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1 The Kolmogorov-Obukhov’s idea

This paper draws inspiration from the theory of Kolmogorov and Obukhov
presented in 1941 [4].

The paper of Kolmogorov and Obukhov has the aim to construct the
turbulence spectral theory and it consists in the study of energy dis-
tribution among perturbations of different length in a steady state (theory
K41).

The Kolmogorov and Obukhov’s theory bases on the physical model that
supposes the velocity field of a turbulent flow is characterized by pertur-
bations of different lengths which exercise qualitatively different influences
on a turbulent phenomenon.

The idea of Kolmogorov and Obukhov is:

- to separate the fluid motion in “macrocomponent”, that consists of
“big” perturbations compared to a choosen observation scale, characterized
by a low frequency, and “microcomponent”, that is “small” perturbations,
with high frequency

- to consider Navier-Stokes equations system related to the macrocom-
ponent and the one related to the microcomponent separately

- using mathematical expectation, to show that there is an energy
transfer from macrocomponent to microcomponent.

The cause of such an energy transfer could be ascribed to the presence
of the nonlinear term.

The purpose of this paper is to give an estimate of the eventual energy
transfer from motions of big length (local average) to motions of small
length (fluctuations) in the stationary solution.



2 Stochastic Navier-Stokes equations

We consider the simpler 2D case.

The approach presented by Kolmogorov and Obukhov [4] to study the
turbulence problem is a probabilistic approach. To describe the turbulent
flow of an incompressible viscous fluid, we introduce the stochastic Navier-
Stokes equations system

(2.1) dv = [—(v-V)v+vAv — Vp|dt + dW

V-v=0

v(t,z) = (vi(t, x),va(t, x)): the velocity
p(t, x): the pressure
v: the viscosity coefficient

W (t) : the Brownian motion.

Here we consider W (t) as a Brownian motion with values in a suitable
Hilbert space.

Domain

Because of the complexity of the problem, in this paper we consider the
stochastic Navier-Stokes equation system on the bi-dimensional torus

T? = R*/(27Z)?,

that corresponds to consider periodic functions of period 27 both in z; and
in x5 and it allows us to make use of the Fourier series.

Functional spaces

Setting
(2.2) Ve ={ve C®(T%4R*) |V -v= o,/ vdr =0}
’]I‘2
we define 2
1Y — (T% )7



(u,v)y = / u - vdr,
TQ

from which follows that (#,||.||%) is an Hilbert space.

We introduce the orthogonal projection operator Py from L?(T?;R?) on
‘H. Thanks to the choice of the domain, the following properties hold:

(2.3) PyVp =20
PHAU = Av.

The system (2.1) can be written in the form

(2.4) dv = [=Py(v - V)v + vAv|dt + dW.

Observation: if v € H, then there exists a periodic scalar function 1 such
that

oY oY
oy vy = .
As 1) is a periodic function of period 27 both in z; and in x,, it can be
developed using Fourier series.

(2.5) v = (v1,09), v =

Fourier series: preliminaries
We set
(2.6) 77 ={k=(ki,ks) €Z*|ky >0V (k; =0,ky >0) }.

The functions
1 1

Ton cos(k - x), om

form an orthonormal basis of L?(T? R).

(2.7) sin(k - z), keZ]

Then ¢ € L*(T?* R) can be expressed in Fourier series

1 -1 a
(2.8) vit,z) =) (a cos(k - ) + sin(k - 1)) + —
/ng k\/% k\/§7r

27



where

sin(k - x)dx, k € Z3

ap = —cos(k x)dx, Bk:

\/_7r \/_7r

and

6[0 = —dx.
T2 21

It follows that v € ‘H has the form

LNsmk x) 5 cos(k-x) L
(2.9) w(t,z) kZij: = ), k= (—k k).

Description of the stochastic Navier-Stokes equation by means of
Fourier series.

We set
kJ_
2.10 e = — sin(k - ),
ex ) = k- cos(k-xz). |kl =\/k}+ k3
2Tk V2 ' VR
and

L = {1,2} x Z*.
{ejx}(jpyeL form an orthonormal basis of H.

Each v € H has the representation
(2.11) v= leimvein = > ke
(4:k) €L (j.k)eL

with
k-t sin(k - z)

ekl Vor

k-t cos(k )
o = (€94, V) = -v(x)dx.

ary = (e1r,v) =



We consider a Brownian motion W (t) with values in H expressed in the
form

(2.12) W)= Y Naei W), MR,
(j.k) L

where WU*)(t) are independent real valued Brownian motions.

