,
obtained by orthonormalization of the sequence of monomials.

In dimension 1, orthonormalize the sequence 1, x , . . . , xn, . . . to
get a (unique up to the sign) sequence of polynomials Pn which
are orthogonal and norm 1.

Not unique in higher dimension : for any k , a choice is made of
a basis of the orthogonal complement of Pk−1 in Pk , where Pk
is the space of polynomials with total degree ≤ k .
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Dimension 1

Most famous examples

On R : Hermite polynomials : µ(dx) = e−x2/2 dx√
2π

.

On [0,∞) : Laguerre polynomials : µ(dx) = Caxae−xdx .

On [−1,1] : Jacobi polynomials µ(dx) = Ca,b(1− x)a(1 + x)bdx .

In those three examples, the associated polynomials are also
eigenvectors of Diffusion Operators, that is second order elliptic
differential operators.

Hermite case : L(f ) = f ′′ − xf ′, LPn = −nPn.

Laguerre case : L(f ) = xf ””− (a + 1− x)f ′, L(Pn) = −nPn

Jacobi case : L(f ) = (1− x2)f ′′ − ((a− b) + (a + b− 2)x)f ′,
L(Pn) = −n(n + a + b − 1)Pn.
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Symmetric diffusion generators

Symmetry :
∫

gL(f )dµ =
∫

fL(g)dµ.

Diffusion : L(Φ(f1, · · · , fk )) =
∑

i L(fi)∂iΦ +
∑

ij Γ(fi , fj)∂2
ij Φ,

Γ(fi , fj) = 1
2

(
L(fi fj)− fiL(fj)− fjL(fi)

)
.

In particular L(1) = 0 and
∫

L(f )dµ = 0 (invariance).

In Rn, µ(dx) = ρ(x)dx then

L(f ) =
1
ρ

∑
ij

∂i

(
g ijρ∂i f

)
.

If L self adjoint and has discrete spectrum : another natural
basis for L2(µ) is given by the eigen vectors of L.
We are looking for the situation where those basis coincide.
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For diffusion with polynomial eigenvectors

L(f ) =
∑

ij g ij(x)∂2
ij f +

∑
i bi(x)∂i f

L(xi) = bi(x), g ij(x) = Γ(x i , x j).

Pn := polynomials with total degree less than n. If there is a
basis of Pn formed with eigenvectors for L then

L : Pn 7→ Pn.

bi(x) polynomial degree ≤ 1

g ij(x) polynomial degree ≤ 2.∫
PL(Q)dµ =

∫
QL(P)dµ for any pair of polynomials.
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How to use it ? Moments

Computation of
∫

xn dµ for the Gaussian measure :

Lx = ∂2
x − x∂x , µ(dx) = e−x2/2dx .

L(xn) = n(n − 1)xn−1 − nxn.∫
L(xn)dµ = 0 =⇒

∫
xndµ = (n − 1)

∫
xn−2dµ.

Recurrence formula for the moments.
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How to use it ? Eigenvectors

Complex representation for Hermite Polynomials

On R2, L = Lx + Ly symmetric wrt dµ(x)dµ(y).

L(x + iy) = −(x + iy), Γ(x + iy , x + iy) = 0.

L(x + iy)n = n(x + iy)nL(x + iy)

+n(n − 1)(x + iy)n−2Γ(x + iy , x + iy)

= −n(x + iy)n

Hn(x) :=
∫

y (x + iy)ndµ(y).

LxHn = Lx
∫

y (x + iy)ndµ(y) =
∫

y Lx (x + iy)ndµ(y),∫
y Ly (x + iy)ndµ(y) = 0 (invariance).

LxHn =
∫

y (Lx + Ly )(x + iy)ndµ(y) = −n
∫

y (x + iy)ndµ(y)

L(Hn) = −nHn.
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General Problem

Find

all regular open sets Ω ⊂ Rn, (piecewise smooth boundary)
all probability measures µ on Ω (with dense polynomials),
all symmetric diffusion operators L on Ω,

such that L2(µ) has a orthonormal basis formed of
eigenvectors for L which are polynomials.

