On the relaxation to equilibrium of random surfaces

Pietro Caputo Havana, Cuba - March 8, 2012

cf. P.C., F. Martinelli, F.Toninelli
Comm. Math. Phys. - to appear
and
P.C., F. Martinelli, F. Simenhaus, F.Toninelli
Comm. Pure Appl. Math. 2011

Overview

- Two models of random surfaces
- Combinatorial structures: lozenge tilings, perfect matchings of honeycomb lattice
- Statistical physics: crystal shape, Ising model interfaces
- Dynamics: sampling via local Markov chains
- Goal: a unified approach for sharp mixing time bounds.
- Key new input: mean curvature motion as a driving mechanism behind equilibration.

Monotone surfaces, lozenge tilings, dimer coverings, Ising interface at T=0

monotone surface or plane partition

perfect matching with dimers

height function

Dynamics of monotone surfaces

$$\{\phi_x\}_{x\in U\cup\partial U}, \ \phi_x\in\mathbb{Z}, \ \phi_x\geq\phi_y \ \text{if} \ x_i\leq y_i, \ i=1,2$$

Boundary condition: $\{\phi_x\}_{x\in\partial U}$ size : $L=\mathrm{diam}(U)$

Continuous-time Markov chain:

indep. with rate one each column x attempts $\phi_x \to \phi_x \pm 1$ with probab. 1/2

move is accepted if compatible with constraints equilibrium is uniform distribution π

mixing time:
$$T_{\text{mix}} = \max_{\phi} \inf \{t > 0 : \|\mu_t^{\phi} - \pi\| \le 1/4\}$$

Mixing time bounds

Conjectured: diffusive scaling $T_{\text{mix}} = O(L^2 \log L)$

- 1. Luby-Randall-Sinclair (2000): Poly(L) bound via analysis of a column dynamics (non-local)
- 2. D.B. Wilson (2004): Sharp bounds for column dynamics, (approx. eigenfunction) $T_{\rm mix}^{CD} = O(L^2 \log L)$
- 3. Randall-Tetali (2002): Refined Poly(L) bound via comparison inequalities $T_{\rm mix} = \widetilde{O}(L^6)$
- 4. Further refinement via comparison and censoring (Peres-Winkler inequality): $T_{\rm mix} = \widetilde{O}(L^4)$

Notation: $\widetilde{O}(L^p)$ stands for $O(L^p(\log L)^c)$

On boundary conditions

Wilson's technique + comparison methods are quite robust and can handle any boundary conditions

Our setting: assume that the boundary heights lie (approx) on a given plane

Definition planar b.c.

$$\exists \mathbf{n} : |\phi_x - \bar{\phi}(\mathbf{n})| \le C \log(1 + |x|)$$

where $\bar{\phi}(\mathbf{n})$ is the plane orthogonal to \mathbf{n}

Monotone surfaces with planar boundary conditions

Corresponds to Ising, T=0 with Dobrushin b.c. which impose an interface between + and - spins.

Theorem: $L^2/(c \log L) \le T_{\text{mix}} \le L^2(\log L)^c$

SOS model

$$\phi_i \in \{0, 1, \dots, L\}, i = 0, 1, \dots L + 1$$

Gibbs measure

$$\pi(\phi) := \frac{1}{Z} \exp(-\beta \sum_{i} |\phi_{i+1} - \phi_{i}|)$$

with boundary condition $\phi_0 = \phi_{L+1} = 0$

$$\phi_0 = \phi_{L+1} = 0$$

Gibbs sampler: with rate one each site moves up/down by one with probab. such that π is reversible

Conjecture:
$$T_{\text{mix}} = O(L^2 \log L)$$

Remark: if
$$|\phi_{i+1}-\phi_i| \longrightarrow V(\phi_{i+1}-\phi_i)$$
 with $V''(x) \geq c > 0 \ \forall x$ (unif convex) π would satisfy Poincare' and log-Sobolev ineq. with $O(L^2)$

Sinclair, Martinelli (2010):
$$T_{\mathrm{mix}} = \widetilde{O}(L^{2.5})$$

Theorem:
$$T_{\mathrm{mix}} = \widetilde{O}(L^2)$$

Proof by the same method used for monotone surfaces.