The Fourier series representation of the nonlinear term is

0 0 0 0
(v . V)U = (Ulﬁ_xlvl + vga—mvl, ”18_:(;1”2 + ?)28—372’02) =
1 k,//J_(k/J_ . k//)
BEP 2P Panre

k€72 k72
% [&1,k/&1,k// - &22,k/042,k" sin((k' 4 k//) -x)+
(2.13) 2(v2m)
Q1 Qv o+ Qg 1 Qg forr
2(\/§7r)2
Qi Qo g — Qi Qo g
2(v/2m)?
Q Qo g+ Qg Qg g / I
— = ’ ’ —cos((k'+ k") - x)].
s (K +K') -]

with & € 72 = Z2\{(0,0)}.

sin((K' — k") - 2)+

cos((k' — k") - z)+

Observation: The expression (2.13) drops us a hint that the presence of
the nonlinear term can be responsible for a transfer of momentum from
waves of some length to waves of different length.

Observation: The 2D term (v - V)v has the properties

(2.14) {((v-V)v,v) =0 Vv e H,
(2.15) ((v-V)v,Av) =0 Vv e H.

As Kolmogorov and Obukhov were interested in studying the energy
transfer in the steady state, we will examine the energy balance when
v realizes the invariant measure, that is the measure associated to the
stationary solution.



3 Invariant measure

Definition

Let H be an Hilbert space, let ;1 be a measure defined on the Borel o-
algebra B(H) of H.

If there exists a stochastic process X = X (w,t) with values in H such that

i. X is the solution of the stochastic equation

(3.1) dX = F(X,t)dt + G(X, t)dW

ii. for all ¢ > 0, the measure generated by the random variable X (-, 1)
coincides with u, that is

P(X(-,t)€ B) = u(B) Vt>0, VB e B(H)

then the measure p is called invariant measure for the stochastic equation
(3.1).

With regard to the stochastic Navier-Stokes equation (2.4), the existence
of an invariant measure has been proved (Cruzeiro 1989 [2], etc.)

With regard to the study of unicity, see for instance the papers of Albeverio
and Ferrario (2004) [1] and of Da Prato and Debussche (2002) [3].

4 Kinetic energy balance

To examine the kinetic energy balance we apply the Ito’s formula (see for
instance [5]) to the function

Lo
Pi(t) = 2 HUHB(T?)



and, thanks to ((v- V)v,v) = 0, we obtain
(41) E@Dl(t) — Ewl(O) / E HV’UHLQ T2 dt + Z )\
Jk )eL

In particular, if v is the process that realizes the invariant measure, then
we have

(4.2) VE ||V T2 = Z A2,

jke]L

The equality (4.2) shows that the energy due to the perturbation is equal
to the one dissipated by viscosity.

The Fourier series expression of (4.2) is

(4.3) v Yy |k’Eaj, = Z A2

(j,k)EL (4,k)eLL

The k-th element expression of (4.3) is

1
(4.4) Elajx (ejr (v V)o) | + v [k Eas;, = 5)‘?,13

Observation: from the expressions (4.3) and (4.4) we can observe the pres-
ence of the nonlinear term on the k-th element and the sum of all the k-th
contributions of the nonlinear term is equal to zero.

To define the macrocomponent and to study its energy balance, we
introduce a particular local average operator.

5 Local average

Let ¢(x) be a function defined on RY,
We consider a function ©(x) such that

O(x) >0, / O(x)dxr = 1
Rd
(and, if necessary, with some other suitable conditions).

8



We define the local average by means of the convolution operator Ox.

The local average of ¢:

(5.1) B(z) = (0% p)(z) = g Oz —y)p(y)dy.

In this paper we choose the family of functions

1

(5.2) Os(z) = f_l(TW> (@),

0> 0,

where F 1 is the inverse Fourier transform and § is the characteristic width
of the weight function that we use to define the local average.

We have O5+ = (1 — 6A)~L.

A so defined function O4(x) presents the following 2D explicit form

(5.3) ©5(x)

1/+Ooexp(—\x\ %+£§)d
2m Jo 5/ %+ 8

(in the proof we use the residue theorem).