We shall restrict to the elliptic case : (g ij)(x) everywhere
positive definite on Ω. In this case, the inverse matrix gij(x)
defines a Riemanian metric on Ω.

Problem invariant under affine transformations on Ω.
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positive definite on Ω. In this case, the inverse matrix gij(x)
defines a Riemanian metric on Ω.

Problem invariant under affine transformations on Ω.
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In R

Ω = (−1,1) :

measures : γ distributions, Jacobi polynomials.
Ω = (0,∞) :

measures : β distributions, Laguerre polynomials.

Ω = R :

measure : Gaussian measure, Hermite polynomials.

No other examples (up to affine transformations) (Mazet, ’97)
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Geometric interpretation for Jacobi

Laplace operator on spheres Sn−1 ⊂ Rn.

L(xi) = −(n − 1)xi .

Γ(xi , xj) = δij − xixj .

X := 2(x2
1 + · · · x2

p )− 1, p ≤ n.

L(X ) = −2(n + 1)X + 2p, Γ(X ,X ) = 4(1− X 2).
1
4L(Φ(X )) = L̂(Φ)(X )

4L̂(Φ)(X ) = Γ(X ,X )Φ′′(X ) + L(X )Φ′(X ).

L̂ : Jacobi operator with parameters a = (n − p)/2 + 1,
b = p/2 + 1.
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Geometric interpretation for Hermite and Laguerre

Jacobi to Hermite scale Jacobi on (−
√

n,
√

n), a = b = n,
n→∞

Jacobi to Laguerre move and scale Jacobi on (0,
√

n), limit
a = n→∞, b fixed.

Hermite to Laguerre Hermite on Rd , applied on f (X ) with
X = x2

1 + · · · x2
d : Laguerre with parameter a = d/2 + 1.
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Higher dimensional models

Few examples
Dirichlet measures on the simplex xi ≥ 0,

∑
i xi ≤ 1.

On the unit ball
∑

i x2
i ≤ 1. µ(dx) = (1− ‖x‖2)adx

(Bargmann measures).

Law of the spectrum of random matrices : GOE, GUE,
SO(n), SU(n), Sp(n), and many other on matrices. The
variables are then the elementary symmetric functions of
the eigenvalues.

Root systems, Affine Hecque algebras (McDonald
polynomials).

etc.
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variables are then the elementary symmetric functions of
the eigenvalues.

Root systems, Affine Hecque algebras (McDonald
polynomials).

etc.
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Lie group actions

G compact group of matrices acting on Rd on a space of
matrices

Examples : g 7→ Mg, g 7→ g∗Mg, etc.

A ∈ L(G) (etA ∈ G) XA(F )(M) = limt→0
F (MetA)−F (M)

t .

Then XA(F ) =
∑

ijk AikMkl∂Mkj F .
L =

∑
X 2

Ai
maps polynomials in the entries into polynomials in

the entries, and is symmetric with respect to the Haar measure.
Example Laplace operators (Casimir operators) on compact
groups (in general non elliptic).
Still true for functions which are invariant under actions of
subgroups : main source of natural elliptic examples for models.
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In R2

In R2, up to affine transformations, we are able to describe all
the sets Ω, all the measures and all the associated operators

11 compact sets Ω

7 non compact ones

For any of these Ω, there exists a least one measure for which
the model comes from Lie group action.

For many values of parameters appearing in the measure,
existence of geometric interpretations.
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The 11 compact models in dimension 2 : triangle

FIGURE: Triangle

Equation : xy(1− x − y) = 0.
Measure ρ(x) = xayb(1− x − y)c .
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The 11 compact models in dimension 2 : circle

FIGURE: Circle

Equation : (1− x2 − y2) = 0.
Measure ρ(x) = (1− x2 − y2)a.
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The 11 compact models in dimension 2 : square

FIGURE: Square

Equation : (1− x)(1 + x)(1− y)(1 + y) = 0.
Measure ρ(x) = (1− x)a(1 + x)b(1− y)c(1 + y)d .
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The 11 compact models in dimension 2 : double parabola

