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distribution functions f,(x,v,t), s=1,...,Q
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ot

Q@
+ V- vxfs — Z[sr[fs; fr]
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Physical frame

Mixture of () rarefied gases A, s=1,...,Q

4

set of integro—differential equations of Boltzmann type for the
distribution functions f,(x,v,t), s=1,...,Q

f,
ot

Q
+ V- vxfs — Z[sr[fs; fr]

r=1
I..|fs, f-]: Boltzmann collision operator describing the effects
of binary collisions involving particles of gases A, and A,

#® Elastic collisions preserve number densities of single
species, global momentum and global kinetic energy

® More complex situations like polyatomic gases or
chemically reacting mixtures may involve exchange of
Internal or chemical energy (with conservation of total energy)
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#® Mixtures diffusing in a background medium:
hydrodynamic equations of reaction—diffusion type
[De Masi, Ferrari, Lebowitz (1986), De Masi, Presutti (1991), Spigler,
Zanette (1993), Bisi, Desvillettes (2006), Bisi, Spiga (2006), ...]

Remark
These strategies usually lead to fluid—dynamic descriptions

Involving number densities of single species N,, global mass
velocity of the mixture u, global temperature T

Aim of our work

We present a formal derivation, starting from suitably
rescaled kinetic equations, of an hydrodynamic description
Involving temperatures and velocities of single gases
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References on multi-temperature hydrodynamics

® In the description of several physical problems, like
plasmas, aerothermodynamics, thermally
non—equilibrium conditions
[Park (1990), Bose (2003), Kustova, Nagnibeda (2006), ... ]

#® Macroscopic theory developed in the frame of rational
thermodynamics
[Muller, Ruggeri (1998), Ruggeri, Simic (2007), Gouin, Ruggeri (2008),
Ruggeri, Lou (2009), ...]

#® Kinetic model in which the dominant operator is made up
by all elastic encounters (including “resonant” collisions
with change of internal state within the same species)
[Groppi, Spiga, Zus (2006)]

Here hydrodynamic variables are mass densities, global velocity, and
a unique translational temperature for the mixture plus an internal
(vibrational) temperature for each species

M. Bisi—p. 6



Kinetic model for polyatomic gases

[Groppi, Spiga (1999), Desvillettes, Monaco, Salvarani (2005)]

® Each species A,,s=1,...,Q, Is endowed with a
structure of V > 1 discrete energy levels
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Kinetic model for polyatomic gases

[Groppi, Spiga (1999), Desvillettes, Monaco, Salvarani (2005)]

® Each species A,,s=1,...,Q, Is endowed with a
structure of V > 1 discrete energy levels

#® The QN different components are ordered in such a way
that the s—th gas may be regarded as the equivalence
class of the indices : = s modulo @)

® If A;, 1 <i<@N, denotes the general component, and
FE; the corresponding energy of its state, the general
binary interaction is written as

The net increase of internal energy
AE!" = Ej, + E;, — E; — E; must be compensated by an
opposite variation of the kinetic energies
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Kinetic equations for functions filx,v,t), 1=1,...,NQ

afz zhk ~ / ~ /
Y +v - -Vifi = Z //KJ w,n’)dwdn

j,h, k) € D;
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Kinetic equations for functions filx,v,t), 1=1,...,NQ

af’& zhk nJ )
o TV Vxh = ) //K” i) dwdiy,

(j, h, k) € D;
K?jhk[ﬂ(‘faw;fl/) = O(¢° = 0/*)B¥(g,n - 1)

{/

(Zl) fr (viy') fu (Wi") = fulv) £i(w)
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Kinetic equations for functions

Vifi = > / / K™ f](v, w, i) dwdi’

(4, h, k) € D;

rels

7

i
i

ot

with

$ g=V—W

>

J
J

°

[i](V,W,fl/) — @(9

(

= g n relative velocity

filx,v,t), 1=1,...,NQ

_ 5%)3.@‘?( - i)

g
hk

) Fo (VI o (W) — Ji(v) fy(w)

B!’ collision kernel (relative speed times cross section)

u;; reduced mass
© unit step function introduces a threshold for the collision

if 5, = QAE}”“/MZ] > ()

v, wi” post—collision velocities

hk
17 7
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Collision equilibria