Observing that

(5:4) 185 * @l oo g2y < 196l 1z ol o2y = NPl poo 2y »

it is possible to define the local average operator Osx over the set of
functions L>(R?).

As ej € L™ (R?%) | Oy * e;r is well defined and we have

1
5.5 Os*eip=———€ir, =1,2, keZ2
(5.5) Tk = TR J 1



Definition of the operator O« on H.

Given v € H, from relation (5.5) we have

(56) 65 U = Z <ej,k,?)>@5 * ej,k — Z <€j7/€7v>

(J,k)eL (4,k)eL 1+9 ‘k‘

So for v € H also it will be called O; * v the local average of v and we set

(5.7) U= 0;*v.

The difference
(5.8) u=v—7

can be called fluctuation, in conformity with the common use of termi-
nology in the study of turbulence.

6 The macrocomponent energy balance

To examine the macrocomponent energy balance we apply Ito’s formula to

the function
L _ 9 1 2
Pa(t) = 5 [P/l z2(r2) = 5 195 * |22

and we obtain

]E?/)Q(t) — E’gbg(()) = — \/(;]E <@5 * ((U . V)U),6> dt/
1 1

t
— UV E HV@H%Q T2 dtl + = —)\th
/0 T2 (j%;L (1+6 k%2

(6.1)

In particular, if v(¢) is the process that realizes the invariant measure,
then we have

Z ;AZ
(1+6 k)27

(j,k)eL

N | —

(6.2) E(©s % Py((v - V)0),0) + vEI|VT|| 2 g2 =

10



which Fourier series version is

(6.3)
Z E[;a%(ek (v - V)v}] +v Z LE&Q,C
2 Js WL 2 j7
(’kz)eJL (1+5|k| )? (j,k)eL(1+5|k| )?
Z X
J,
Toe 1+ |/<f| (1+3 k)2
Observation:
Comparing the total energy balance
(6.4) VE Vol =5 30 X
(j,k)eL
with the macrocomponent energy balance
1 1
E(O; % Pyu((v - V)v),0) + VE|| VT3 = = — )7,
(j,k)eL

we observe that the nonlinear term
E(©s * Py((v- V)v),7)

can subtract energy from the mean field and it can be responsible for the
energy transfer from mean local velocity to fluctuations.

The equality (6.5) gives the possibility to interpret the phenomenon of the
energy “cascade” from local average motion 7 = O; % v to fluctuations
u = v — U by means of the nonlinear term.

7 An estimate of the nonlinear term

Theorem: We suppose that v is a solution of the Navier-Stokes equations

(7.1) dv = [—Py(v - V)v + vAv|dt + dW

realizing an invariant measure. Then there exists a function f(9), § > 0,

such that
f(0) =0 as 0 —0

11



and that

1

—112

(7.2) VE||V0| 2(p2) + N5 = 5 Z
(j,k)€LL

;)\2
(1+ 6 k[)2 7"

[Ns| < CLFQ)E[[[o] 2 [Vl 2 | Av]] 2]

73) <cuf) 3 (5 k2

(j,k)eL

where

1
Ns = E|——s—aji{ejr (v V)v
(7.4) ; (j%;L (s et (e (0 V)]

and with the constants C, Cy independent of 6 and of {\;.}(jker. More
precisely, if Z2 = 7Z*\{(0,0)}, the function f(¢) is given by

| 1 \! 1 26 |k|* + 0% |&|*
7.5 0) = inf T o4e ) SU
(7.5)  f(0) = nf [(%Z:Q \k'|2(”€)) vz K09 (116 |K[)?

This theorem gives an estimate of the eventual energy “cascade” from
motions of big length to motions of small length. This estimate of the
energy transfer depends on ¢, in such a way that it approaches 0 as ¢
approaches 0.

Proof:

As / (v-V)v-vde =0, that is
T2

(7.6) % > Edejr (v Vv)ajp =0,

kez? j=1

the Ns expression becomes

—26]k] e
(7.7) Z Z (e (v V)v) ajp].
keZle 1-|—5|k|)

12



On the other hand, from

1 k//J_(k/J_ . k//)
TR TR D I I LS
k€72 k72
Qo O frr — Q0 prQeg g, / I
X 7 ’ ’ ~sin((k' + k") - x)+
[ (K 4K )
/ 7 —|— 042 k’CVZ .
(7.8) + YLk XLk ’ = sin((K' = K" - x)+
s K )
Qq Qg g — O O gy / "
’ : ’ —cos((k' — K" - x)+
s (6 =) )
Q1 g Qg o+ Qi Qi g / "
- ’ ’ —cos((k'+ k") - x)|.
s (K + k") - 2)]
we obtain
2
(7.9) (e (- V)0 ay = 1 4 1 o )
j=1
where

(k — K)“ (K- (k= K')) _ﬁal,k’@l,k—kf — 04271@/042,1@—1«@1 .
&' 1k — &l %] 2/2m .