FIGURE: Coaxial Parabolas

Equation : (y − x2 + 1)(y − 1 + αx2) = 0.
Measure ρ(x) = (y − x2 + 1)a(y − 1 + αx2)b.
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The 11 compact models in dimension 2 : Parabola with two
lines 1

FIGURE: Parabola with two lines 1

Equation : (y − x2)y(1− x) = 0.
Measure ρ(x) = (y − x2)ayb(1− x)c .
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The 11 compact models in dimension 2 : Parabola with two
lines 2

FIGURE: Parabola with two lines 2

Equation : (y − x2)(y + 2x + 1)(y − 2x + 1) = 0.
Measure ρ(x) = (y − x2)a(y + 2x + 1)b(y − 2x + 1)c .
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The 11 compact models in dimension 2 : Cuspidal Cubic 1

FIGURE: Cuspidal cubic 1

Equation : (y2 − x3)(1− x) = 0.
Measure ρ(x) = (y2 − x3)a(1− x)b.
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The 11 compact models in dimension 2 : Cuspidal Cubic 2

FIGURE: Cuspidal cubic 2

Equation : (y2 − x3)(2y − 3x + 2) = 0.
Measure ρ(x) = (y2 − x3)a(2y − 3x + 2)b.
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The 11 compact models in dimension 2 : Nodal Cubic

FIGURE: Nodal Cubic

Equation : y2 − x2(1− x) = 0.
Measure ρ(x) = (y2 − x2(1− x))a.
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The 11 compact models in dimension 2 : Swallow Tail

FIGURE: Swallow Tail

Equation :4 x2 − 27 x4 + 16 y − 128 y2 − 144 x2y + 256 y3 = 0
Measure
ρ(x) = (4 x2 − 27 x4 + 16 y − 128 y2 − 144 x2y + 256 y3)a.
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The 11 compact models in dimension 2 : Deltoid

FIGURE: Deltoid

Equation : (x2 + y2)2 + 18(x2 + y2)− 8x3 + 24xy2 − 27 = 0.
Measure
ρ(x) =

(
(x2 + y2)2 + 18(x2 + y2)− 8x3 + 24xy2 − 27

)a
.
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Comments

Boundaries of Ω are algebraic curves with degree less
than 4
The measures are related to the equations of the
boundaries : every irreducible factor to some power
When the boundary is degree 4, the associated metric has
constant curvature
Curvature is 0 for square, parabola with two tangents, and
deltoid.
Curvature is constant positive in every other case.
In circle and triangle case, the metric g ij(x) is not unique.
Unique in every other case
For nodal cubic, the metric is unique, the curvature is not
constant, but when a = −1/2, it has a natural interpretation
coming from the 4-d sphere (twisted Hopf fibration).
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More comments

Most of the 2-d equations describing boundaries are
discriminants (the set where some polynomial of a certain
type has two coinciding roots).
Every model has a geometric representation when the
exponents in the measure are set to −1/2.
Many other geometric interpretation for exponents half
integers.
From the Riemanian geometric point of view, those half
integers measure do not always correspond to wrapped
products.
There is a relationship between the type of the singular
points of the model and the angles of the boundaries of the
cells it comes from in the geometric interpretation :
ordinary double points correspond to π/2, cusps to π/3,
and double tangents to π/4.
Every two dimensional model has a natural
multidimensional extension.
In dimension 3, there are models which are not natural
extensions of those dimension 2 models.
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Deltoid example p = −1/2

FIGURE: 1, j , j̄

Z : C = R2 7→ C = R2

Z = ei1.z + eij.z + ei j̄.z .

The image of R2 under Z is the Deltoid domain.
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Triangular lattice

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

T
T
T
T
T
T
T
T
T
T
T
T
T
T
T

T
T
T
T
T
T
T
T
T
T
T
T
T
T
T

T
T
T
T
T
T
T
T
T
T
T
T
T
T
T

T
T
T
T
T
T
T
T
T
T
T
T
T
T
T

T
T
T
T
T
T
T
T
T
T
T
T
T
T
T

T
T
T
T
T
T
T
T
T
T
T
T
T
T
T

T
T
T
T
T
T
T
T
T
T
T
T
T
T
T

T
T
T
T
T
T
T
T
T
T
T
T
T
T
T

T
T
T
T
T
T
T
T
T
T
T
T
T
T
T

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
T
T
T
T
T
T
T
T
T
T

T
T
T
T
T

T
T
T
T
T
T
T
T
T
T
T
T
T
T
T

T
T
T
T
T
T
T
T
T
T

T
T
T
T
T
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�

A
0 2π/3

Z is invariant under the symmetries of the triangular lattice.
Z is injective on each cell of the lattice.
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Deltoid Continued

Any function which has the symmetries of the triangular lattice
is a function of Z .