Mg 3/2 m 5 B
Milv) =n, (QWKT) — {_QK—T(V WP Viss V=10
where o
__tn— s _EZ’—E
= (B T)N, (B T) = ——2 ) e
D s XD (— 557 Zs(T)




Collision equilibria

— s 3/2 r 2 . o
M;(v) = n; (m) exXp _QK—T(V_u) } Vi=s, Vs=1,...,0
where ( )
exp
D = exp( EKT )

H —functional

H = ZZ/leogfzdv

s=1 1=s



Collision equilibria

B ms O\ 5/2 Mg e B

M;(v) =n; (QWKT) exp {_QK—T(V —u) } Vi=s, Vs=1,...,0

where ( . ) ( . )
exp (— 7 eXp\— k7

n; = Y;(L;, 1) Ny Vi( By, T') = — —
(£;,T) (£:,T) S exp (< B2E) Z.(T)
_ Q
H—functional H="Y" / £.1og f; dv
s=1 1=s
Q + 4 independent CONServation laws
Ny=>._.mn;, s=1,...,Q, number densities of single species

u global momentum
SNKT + 3.1 E;n; total (kinetic + internal) energy
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Rescaled kinetic model
Among all possible interactions

we assume the mean free path for collisions between
components of the same species much shorter than for
collisions between components of different species:

FAST : 1 =1=h=k
SLOW P £ i=h 7

]
-
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Rescaled kinetic model
Among all possible interactions

we assume the mean free path for collisions between
components of the same species much shorter than for
collisions between components of different species:

FAST : 1 =1=h=k
SLOW P £ i=h 7

]
-

Scaled kinetic equations

0fi
ot

1
—I—V'vxfi:—[fA—l—[ZSL
€
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Investigation of the leading operatorsl/

Dominant collision equilibria

N ms \*’ m E;,—E
M L S S . S . 2 . 2 S
o) =71y (27TKTS> eXp[ ok %) T TR

Vi=s, Vs=1,...,0,

with free parameters N, u,, 15

= 5 collision invariants corresponding to preservation of

number density, momentum, and kinetic energy within each
species
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Investigation of the leading operatorsl/

Dominant collision equilibria

N ms \*’ m E;,—E
M L S S . S . 2 . 2 S
o) =71y (27TKTS> eXp[ ok %) T TR

Vi=s, Vs=1,...,0,

with free parameters N, u,, 15

= 5 collision invariants corresponding to preservation of
number density, momentum, and kinetic energy within each
species

= 5() macroscopic “conservation” (for the fast operator)
equations, that we aim at closing at Euler accuracy
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ON
t

(psus) + vX ) Z (pzuz 0 u; + Pz) — Rs

1=S8

+ Vi (Nsus) — 0

D
o
ot
o
ot

— /1 , 3 ' 1,
Z (5 pilly + inzKTz —|-Em7;> + Vx {Z [(5 Pil;

| 1=s _

3

where R, and S, are collision contributions due to the slow
Interactions
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ON
t

(psus) + vX ) Z (pzuz 0 u; + Pz) — Rs

1=S8

— /1 , 3 ' 1,
Z (5 pilly + inzKTz —|-Em7;> + Vx {Z [(5 Pil;

| 1=s

+ Vi (Nsus) — 0

D
o
ot
o
ot

3

where R, and S, are collision contributions due to the slow
Interactions

They are provided by weak forms of the Boltzmann operators
corresponding to the test functions ¢;(v) = m,;v and

QOZ(V) m— %miv2 —+ Ez
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R.= >, ) / / m (VIF—v) BIF(g, 5-0))O(g*=61F) f;(v) f;(w)dvdwdn’

r#s 1,h=s j3,k=r

Se=>.2.2. ///{ m | }+Eh—Ei}

r#s 1,h=s j,k=r

x B (g, 0+ 2)O(g* — /%) fi(v) f;(w) dv dw di’
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R.=) ) ) / / /ms v)BIF(g,0-0)0(g°=01") f;(v) f;(w)dvdwd’

r#s 1,h=s j3,k=r

Se=>.2.2. ///{ m | }+Eh—Ei}

r#s 1,h=s j,k=r

x B (g, 0+ 2)O(g* — /%) fi(v) f;(w) dv dw di’