~
—_—
=
I
|
| =

k€72 k' £k

(k= K) (K- (k= F)) k- ogporp g + aapagp i

~
=
I
I
| —

’ a1k,
k' €72 k'+k |k/‘ |k - k/| ‘k‘ 2\/§7T
][k] _ _1 Z (k — ]CI)L(/‘J'L -(k—K)) .Eal,k’(w,k—k’ + Qo o kg o
’ k' €72 k'+k |kl‘ |k - k,| ‘k‘ 2\/§7T "
Tk — 1 Z (k — ]f/)L(k/L -(k—K)) . ﬁal,k'az,kuk - 042,k’041,k’—ka .
! K] |k — K| B 221 2k

k€72 k' #k

From (7.7), (7.8) and (7.9) it follows that

(7.10)

2 2 4 _ N\L . .L L 1/
Ny Zzaw +52\/;\ 5 ((k k)k Z )l(j kl(k Mg,
16\/§7T keZ2 (1+5‘k‘) k'eZ2 k'+#k | H H N ‘

13



where

Q= (1 o1 j—p — Qo Qo i + 01 Q1 Jy—k + Qo Q2 jy—k ) Q1 i+

+ (g ok + Qo — O Q2 Jr—k + Qo Q1 — k) Q2 -

We set

(7.11) Ap=al,+a3,,  keZl
As we have

(7.12) |y | < 4ARAR Ag—re,

from (7.10) it follows that

26 |k|* + &% k|*
keZz? ( + ‘ ‘ ) k'eZ2 k'#k

1
4\/571'.

Furthermore, thanks to Cauchy-Schwarz’s inequality, for all € €]0,1[, we
have

20 [k|* + 62 |k|* 11
(714) > > (|1|+ ; MQ‘)Q‘ [k = K| ApAp A < Q2 R2
keZ? k' eZ2 k' +£k ’

Q- = Z < Z |k — k| Ap Ay |k|_5>2,

keZ? K ET2 K +k

—25 |k|> — 62 [k|'\2,, o
Rg:z 1+(5k22 )lkl2 A%’
SN ()

with Cl -

where

so it follows

(7.15) IN;| < CUE(Q2R?).

Thanks to relation

1 1 1 1

7.16 <
(7.16) k= K[k = |k — k| - || e

14



we have
(7.17) Q- < 2(QY + QM),

where )

= (X kP A k’l”g>

keZ? k€72 k' #k
2

Z( Yo k=K A k’Ak:/| |1+€).

keZ2 K E€T2 K £k

1
As \k\—p“f doesn’t depend on £/, we have

1 2
Q?] — Z W( Z |k — /{3/|2 Ak—k’Akj’)

(7.18) kez? k'eZ2.k'#k
74 2
<Y (X e (3 A,
keZQ‘ ‘ k'eZ2 k'#k k'eZ?

So, if we remember relations

4 2 2
(7.19) d k=K AL L = A7, > AL =iz,
WET2 Ktk Kz

we get
1 2 2
(7.20) QP <y —airg Mol 1Av]z. .
keZ? |k|

Now we have to examine QE]. Thanks to Cauchy-Schwarz’s inequality,
we have

2 /
WP (3 Ak )
£k
9 1
(3 ko aei)
k€72 k' £k

15



We have
1
9
E k=K Ak—k'm <

K eZ2 k' #k
2 1 2
S( Z |k — K| A7 k’) ( Z ,2(1+5)) <
k'eZ2 k'#k k'€Z2 k'#k ’k —k ‘
< (X ) 180l
kez?

On the other hand it holds

1
Z ( Z Af |k — k/|2Akk’m> =

keZ2  KET2 K 4k

1
_ 2 712

k' eZ2 keZ2 k£
(721) 1 1 1
2 / 2 2
S (X W) (X i) <
k'eZ? keZ? k;ék’ keZ2 k+k
< (X W ) ol 1Av] -
kez?

