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Overview

® Two models of random surfaces

® Combinatorial structures: lozenge tilings, perfect
matchings of honeycomb lattice

® Statistical physics: crystal shape, Ising model
interfaces

® Dynamics: sampling via local Markov chains

® (Goal: a unified approach for sharp mixing time
bounds.

® Key new input: mean curvature motion as a
driving mechanism behind equilibration.
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Dynamics of monotone surfaces

{%}azeUuaU, Op € L, O = Oy if T3 < yi, 1t =1,2

Boundary condition: {®z fzcoU size: [ = diam(U)

Continuous-time Markov chain:

indep. with rate one each column g attempts ¢, — ¢, =1

with probab. 1/2

move is accepted if compatible with constraints

equilibrium is uniform distribution 77

mixing time: Imix = mgxiﬂf {t>0: |uf — || < 1/4}
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Mixing time bounds

Conjectured: diffusive scaling Ti.ix = O(L2 log L)

|. Luby-Randall-Sinclair (2000): Poly(L) bound via analysis of a
column dynamics (non-local)

2. D.B.Wilson (2004): Sharp bounds for column dynamics,
(approx. eigenfunction) TCD — O(L?log L)

3. Randall-Tetali (2002): Refined Poly(L) bound via
comparison inequalities  Lmix = O(L°)
4. Further refinement via comparison and censoring
(Peres-Winkler inequality): Tmix = O(L*)

~

Notation: O(LP) stands for O(LP(log L)°)
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On boundary conditions

Wilson’s technique + comparison methods
are quite robust and can handle any boundary
conditions

Our setting:
assume that the boundary heights lie (approx) on a
given plane

Definition planar b.c.

In: |¢, — ¢(n)| < Clog(l + |z|)

where ¢(n) is the plane orthogonal to n
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Monotone surfaces with planar

boundary conditions
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SOS model

0 B IL
1

L

¢i€{0717'“7L}7 Z:O,l,L—|—1

1

Gibbs measure () = 7 exp(—0 Z Pir1 — i)

with boundary condition  ¢9 = ¢r+1 =0
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Gibbs sampler: with rate one each site moves
up/down by one with probab. such that 7T is reversible

Conjecture :  Tmix = O(L?log L)
Remark:if  |pi11 — ¢i] — V(dip1 — &)

with  V"(x) > ¢ > 0 Vx (unif convex)
7t would satisfy Poincare’ and log-Sobolev ineq. with O(L?)

Sinclair, Martinelli (2010): 1mix = 5(L2'5)

Theorem : Tiix = O(L?)

Proof by the same method used for monotone surfaces.
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Model features

|. Equilibrium is macroscopically flat:

Ap:=inf{A: 7 (3z: |¢s — ¢u| > A) < L7}

@ is the average profile

SOS Ap = 5(L1/2) by simple random walk estimates

~

Mon Surf Theorem [CMST 2011]: A = O(1)

[non-trivial consequence of deep results in
Kenyon, Okounkov, Sheffield Ann.Math2006]

ll. Monotonicity

The dynamical evolution preserves natural partial order
on configurations - both initial and boundary conditions
(monotone grand coupling)
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High level description of the proof

Step | (model dependent)

If initial surface is within A from flat profile ¢ then

uf — 7l <1 VT > O(L?)

Step Il (general strategy)

Flattening: surface reaches distance Aj from ¢
in time T = O(L?)

Heuristic: motion by mean curvature
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Proof of Part |

Mon Surf: use Wilson’s method for a restricted dynamics.

|dea: starting within A; fromo and using monotonicity
one has that w.h.p.for all ¢ < LY

o(t) — o] <2AL

Remark: overhead between the mixing times in the comparison of
local / non-local chain is proportional to  max |V (i)|?
(/

For SOS model: see Sinclair-Martinelli (2010) for smoothening

[max gradients are small in equilibrium]
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Proof of Part ||

|dea: start with maximal configuration and show that
w.h.p. the dynamics is dominated by deterministic evolution

A/U/():L Cu

0]

%ul

UM T,

A
\/

want: UMNAL
O(tn) <Cu , n=0,...,Mwithty=0 ...ty = O(L?
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Main Estimate