They correctly reproduce the overall conservations of
momentum and energy

Q@ Q
ZRS:O ZSS:
s=1
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R.=) > > / / /ms v) B (g, 0-0")O(g*=0.") f(v) f;(W)dvdwdi’

r#s 1,h=s j,k=7

s X X [l il o)

r#s 1,h=s j,k=r

x Bij (g, -0)0(g” — 6;57) fi(v) f;(w) dv dw dit

They correctly reproduce the overall conservations of
momentum and energy

Q Q
> R.,=0 » S, =
s=1

The zero—order closure is achieved by substituting
Into macroscopic equations the fast collision equilibrium
fM(N,, u,, T,) for the actual distribution functions
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ON

ot
0
ot
0
ot

Fluid—dynamic Euler equations

+ Vi - (Nsug) =0

(psus) =+ v (psus X us) =+ vx (NSKTS) — RS

3
(psu +2NKT+NE(T)>—I—

1 5 _
+ Vi - [<§psu§ + 5N KT, + N, E, (T8)> u8] —



Fluid—dynamic Euler equations

N
g + Vi - (Nsug) =0

ot
0 .
= (poy) + Vi (o, 0 w,) + Vi (N,KT) = R,
0 3
0_< DU +2NKT+NE (T))—I—
1 , 5 _ .
+ Vi - [(5,05158 u §NSKTS + N.F, (T8)> u8] — S,

where

_ 1 = 1,
ES(TS):Z(T)ZEieXp<— T )

and R., S, have become known functions of the 5Q unknown
flelds N;, u,, T,
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Evaluation of collision contributions:
crucial steps and difficulties

1) The product of two Maxwellians at different velocities and
temperatures may be cast as

3
M\ Mgy . LVs r s 4 -
fE W17 w) = Zs (Ty) Z, (T,) (27TKTS> (27TKTT> eXp( KT

E, — E,
B j](T ) exXp [_Oésr (Gsr T VYsr& — 557’)2} eXp {_687“ [g - (us - ur)]z}

where

G, = vV + W g=V—W
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Evaluation of collision contributions:
crucial steps and difficulties

1) The product of two Maxwellians at different velocities and

temperatures may be cast as
3
N N, m m 2 E,— F
M M L S r S r T S
T W) = s 7o (QWKT) (27TKTT> eXp( KT,

N Ej ¢ Er) exXp [_Oésr (Gsr T VYsr& — 557’)2} eXp {_687“ [g - (us - ur)]z}

DN

KT,
where
G, = s vV + M W g=V—W
me + M, Me + M,

M m, g, —
ST

<2KT8 2KT7,> !
_|_

Mg m,

_ Mer 1 1 5 1 msu%_mru
e = OKT. 2KT. = oo \orT. T oKT. T

aST
M. Bisi — p. 15



2) Angular integrations may be cast in terms of suitably
averages of the collision kernel:

_ Shk\ 2
hk (0 i hk(1
B?f(g) — Bz’j 0 (9) — (1 — _g; ) Bz’j 2 (9) -
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2) Angular integrations may be cast in terms of suitably
averages of the collision kernel:

_ SRk 2
hk (0 i hk(1
B?jk(g) — Bij 0 (9) — (1 — g_é> Bz’j 2 (9) -
where

B (g) = / (- ') B (9,0 i) (=0,1
52

tj

3) Integrations over G, may be explicitly performed, and it
can be checked that

A u, — u,

RST — %sr

lu, — u,
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2) Angular integrations may be cast in terms of suitably
averages of the collision kernel:

_ SRk 2
hk (0 i hk(1
B?jk(g) — Bij 0 (9) — (1 — g_é> Bz’j 2 (9) -
where

B (g) = / (- ') B (9,0 i) (=0,1
52

tj

3) Integrations over G, may be explicitly performed, and it
can be checked that

A u, — u,

Rsr — %sr

lu, — u,|

= This allows to push further analytical manipulations in
polar coordinates, leaving only a one—dimensional integral
with respect to g = |g|