It follows that

(722) 6 = Z |]{3|2 (1+e¢) HUHL2 ”AUHLz'
keZ?

From (7.20) and (7.22) results

(723) 22 ‘k|2 (14¢) HUHL2 HAUHLQ‘

kez?

For R. finally we have

= (3 (i) v )

keZ?
1 /26 |k|* + 0% |k|*\ 2\ 5 5 9\ 3
7.24 < [ sup kI A <
12 < (s () (D)
1 26 |k|* + 0% |k|*\ 2
< | su V 2 .
—(kez%\k\2<l—f>< (1+ 0 |k[*)? )> Vel

16



We can prove that [7]

a2 Bl Vel ) < oa( 3 2
(j,k)eL
and
1
2
(7.26) V]EHAUHLQ(’H‘2):§ Z ‘k|2/\§,k
(j,k)€LL

From (7.25), (7.26), (7.15), (7.23), (7.24) it follows
[Ns| < CrE(OE[v]lz2 IVl | Av][ 2]

o <o) 3 N 3w

(j,k)€L (4,k)€L

17



8 Three dimensional case

The stochastic approach to the 3D turbulence problem presents some tech-
nical difficulties, so we study the deterministic Navier-Stokes equations
system.

Deterministic equation

We consider the 3D Navier-Stokes equations system

(8.1) o+ (v-V)v+ Vp —vAv = f,

V-v=0
te R, x e R

Like in 2D case, we choose as domain the 3D torus T?® = R3/(277Z)3.
To study the (8.1), we present again the same functional setting choosen
in the 2D case. So we set

(8.2) 7% = fp € C®(T% R |V - v = 0,/ vdz = 0}
']1‘3
and we define the Hilbert space
~ ——L?(T3;R3)
(8.3) H =V

We introduce the orthogonal projection operator Py from L*(T3;R3) on

H. Also in 3D case the following properties hold

(8.4) Py Vp =0,
PpAv = Av.
The system (8.1) can be written in the form
d
(8.5) prii Py(v-V)v —vAv =Py f.

The associated stationary system
(8.6) Py(v-V)v—vAv="Pyf

admits at least a solution, called stationary solution of (8.5) [6].

18



Fourier series expression

Any periodic function v € L?(T%;R3) can be developed using Fourier
series.

Setting
(8.7)
73 ={k= (ki ko ks) € Z*|ky > O0V(ky = 0,ky > 0)V(ky = 0,ky =0, k3 > 0) },
we have
B sin(k - x) cos(k - x)
(8.8) v= (o T T2k )

keZ3

where «;, belongs to R3, j = 1,2, k € Z3.
From (8.8) follows

2 2 2 2
Wl 2y = D (sl + lazil) = D loyul?,
(

keZ3 J,k)EL
where from now on we define L = {1,2} x Z3.
Such a function v belongs to H if and only if

(8.9) aq - k= 0, Q9 - k=20

(it follows from the divergence free request).

Observation: Conditions (8.9) mean that V& # (0,0,0) vectors a; j and
as i, belong to the bi-dimensional subspace orthogonal to the vector k. So,
it is possible to fix a basis of orthogonal versors e; i, €2 on a such subspace
and to express ajj and gy as a linear combination using this basis. In
this way we have the following expression of v

(8.10)
sin(k - z) cos(k - x)
V= kg;% [(&l,k,lel,k + OCL]@Q@Zk)W + (042,k,1€1,k + aQ’k,QeZk)W]
1
L sin(k - z) cos(k - x)
2 zgz:?‘» (a1 paeri + ap2ea) 2T + (o p €15 + Qo 2€21) N ]

where Z3 = Z3\{(0,0,0)}.

19



Then
sin(k - x) cos(k - )
e.
oy N 2mym

with j = 1,2 and k € Z? is an orthonormal basis of H in 3D case.

),

(8.11) (ejk

From (8.10) we obtain the Fourier series expression of the nonlinear
term

(8.12)
737:[(?) V)’U =
= 2 2 [ avplans — (K" azp)aze] sin(K + &) - )+
k/€Z3 k//eZ3

+ [(K" - an ) pr + (K7 - ag i)z ] sin((K = K7) - 2)+
+ [(k’” . &27k/)&17k/1 —+ (k'” . CKL]C/)OQ’k/I] COS((kj + k//) . ZC)"‘
+ [(K" - ag ) anpr — (K" - ov ) g o] cos((K' — k) - ).