With ∆ usual Laplacian in R2

∆
(

f (Z )
)

= L−1/2(f )(Z ).

L−1/2 : 2-d Laplace operator on functions having the
symmetries of the triangular lattice. ρ is the image measure of
the Lebesgue measure through Z .

Other interpretation for p = 1 Laplace of SU(3) on spectral
functions. Z is then the trace of the matrix M ∈ SU(3).
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Non compact cases

Any kind of products of intervals (5 different models)

In addition : above a parabola or to the right of the cuspidal
cubic

Measures : same as before with some exponential factors
(similar to the Laguerre case)

When no boundaries : only the Gaussian measures.

Always appear as limits of compact cases.
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General formulation of the problem

L(f ) =
∑

ij g ij∂2
ij f + bi(x)∂i f

bi polynomials of degree ≤ 1 and g ij polynomials of degree ≤ 2.

bi(x) =
∑

j ∂jg ij(x) +
∑

j g ij∂j log(ρ).

∂i log(ρ) =
∑

j(g
−1)ij L̂j .

In addition : symmetry holds for every pair of polynomials

∀i ,
∑

j g ijnjρ(x) = 0 on ∂Ω, with nj = normal vector on ∂Ω.

=⇒ det(g ij) = 0 on ∂Ω.
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bi polynomials of degree ≤ 1 and g ij polynomials of degree ≤ 2.

bi(x) =
∑

j ∂jg ij(x) +
∑

j g ij∂j log(ρ).

∂i log(ρ) =
∑

j(g
−1)ij L̂j .

In addition : symmetry holds for every pair of polynomials

∀i ,
∑

j g ijnjρ(x) = 0 on ∂Ω, with nj = normal vector on ∂Ω.

=⇒ det(g ij) = 0 on ∂Ω.
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General Formulation continued

∂Ω is in some algebraic surface with degree ≤ 2n.

With {D = 0} the irreducible equation of ∂Ω
∀i ,

∑
j g ij∂jD = 0 on {D = 0}.

∀i ,
∑

j g ij∂jD = LiD for some first order polynomials Li .

The admissible domains are exactly those for which the above
equation admits a non trivial solution.

If D has degree 2n (maximal), then it is proportional to the
determinant of the metric. Then, the associated Laplace
operator is a solution, corresponding to the measure
ρ(x) = D−1/2.

In general, D divides the determinant of the metric.

When such a D is a solution, with D = D1 · · ·Dk (irreducible
factors) then any ρ = Da1

1 · · ·D
ak
k is a solution for ρ.
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Back to the dimension 2 case

∀i ,
∑

j g ij∂jD = LiD for some first order polynomials Li .

Implies that {D = 0} has no flex points and no flat points (in the
complex projective 2-plane).

Implies that the dual curve has no singular points of some type

Leads through the above classification through the inspection
of singular points of {D = 0}

(use Plucker formulas and classification through the genus of
the associated Riemann surface).
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Larger dimension

Genus method not available in higher dimension.

Not even able to prove that in the maximal degree case, the
curvature is constant. Is that even true ?

Easy to construct models in 3-d from models in 2-d by double
cover (pass from equation P(x , y) = 0 to equation
z2 − P(x , y) = 0) : works as soon as no cusp ad no double
tangents.

Not able to show that every model should come from Lie group
representation. Not even proved in the above double covers.

In the 2-d case, many geometric models found when
parameters of the measure are half-integers (similar to the
Jacobi case)

Still a lot of geometric situations to identify.
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Thank You For Your Attention
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