M. Bisi—p. 16
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R . sy 1 Ns Nfr
T2V B3P, — 2 Zs (TY) Zo (T3

- - X, s Yr|yMsr
DI eXp( KT, KT, ) i ([0 =], Bor)

1,h=s j,k=r

. A 1 1 N N,
Ssr — 557’ : Rsr - d
T r A Z, (1) 2, (T)

E,—E, E,—E)\ _,.
<30 S e (= ) VI B )

t,h=s j,k=r
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R . Mosr 1 Ns Nfr
ST 2\/* 53/2’113 . uT‘Q Zs (Ts) Z'r (Tr)

- - X, s Yr|yMsr
DI eXp( KT, KT, ) i ([0 =], Bor)

1,h=s j,k=r

. A 1 1 N N,
Ssr — 557’ : Rsr - 4
T i A Z.(T) 2o (T))

E, — E, E E.
—— th s  Upr sr sr
X SJ SJ eXP< KT, KT, ) (s = v, Bar, Yer)

t,h=s j,k=r

where, setting A,, = 3>

lu, — u,|,

X{ij(’us — ur\,ﬁsr) — /OO@ ( 2 _ ﬁsr(jhk) Bhk(ﬁ 1/233)
x {(2A5z — 1) exp |— (()x Ag) } (2052 + 1) exp [— (z + AST)Q] }ada
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R . Mosr 1 Ns Nfr
T 2T B, — w2 Zs (Ty) Z. (T3

o o X, s Yr|yMsr
DI eXp( KT, KT, ) i ([0 =], Bor)

1,h=s j,k=r

. A 1 1 N N,
Ssr — 557’ . Rsr - -
T r A Z, (1) 2, (T)

E;—E, E;—E\ .,
<30 S e (= ) VI B )

t,h=s j,k=r

where, setting A, = 3% [u, — u,

Y = /0 O (z° — B 01F) {usr%rﬁ;lﬂf?’/??f (85, %x)
+ [587“ (Eh — Ez) — Ers (Ek - E])} :EBZIC(O) (65_7“1/256) }
x {exp |— (z — AST)2} —exp |- (z + AST)2} }da

M. Bisi—p. 17
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Exchange rates for simple models

® Maxwell molecule frame
If for a given collision (i, j) — (h, k) we assume B} depending

onlyonn-n' = B/ (g) = ng(@) (9) = K, = constant

We get Xz'hk 2\/_/1hkA3 for 5%’{ <0

X@f;k — 2\/7/'{/ {A ﬁsra ) (Agr T %) FQ(ﬁST) Asr)
FDg\ B O FolBors M)} for 0> 0

(with F7, Fo, F3 suitable combinations of exponentials and error functions)
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Exchange rates for simple models

® Maxwell molecule frame
If for a given collision (i, j) — (h, k) we assume B} depending

onlyonn-n' = B/ (g) = ijk(o) (9) = K, = constant

We get Xz'hk 2\/_/1hkA3 for 5%’{ <0

ng — 2\/7/{' {A ﬁsra ) (Agr — %) FQ(ﬁST) Asr)
F e[ Bor 01 Fy(Bor, ) | for o1 >0
(with F7, Fo, F3 suitable combinations of exponentials and error functions)

Remark: Unfortunately, this does not make explicit the whole exchange

rate R,, since the sums in R, involve also its “reciprocal” X7,

for which the collision kernel is not Maxwellian anymore:
5hk

Bilo) =l (1425 )"

M. Bisi—p. 18



® Monoatomic gases
In this limiting situation it's possible to obtain completely
explicit results
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® Monoatomic gases
In this limiting situation it's possible to obtain completely
explicit results

s Maxwell molecules

Rsr — ,uerserigi (us — u'r)

A 3K (T, — T.
SST — _MS"“NSN"“/{g (537~u8 + 57“8“?“) ) (us — u'r) + ( )

me + M,
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® Monoatomic gases
In this limiting situation it's possible to obtain completely
explicit results

s Maxwell molecules

Rsr — ,uerserigi (us — u'r)

. SK (1T — 1,
SST — _MS"“NSN"“/{g [(gsrus + 57“8“?“) ) (us — u'r) + ( )]
Mg + My
» Hard spheres  (Bi(9)=nyg. Ay =050 [u, —u)