We can prove that the following equality holds again on the 3D torus
(8.13) ((v-V)v,v) =0,
at the contrary the equality
(8.14) (v-V)v,Av) =
doesn’t hold.

9 Kinetic energy balance

Scalarly multiplying by v the two members of the equation (8.5) and
integrating from 0 to ¢, thanks to (8.13) we obtain

1 1 ! !
(9.1) §\|U(t)\|2L2(1r3)—§||U(O)Hi2(1r3)+V/0 HVUH%z(TS)dt/:/O (f,v)dt'.

In particular, if v is the stationary solution, then we have

(9.2) v vani%m) = (f,v),

20



which Fourier series expression is

(9.3) v Z \k\2|ozj,k\2= Z Tik* Qg
(3,k)ell (

j,k)elL

where we set fi; = <f, %> e for = <f, %>

We now scalarly multiply by Av the two members of the equation (8.5)
and we integrate from 0 to ¢, we obtain

1 1 t
IV F2m) = 5 IV0(O)l| sy — / ((v- V)0, A’

(9.4) ' ; t
+ I//O HAU”Lz(Ts)dt, = —/O <f, A’U>dt,

In particular, if v is the stationary solution, then we have

(9.5) v HAUH%Q(T;;) — <(v -V)v, AU> = <f, —AU>.

As already observed, in 3D the property
(9.6) (v-V)v,Av)y =0

doesn’t hold.
In the deterministic case, unlike the stochastic one, it is easily possible to
find an estimate for this term. In fact we can prove

v 2
(9.7) [{(v-V)v, Av) < 5 1AV 7 sy + 3¢ V0] 72 s)-

Idea of proof:
Thanks to Holder’s inequality, we can obtain

(9.8) [{(v- V)o, A0)| = ||Vl gagpoy V0l i) -

21



Thanks to Holder and Sobolev’s inequality it is possible to give an upper
estimate of HVU|\%4(T3) in this way

2 3 3
(9.9) ||VUHL4(T3) <c HVUHLZ(TS) ”AUHB(TS)
and so to obtain
3 3
(9.10) (v V)0, A0)] < ¢ V0] 2aco) [1A0] 2

Finally, using Young’s inequality we obtain

: : v 2 2 6
(911)  lIVoll o) 1A Lapsy < 5 180N z2ers) + 3¢ VOl 2 -

]
From
(912) 14 HAUH%Q(T;;) - <(U : V)'U, AU> = <f, —AU>
and
v 2
(9.13) (v V)v, Av)| < 5 HAUH%Q(T?’) + 3¢ HVUH%(W)-

it follows an estimate for v ||A’U||%2(T3)

v 2 2 6
(9.14) 5 HAUHL2(T3) < 3€ ||VU“L2(T3) + vaHLQ(Tff) HVUHLZ(TS) 5
its Fourier series expression is
(9.15)
v 4 2 2 2 2\ 3 2 2\ 2 2 2\ 2
D Ml el < e (D0 Ik lasal?) (D0 WP 1£) (D0 Il lasul?)
j,kell j,kell j,kell j,kell

10 Local average

Let ©5 be the family of functions

1

>(x), 5> 0.

We consider the convolution operator O+ already used to define the
local average in 2D case.
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We can observe that the function ©4(z) has the 3D explicit form

1 _lal
— Ve
(10.2) @5(1‘) 47‘(‘5|ZL“6

)

Also in 3D case we can observe that

(10.3) 105 * SDHLoo(Rff) < H@5HL1(R3) HSOHLoc(RS) = ||SDHL<>0(R3),

then it is possible to define the local average operator ©4s% over the class
of functions L>°(R?).

sin(k - x) cos(k - x)
e .
2m\/m Tk 21/

The basis elements e;, , with 7 = 1,2, belong to

L>*(R3), so we have

sin(k - x) 1 sin(k - x) _ 5
10.4) © ; = =1,2, kel
(10.4) O; * ek mE 110 kP sy € Zy,
cos(k - x)

similary to e;

2\ /T
Using the relation (10.4) we define the operator O on .
Indeed, if v € H,

(10.5)

