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Overview

• Two models of random surfaces

• Combinatorial structures: lozenge tilings, perfect 
matchings of honeycomb lattice

• Statistical physics: crystal shape, Ising model 
interfaces 

• Dynamics: sampling via local Markov chains 

• Goal: a unified approach for sharp mixing time 
bounds.   

• Key new input:  mean curvature motion as a 
driving mechanism behind equilibration.
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Monotone surfaces, lozenge tilings, dimer 
coverings, Ising interface at T=0
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Dynamics of monotone surfaces

Continuous-time Markov chain:

1/2

π

Tmix = max
φ

inf
�
t > 0 : �µφ

t − π� ≤ 1/4
�

{φx}x∈U∪∂U

{φx}x∈∂UBoundary condition:

φx ≥ φyφx ∈ Z xi ≤ yi, i = 1, 2if, ,

x φx → φx ± 1indep. with rate one each column     attempts   

with probab.

move is accepted if compatible with constraints

equilibrium is uniform distribution  

mixing time:  

L = diam(U)size :
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Mixing time bounds

Conjectured:   diffusive scaling

1. Luby-Randall-Sinclair (2000): Poly(L) bound via analysis of a 
column dynamics (non-local)

3. Randall-Tetali (2002): Refined Poly(L) bound via 
comparison inequalities 

2. D.B. Wilson (2004): Sharp bounds for column dynamics, 

Tmix = O(L2 logL)

T
CD
mix = O(L2 logL)

Tmix = �O(L6)

4. Further refinement via comparison and censoring  
Tmix = �O(L4)(Peres-Winkler inequality):  

(approx. eigenfunction)

Notation:   �O(Lp) stands for O(Lp(logL)c)
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On boundary conditions

Wilson’s technique  + comparison methods 
are quite robust and can handle any boundary 

conditions

Our setting: 
assume that the boundary heights lie (approx) on a 

given plane                     

Definition planar b.c. 

∃n : |φx − φ̄(n)| ≤ C log(1 + |x|)
where φ̄(n) is the plane orthogonal to n

Friday, March 2, 2012



Monotone surfaces with planar 
boundary conditions

Theorem :

Corresponds to Ising,        
with Dobrushin b.c.

which impose an interface
between    and     spins.

T = 0

+ −

rate = 1/2

L2/(c logL) ≤ Tmix ≤ L2(logL)c
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SOS model

φi ∈ {0, 1, . . . , L}, i = 0, 1, . . . L + 1

Gibbs measure π(φ) :=
1
Z

exp(−β
�

i

|φi+1 − φi|)

with boundary condition φ0 = φL+1 = 0
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Conjecture : Tmix = O(L2 log L)

Remark: if                 |φi+1 − φi| V (φi+1 − φi)
V ��(x) ≥ c > 0 ∀xwith                           

   would satisfy Poincare’ and log-Sobolev ineq. withπ O(L2)
(unif convex)

Gibbs sampler: with rate one each site moves 

Sinclair, Martinelli (2010): Tmix = �O(L2.5)

up/down by one with probab. such that       π is reversible

Theorem : Tmix = �O(L2)

Proof by the same method used for monotone surfaces.

Friday, March 2, 2012



1/1/2

1. Equilibrium is macroscopically flat:

SOS                          by simple random walk estimates�O(L1/2)

Mon Surf    Theorem [CMST 2011] : �O(1)

[non-trivial consequence of deep results in
Kenyon, Okounkov, Sheffield  Ann.Math2006]  

∆L =

∆L =

∆L := inf{∆ : π
�
∃x : |φx − φ̄x| ≥ ∆

�
≤ L−100}

is the average profile φ̄

II. Monotonicity
The dynamical evolution preserves natural partial order
 on configurations - both initial and boundary conditions

(monotone grand coupling)

Model features
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High level description of the proof

Step 1 (model dependent)

||µφ
T − π|| � 1 ∀T ≥ �O(L2)

If initial surface is within        from flat profile       thenφ̄∆L

Step II (general strategy)

Flattening:  surface reaches distance         from          
in time       T = �O(L2)

∆L φ̄

Heuristic:  motion by mean curvature 
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For SOS model: see Sinclair-Martinelli (2010) for smoothening

Remark: overhead between the mixing times in the comparison of 
local / non-local chain is proportional to 

∆L φ̄

max
i

|∇φ(i)|2

Proof of Part I

Mon Surf: use Wilson’s method for a restricted dynamics.                       

t ≤ L10

|φ(t)− φ̄| ≤ 2∆L

Idea:  starting within        from     and using monotonicity      
one has that w.h.p. for all                      

[max gradients are small in equilibrium]
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Proof of Part II

Idea:  start with maximal configuration and show that 
w.h.p. the dynamics is dominated by deterministic evolution

· · ·

u0 = L

u1

uM

···

want:  

Cu0

Cun

L

uM ∼ ∆L

φ(tn) ≤ Cun , n = 0, . . . ,M with t0 = 0 . . . , tM = �O(L2)
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Main Estimate