ST

T NN 4 +4AZ — A
= T (u,—u,) [ e (A,,) + B e (-A2)

sT

2
1 e_AS’]" mS m’l” . . zK(Ts _Tfr')
(1 + QAET) /T } (QKTS Us + 357, u?“) (us — ) + ==

J(at o aa 1 1) e 5 (a2 4 9) )

Sor = _MersNrngqtﬁ;“lﬂ {al {(Agr 1= 4A1§7~) erféjfr)
_|_

M. Bisi—p. 19



s Chemically reacting mixture
Assumptions:

» Mixture of 4 gases that, besides elastic collisions, are
subject to a bimolecular and reversible chemical reaction

A1—|—A2\:\A3—|—A4
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s Chemically reacting mixture
Assumptions:

» Mixture of 4 gases that, besides elastic collisions, are
subject to a bimolecular and reversible chemical reaction

A1—|—A2\:\A3—|—A4

» Elastic collision kernels B and chemical collision kernel B};
depending only on n - nn’
» Negligible heat of reaction (AL = 0)

= Due to microreversibility, also the reverse kernel B3} is of
Maxwell type
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s Chemically reacting mixture
Assumptions:

» Mixture of 4 gases that, besides elastic collisions, are
subject to a bimolecular and reversible chemical reaction

A1—|—A2\:\A3—|—A4

» Elastic collision kernels B” and chemical collision kernel By,
depending only on n - nn’

» Negligible heat of reaction (AL = 0)

= Due to microreversibility, also the reverse kernel B3} is of
Maxwell type

In equations for number densities, suitable reactive
contributions appear:

3/2
34

(Analogous chemical contributions in equations for u, and 77)

M. Bisi — p. 20



Remark

In space homogeneous conditions, seven independent first
Integrals are in order:

N,+ N, = N? + N? (s,7) = (1,3), (1,4), (2,4)
4
1 0
u—= — Pslg = U
p’ 2 (2)
4
T =

1
SKNO Zps“ L ML =T

s=1 s=1
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Remark
In space homogeneous conditions, seven independent first
Integrals are in order:

N,+ N, = N? + N? (s,7) = (1,3), (1,4), (2,4)

1 1
- —ozps“s =u

1
T = SKNOZpSu t 25 ) NI =T

s=1 s=1

(2)

=  The evolution actually takes place in a 13—dimensional
subspace, once initial conditions are given, and
Independent variables may be chosen, for instance, as

Nla U, U3, Uy, T27 T37 T4

M. Bisi—p. 21



Collision equilibria
The “collision” operator in the Euler equations vanishes at the
“physical” equilibrium

111:112:1132114(:11) T1:T2:T3:T4(:T)
3
N ()t
N3Ny 34

(a 7 parameter family with a single velocity and a single temperature, plus
mass action law for densities)
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Collision equilibria
The “collision” operator in the Euler equations vanishes at the
“physical” equilibrium

111:112:1132114(:11) T1:T2:T3:T4(:T)
3
N ()t
N3Ny 34

(a 7 parameter family with a single velocity and a single temperature, plus
mass action law for densities)

It can be proved that initial conditions determine uniquely an
element in the above family

*

ok ook oox 0 x __ gk __ ok _ g 0
u; =U, =U; =U; =1 IT=15=1; =1, =T
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Collision equilibria
The “collision” operator in the Euler equations vanishes at the
“physical” equilibrium

111:112:1132114(:11) T1:T2:T3:T4(:T)
3
N ()t
N3Ny 34

(a 7 parameter family with a single velocity and a single temperature, plus
mass action law for densities)

It can be proved that initial conditions determine uniquely an
element in the above family
Ul =u,=u; =u =u’ T =Ty =T; =T =T"

and then one gets for densities a quadratic equation with
only one admissible (positive) solution

NT = s { [(E@ND + N + N§)— (NP = N9))* +4£(1—€) (N9 + )
X (N+N)) = [6(2ND + NS + Ng) — (NP — N9)] }
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Remark
We can directly verify that the fluid—dynamic system does not
exhibit spurious collision equilibria
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Remark
We can directly verify that the fluid—dynamic system does not

exhibit spurious collision equilibria
® (=0 = mass action law
#® On using this result, momentum equations yield