B sin(k - x) sin(k - x) cos(k - x) cos(k - x)
Osxv = kZ (0 g 10+ g+ (0 5 =00 =5 )

sin(k-x)

cos(k-z)
_Z< vy 27r\f>SiIl(l€'$)+<U7 2mf>cos/<: IC))
L+ 0|k 277 1+6|k)? 2mym /)

keZ3

So we also set in 3-dimensional case v = O * v and u = v — T.
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11 The macrocomponent energy balance

If we apply the local average operator to the Navier-Stokes equation (8.5),
than we scalarly moltiply by v and integrate from 0 to ¢, we obtain the
following macrocomponent energy equation:

1 1

t
15O s = 5 170) ey + [ (@54 Py (v W)yt

(1L.1) . .
+V/O HV@HLQ(Tg)dt/:/O <f7@>dt/

If © is the stationary solution, we have

(11.2) (05 % Py (v V) 0,0) + v V0|2 = (F,7)

which Fourier series expression is

(11.3)
! sin(k - z) cos(k - x)
R R~ S AR T v g 1

3 L ) 1
v ——— || = g —— ik Ok

(j,k)€L (j,k)eL

So the equality (11.2), or (11.3) as well, gives the possibility to interpret
the phenomenon of the energy “cascade” from local average motion v =
Os * v to fluctuations u = v — ¥ by means of the nonlinear term.
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12 An estimate of the nonlinear term in the 3D case

Theorem: We suppose that v is a stationary solution of the Navier-Stokes
equations

d
—v+Py(v-V)v—vAv =Pgf.

(12.1) y

Then there exists a function g(d), § > 0, such that

g(6) =0 as 60— 0
and that

Z Z 1

(j,k)eL
(12.3)
| Ms| < Crg(8) [[0]| sy | A0 Tarsy) < Cog(8)( D layal®)?
(Jk‘)éIL
(3 kP lal®)” + D2 B 1R D kP Jagul?)?)]
(j.k)eL (j.k)€L (4,k)€L
where
(12.4)
1 1 sin(k - x)> < cos(k - x)>
Ms = — —[ v-V)v,ap———== )+ ( (v- V)v,« —}
=32 TR <( ) I S NG

keZ?

and with constants C1, Cy independent from 6. More precisely, the function
g(9) is given by

1 2 4 5 1
128 900 = ot [( 3 ) G o O i) )

k'eZ3

where 72 = 73\{(0,0,0)}.
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Proof:
Similary to what done in 2D case, from (8.12) and from (8.11) we obtain

(12.6)
sin(k - x cos(k - x
<(v -V)v, a17k%\/%)>+<(v -V)v, ag,k%\/%)> = Il[k}+12[k]+[?[,k]+[£k]
where
[[k] . 1 Z (k — ]{;/) CO O -k (l{j — k’) SO QD oy
1 K
4 k'€ Z3 k' #k 2(2my/m)
Tk — 1 Z (K" —k)-oqporp—r+ (K — k) agpaop_i o
2 =7 - g,
4 k'eZ3 k'£k 2(2my/7)
][k] _ 1 Z (k _ k/) C O O k! + (k - k/) C O O ek o
3 =7 C O ks
4 k' eZ3 k'£k 2(2m/)
1 (K' = k) - copar i — (K — k) - a1 pag iy
Moty i KoL
4 k'€ Z3 k' #k 2(2m/)

From (12.4) and from (12.6) it follows that

26 |kI? — 62 |k|*
K| K| Z i

1
(12.7) Ms = > >
327Tﬁ keZ? (1 +0 |k| )2 k'eZ3 k'#k
where
(12.8)

Opw =[(k—K) aqporpp — (k—F)  copagpp + (K = k) - ayparp_ip+
+ (k‘/ — k‘) . 0427]{/0427]@/,]{] Ak + [(k‘ — /{?/) C Q9 kO f—F + (]C — ]{3/) : alak/OZQ,kfk/—l—
+ (k’l - k) C O Bk — (]C/ — ]C) . O‘l,k’O‘Q,k”—k] c Qg k-

Setting

(12.9) A} = |og|* + ozl

we have

(12.10) D] < 4|k — K| ApAp A,

so it follows that

26 |k|* + 02 |k|*
(12.11) | M| < Cl[z Ll 2|2| >k — KA Ap Ay
keZ3 (1 +9 |k| ) k' eZ3 k'#k
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1

ith ', = :
W 81/

Making use of analogous calculations like in 2D case, we obtain the
result

2
(12.12) [ Ms| < Crg(9) [[v]] 2(psy | AV 72 (7sy -

]
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