Theorem: There exists sequences u_n,t_n as

above such that for all n< M and all times in
tn, L°°], whp. ¢(t) < Cu,

Radius of curvature (if u < R)
(R—u)*+(p/2)° = R* = R(u)~ p”/8u

mean curvature: inward drift prop.to 1/R(u)
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pL >~ L

Un — Up41 = critical value of A such that eq. fluctuations on
scale da are of order /\

Eq. fluctuations :  O(v/da)

p* [t ~ R(up) ~ di /A ~ d3? ~ AP
Hence U, — Up_1 ~ A ~ (,02/un)1/3 ~ RL/3
Times: {01 — ty ~ da ~ (p?/un)3 ~ RY/3

from Step |:after this time surface has decreased by A
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Up — Up—1 ~~ ( Q/Un)l/g

= ut/3 — /2~ ul3(0? fun) P~ p?

N u4/3 81/3 p2/3n N L2/3[L2/3 _n]

Thus up ~ Ap ~ VL requires M ~ L?/3 steps

Moreover,

M
Z ot 1 Z Q/Un 4/3

n

~~

L8/3 Z un—4/3 7,2 Z(L2/3 o n)—l _ O(L2)
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Remark: same recursion works for different
scaling of max height fluctuations

~

A, =0(L"), v€10,1)
if maximal index M is such that uy = Ap,
remarkably: ta = O(L?)

For monotone surfaces: v =0
same recursion but new scales:

Up, — Upy1 = 1, tpaq1 — b, = 5(R(un))

unt = (log L)°, tar = O(L?)
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Open problems

log L powers: establish Tjix =< L*log L

|. Removal of spurious

gap =< L *

or spectral gap estimate

[would allow hydrodynamic limit, cf. Funaki’s work]
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Non-planar case: main difficulties

In the limit the surface is close to a non-flat limiting shape.
Arctic circle phenomena [Cohn, Larsen, Propp, Kenyon...]

Equilibrium results are far from what is needed here.

Questions:
(i) how close ?
(ii) for finite large L: order of max fluctuations ?

(iii) sharp control of the limiting shape as a function of
the underlying domain ?
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3D stochastic Ising model at zero-temperature

At each i € Z° there is a spin 0; = =1 and an i.i.d.
Poisson clock of mean 1.

When the clock labeled i rings, update o; as follows:
if three neighbors are + and three are —, set o; = = with

equal probabilities; otherwise, set ; equal to the majority
of its neighbors.

Initial condition: o;(t = 0) = — if i€ {—L,..., L}?and
0;(t = 0) = + otherwise.

Let 7, =inf{t >0:0,(t) =+ Vi€ Z’}
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A “spherical” droplet of minus
spins (grey) in a sea of pluses
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Conjectured behavior of 7+

One expects 7, ~ cL” (actually,in every dimension d ).

X

™ +
Ve = —NpC(Mg) Ex
mean
curvature
_|_
_|_

Heuristics: anisotropic motion by mean curvature
of the -1 domain.
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The two-dimensional case

For the problem on Z° one can prove that

P(r,. > cL?) < e "

(Fontes, Schonmann, Sidoravicius CMP '02)
and

P(r, < (1/c)L?) < e "
(C-Martinelli-Simenhaus-Toninelli CPAM | |)

for a suitable constant ¢, where Pis the law of the Glauber
dynamics

[comparison with simple exclusion,
detailed analysis of the inward drift]
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Back to 3D: trivial bounds

Easy to prove: with high probability,
(1/c)L < 7y < cL?

for a suitable constant ¢

Lower bound: in unit time, volume decreases at most by /.
(surface area of the boundary between + and —)

Upper bound: easy comparison with 2D
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Main Result

Theorem [CMST] There exists () < ¢ < oo such
that

L2 L— o0
P <7, <L?*log L) | =1
(ClogLT+ (log ))

Lower bound: related to a question on ordered
random walks

Upper bound: as before, dynamics and equilibrium
fluctuations of discrete monotone interfaces,
domination by deterministic local flattening

dimension d > 4 [H.Lacoin]. Lower bound is open.
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