Model features

1. Equilibrium is macroscopically flat:

$$\Delta_L := \inf\{\Delta : \pi\left(\exists x : |\phi_x - \bar{\phi}_x| \ge \Delta\right) \le L^{-100}\}$$

 $\overline{\phi}$ is the average profile

SOS
$$\Delta_L = \widetilde{O}(L^{1/2})$$
 by simple random walk estimates

Mon Surf Theorem [CMST 2011]:
$$\Delta_L = \widetilde{O}(1)$$

[non-trivial consequence of deep results in Kenyon, Okounkov, Sheffield *Ann.Math2006*]

II. Monotonicity

The dynamical evolution preserves natural partial order on configurations - both initial and boundary conditions (monotone grand coupling)

High level description of the proof

Step (model dependent)

If initial surface is within $\ \Delta_L$ from flat profile $\ ar{\phi}$ then

$$||\mu_T^{\phi} - \pi|| \ll 1 \quad \forall T \ge \widetilde{O}(L^2)$$

Step II (general strategy)

Flattening: surface reaches distance $\ \Delta_L$ from ϕ in time $\ T=\widetilde{O}(L^2)$

Heuristic: motion by mean curvature

Proof of Part I

Mon Surf: use Wilson's method for a restricted dynamics.

Idea: starting within Δ_L from $\bar{\phi}$ and using monotonicity one has that w.h.p. for all $t \leq L^{10}$

$$|\phi(t) - \bar{\phi}| \le 2\Delta_L$$

Remark: overhead between the mixing times in the comparison of local / non-local chain is proportional to $\max_i |\nabla \phi(i)|^2$

For SOS model: see Sinclair-Martinelli (2010) for smoothening [max gradients are small in equilibrium]

Proof of Part II

Idea: start with maximal configuration and show that w.h.p. the dynamics is dominated by deterministic evolution

want: $u_M \sim \Delta_L$

$$\phi(t_n) \le C_{u_n}, \quad n = 0, \dots, M \text{ with } t_0 = 0, \dots, t_M = \tilde{O}(L^2)$$

Main Estimate

Theorem: There exists sequences u_n, t_n as above such that for all n< M and all times in $[t_n, L^{50}]$, w.h.p. $\phi(t) \leq \mathcal{C}_{u_n}$

Radius of curvature (if $u \ll R$)

$$(R-u)^2 + (\rho/2)^2 = R^2 \implies R(u) \sim \rho^2/8u$$

mean curvature: inward drift prop. to 1/R(u)

 $u_n - u_{n+1}$ = critical value of Δ such that eq. fluctuations on scale d_Δ are of order Δ

Eq. fluctuations : $\widetilde{O}(\sqrt{d_{\Delta}})$

$$\rho^2/u_n \sim R(u_n) \sim d_{\Delta}^2/\Delta \sim d_{\Delta}^{3/2} \sim \Delta^3$$

Hence $u_n - u_{n-1} \sim \Delta \sim (\rho^2/u_n)^{1/3} \sim R^{1/3}$

Times:
$$t_{n+1} - t_n \sim d_{\Delta}^2 \sim (\rho^2/u_n)^{4/3} \sim R^{4/3}$$

from Step I: after this time surface has decreased by Δ

$$u_n - u_{n-1} \sim (\rho^2/u_n)^{1/3}$$

 $\Rightarrow u_n^{4/3} - u_{n+1}^{4/3} \sim u_n^{1/3} (\rho^2/u_n)^{1/3} \sim \rho^{2/3}$
 $\Rightarrow u_n^{4/3} \sim u_0^{4/3} - \rho^{2/3} n \sim L^{2/3} [L^{2/3} - n]$
Thus $u_M \sim \Delta_L \sim \sqrt{L}$ requires $M \sim L^{2/3}$ steps