Theorem:  There exists sequences u_n, t_n as 
above such that for all n< M and all times in      

,  w.h.p. [tn, L50] φ(t) ≤ Cun

Radius of curvature  
(R− u)2 + (ρ/2)2 = R2 ⇒ R(u) ∼ ρ2/8u

1/R(u)mean curvature: inward drift prop. to

(if u � R)

1

R

ρ

u
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d∆

ρL ! L

∆

un

= critical value of       such that eq. fluctuations on 
scale         are of order  

∆
∆d∆

Eq. fluctuations :    �O(
�

d∆)

Hence 

Times:  

un − un+1

ρ2/un ∼ R(un) ∼ d2∆/∆ ∼ d3/2∆ ∼ ∆3

un − un−1 ∼ ∆ ∼ (ρ2/un)
1/3

tn+1 − tn ∼ d2∆ ∼ (ρ2/un)
4/3

from Step 1: after this time surface has decreased by 

∼ R1/3

∼ R4/3

∆
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un − un−1 ∼ (ρ2/un)
1/3

⇒ u4/3
n − u4/3

n+1 ∼ u1/3
n (ρ2/un)

1/3 ∼ ρ2/3

⇒ u4/3
n ∼ u4/3

0 − ρ2/3n ∼ L2/3[L2/3 − n]

Thus uM ∼ ∆L ∼
√
L requires M ∼ L2/3 steps

Moreover,

�

n

(tn − tn−1) ∼
M�

n=1

(ρ2/un)
4/3

∼ L
8/3

M�

n=1

un
−4/3 ∼ L

2
M�

n=1

(L2/3 − n)−1 = �O(L2)
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if maximal index M is such that uM = ∆L

tM = �O(L2)remarkably: 

∆L = �O(Lγ), γ ∈ [0, 1)

For monotone surfaces: γ = 0

Remark:  same recursion works for different 
scaling of max height fluctuations     

same recursion but new scales: 

un − un+1 = 1, tn+1 − tn = �O(R(un))

uM = (log L)a
, tM = �O(L2)
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Open problems: 

1. Removal of spurious log L powers: establish Tmix � L2 logL

II. Extension to non-planar 
boundary conditions:

[would allow hydrodynamic limit, cf. Funaki’s work]

or spectral gap estimate gap � L−2

Relaxation to 
limiting shape ?
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Non-planar case: main difficulties

Questions: 

(i)  how close ? 

(ii) for finite large L:  order of max fluctuations ?
 
(iii) sharp control of the limiting shape as a function of 
the underlying domain ?

Equilibrium results are far from what is needed here. 

In the limit the surface is close to a non-flat limiting shape. 

Arctic circle phenomena [Cohn, Larsen, Propp, Kenyon...]
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3D stochastic Ising model at zero-temperature 

At each            there is a spin                and an i.i.d. 
Poisson clock of  mean  .   

When  the clock labeled   rings, update       as follows:
if three neighbors are    and three are    , set              with 
equal probabilities; otherwise, set     equal to the majority 
of its neighbors.

Initial condition:                          if                             and                  
                       otherwise.

Let 

i ∈ Z3 σi = ±1
1

i σi

+ − σi = ±
σi

σi(t = 0) = − i ∈ {−L, . . . , L}3

σi(t = 0) = +

τ+ = inf{t > 0 : σi(t) = + ∀i ∈ Z3}
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A “spherical” droplet of minus 
spins (grey) in a sea of pluses 
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Conjectured behavior of 

                                                                                  

One expects                  (actually, in every dimension    ).  

                                                   mean                                                              
                                                  curvature

Heuristics: anisotropic motion by mean curvature
        of the  -1   domain.

τ+ ∼ cL2 d

τ+

x

−
−

−

−
+

+

+

+

vx = −�nxc(�nx) ξx

vx

ξx :
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The two-dimensional case

For the problem on      one can prove that

(Fontes, Schonmann, Sidoravicius CMP ’02) 
and

(C-Martinelli-Simenhaus-Toninelli CPAM ’11)

for a suitable constant   , where    is the law of the Glauber 
dynamics

Z2

c P

P(τ+ ≥ cL2) ≤ e−cL

P(τ+ ≤ (1/c)L2) ≤ e−cL

[comparison with simple exclusion, 
detailed analysis of the inward drift]

Friday, March 2, 2012



Back to 3D:  trivial bounds

Easy to prove: with high probability, 

for a suitable constant

Lower bound: in unit time, volume decreases at most by    
(surface area of the boundary between     and    )

Upper bound: easy comparison with 2D

(1/c)L ≤ τ+ ≤ cL3

c

L2

+ −
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Main Result

Theorem [CMST]     There exists                    such 
that 

Lower bound: related to a question on ordered 
random walks

Upper bound: as before, dynamics and equilibrium 
fluctuations of discrete monotone interfaces, 
domination by deterministic local flattening 

P
�

L2

c log L
≤ τ+ ≤ L2(log L)c

�
L→∞−→ 1

0 < c <∞

dimension d ≥ 4 [H.Lacoin]. Lower bound is open.
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