4
Z Agu; =0, Ag = A4+ Ay
=1

where A,, come from the mechanical interactions, A,; from
the chemical ones
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Remark
We can directly verify that the fluid—dynamic system does not
exhibit spurious collision equilibria

® (=0 = mass action law
#® On using this result, momentum equations yield

4
Z Agu; =0, Ag = A4+ Ay
=1

where A,, come from the mechanical interactions, A,; from
the chemical ones

r é A (and then A) are symmetric and singular (sums of
rows/columns equal to zero)

o The sub—matrices of é é made by the first 3 rows and columns are
non-singular and negative definite

= the system admits oo! solutions, corresponding to all
equal velocities
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Remark
We can directly verify that the fluid—dynamic system does not
exhibit spurious collision equilibria

® (=0 = mass action law
#® On using this result, momentum equations yield

4
Z Agu; =0, Ag = A4+ Ay
=1

where A,, come from the mechanical interactions, A,; from
the chemical ones

r é A (and then A) are symmetric and singular (sums of
rows/columns equal to zero)

o The sub—matrices of é é made by the first 3 rows and columns are
non-singular and negative definite

= the system admits oo! solutions, corresponding to all
equal velocities

#® Analogously for temperatures equations
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Entropy dissipation

We consider the restriction of the classical reactive
H—functional to the finite dimensional subspace of distribution
functions defined by the fast collision equilibria f (N, u,, T})

S ()3 ()

s=1

H
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Entropy dissipation

We consider the restriction of the classical reactive
H—functional to the finite dimensional subspace of distribution
functions defined by the fast collision equilibria f (N, u,, T})

i Z o (35) 43 108 (55 )

It is possible to prove that it attains its minimum at the unique
admissible equilibrium point and, in the space independent
case, formal derivation yields

4 4
- NS 3 ms 3 atTS
S —1 S
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Numerical examples

Reference case
Initial data and averaged collision frequencies

NP=2, N?=4, NY)=3, NI=1
0-(2,2,2), uwl=(4,44), uwl=(1,1,1), ud=(33,3)
W=2, Td9=3, T9=4, T?=1
Br=1, BY =1, BL =05
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0-(2,2,2), uwl=(4,44), uwl=(1,1,1), ud=(33,3)
W=2, Td9=3, T9=4, T?=1
Br=1, BY =1, BL =05

Particle masses

mi =12, my=08, m3=0.9>5, my=1.05
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Numerical examples

Reference case
Initial data and averaged collision frequencies

NY=2, N)=4, N)=3, N}=1
(1):(27272)7 u2_(444) ug:(17171)7 u4_(333)
TP =2, T9=3, Ty=4, T)=1
Br=1, BY =1, BL =05

Particle masses
mi =12, my=08, m3=0.95, my=1.05
Equilibrium values and relaxation rates are strongly

depending on

3

£ = (’”2> — 0.94
L34
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Temperatures evolution

5 —
) /
F=- - - = —_— ———————
4
3.5~
3
25—
2
T
15 T,
Ts
T4
1 l l l l l l l l l J
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Ex. 2

mp =0.02, my =198, m3=0.95, my=1.05

=  ¢= (@) = 0.0079
34

oo

Temperatures

6*

J.

T
T
T

T

1 x x x x x |
0 05 1 15 2 2.5 3

A W N P
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Ex. 3
mi; =0.02, my=198, m3=0.05, my=195

3

2
=  f= (&) —0.26
34

Temperatures

4

35

l

25+
2H
151 T
T2
T3
T4
1 | | | | | |
0 1 2 3 4 5 6
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Future works

#® comparison with results obtained from extended
thermodynamics (T. Ruggeri, S. Simic)
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Future works

comparison with results obtained from extended
thermodynamics (T. Ruggeri, S. Simic)

Investigation of more general collision kernels and of an
Internal energy given by a continuous function
(L. Desvillettes, M. Pavic)

applications to physical problems (shock—wave and/or
Riemann problem)

higher order of accuracy (Navier—Stokes equations)

Thank you for your attention!
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