Moreover,

$$\sum_{n} (t_n - t_{n-1}) \sim \sum_{n=1}^{M} (\rho^2 / u_n)^{4/3}$$

$$\sim L^{8/3} \sum_{n=1}^{M} u_n^{-4/3} \sim L^2 \sum_{n=1}^{M} (L^{2/3} - n)^{-1} = \widetilde{O}(L^2)$$

Remark: same recursion works for different scaling of max height fluctuations

$$\Delta_L = \widetilde{O}(L^{\gamma}), \ \gamma \in [0, 1)$$

if maximal index M is such that $u_M = \Delta_L$

remarkably:
$$t_M = \widetilde{O}(L^2)$$

For monotone surfaces: $\gamma = 0$ same recursion but new scales:

$$u_n - u_{n+1} = 1, \ t_{n+1} - t_n = \widetilde{O}(R(u_n))$$

 $u_M = (\log L)^a, \ t_M = \widetilde{O}(L^2)$

Open problems:

I. Removal of spurious log L powers: establish $T_{
m mix} symp L^2 \log L$ or spectral gap estimate ${
m gap} symp L^{-2}$ [would allow hydrodynamic limit, cf. Funaki's work]

II. Extension to non-planar boundary conditions:

Relaxation to limiting shape?

Non-planar case: main difficulties

In the limit the surface is close to a non-flat limiting shape.

Arctic circle phenomena [Cohn, Larsen, Propp, Kenyon...]

Equilibrium results are far from what is needed here.

Questions:

- (i) how close?
- (ii) for finite large L: order of max fluctuations?
- (iii) sharp control of the limiting shape as a function of the underlying domain?

3D stochastic Ising model at zero-temperature

At each $i \in \mathbb{Z}^3$ there is a spin $\sigma_i = \pm 1$ and an i.i.d. Poisson clock of mean 1.

When the clock labeled i rings, update σ_i as follows: if three neighbors are + and three are -, set $\sigma_i = \pm$ with equal probabilities; otherwise, set σ_i equal to the majority of its neighbors.

Initial condition: $\sigma_i(t=0)=-$ if $i\in\{-L,\ldots,L\}^3$ and $\sigma_i(t=0)=+$ otherwise.

Let
$$\tau_+ = \inf\{t > 0 : \sigma_i(t) = + \forall i \in \mathbb{Z}^3\}$$

A "spherical" droplet of minus spins (grey) in a sea of pluses

Conjectured behavior of τ_+

One expects $au_+ \sim cL^2$ (actually, in every dimension d).

Heuristics: anisotropic motion by mean curvature of the -1 domain.

The two-dimensional case

For the problem on \mathbb{Z}^2 one can prove that

$$\mathbf{P}(\tau_{+} \geq cL^{2}) \leq e^{-cL}$$

(Fontes, Schonmann, Sidoravicius CMP '02) and

$$\mathbf{P}(\tau_{+} \leq (1/c)L^{2}) \leq e^{-cL}$$

(C-Martinelli-Simenhaus-Toninelli CPAM 'II)

for a suitable constant c, where \mathbf{P} is the law of the Glauber dynamics

[comparison with simple exclusion, detailed analysis of the inward drift]

Back to 3D: trivial bounds

Easy to prove: with high probability,

$$(1/c)L \le \tau_+ \le cL^3$$

for a suitable constant c

Lower bound: in unit time, volume decreases at most by L^2 (surface area of the boundary between + and -)

Upper bound: easy comparison with 2D

Main Result

Theorem [CMST] There exists $0 < c < \infty$ such that

$$\mathbf{P}\left(\frac{L^2}{c\log L} \le \tau_+ \le L^2(\log L)^c\right) \stackrel{L\to\infty}{\longrightarrow} 1$$

Lower bound: related to a question on ordered random walks

Upper bound: as before, dynamics and equilibrium fluctuations of discrete monotone interfaces, domination by deterministic local flattening

dimension $d \ge 4$ [H.Lacoin]. Lower bound is open.