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Goal

We consider (simple) particle systems that may serve as a
toy model for the evolution of cells or bacteria.

Each particle grows by ingesting a common nutrient.
After some time, each particle gives rise to two offsprings
by cell division.

We structure the model by state variables like age, size,
growth rate and so on.

The state variables are measured to within a certain
accuracy and for specific observation schemes.
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Our control experiments are data set of the evolution of
88 microcolonies of E. Coli bacteria cultures.

Each colony starts with a single ancestor and is followed
up to a few hundred descendants.

The biological hypotheses refer to (suprisingly old)
classical studies that go back to 1942 J. Monod thesis.
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Figure: Evolution of a E. Coli population.
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Stochastically, the particles (cells, bacteria) evolve
according to a piecewise deterministic Markov processes
that evolve along a branching tree.

Deterministically, the density of structured state variables
evolves according to fragmentation-transport PDEs.
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The choice of modelling will usually be governed by
underlying observation scheme, which govern in turn the
accuracy of estimation of the parameters of the model.

Considering realistic observation schemes is technically
more difficult (both mathematically and experimentally)
but leads to statistically more informative models.
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About the growth rate

For bacteria population growth, it is commonly admitted
that the assumption g(x) = κx holds for a given cell. This
goes back to Monod (1942).

Figure: Monod’s 1942 thesis on B. Coli culture cells.
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Variability in the growth rate

Variability of the growth rate from one cell to another:
exogeneous and endogeneous factors.

In a first approach, we will ignore variability and assume a
constant κ for every cell.

We will discuss experimentally these limitations afterwards
and

subsequently propose an approach that incorporates
growth variability.
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The microscopic approach

We start with a singe cell of size x0. The cell grows
exponentially according to a constant rate κ.

The mother cell gives rize to two offsprings, at a rate B(x)
that depend on its size x .

The two offsprings have initial size x1/2, where x1 is the
size of the mother at division.

The two offsprings start independent growth according to
the rate κ and divide according to the rate B(x).
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The microscopic approach (cont.)

The population evolution is associated with an infinite
random marked tree. Let

U =
∞⋃

n=0

{0, 1}n with {0, 1}0 := ∅.

To each node u ∈ U , we associate a cell with size at birth
given by ξu, a lifetime ζu and a birth time au.

u− denotes the parent of u. Thus

2ξu = ξu− exp
(
κζu−

)
.
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The microscopic approach (cont.)

X (t) =
(
X1(t),X2(t), . . .

)
process of the sizes of the

population at time t.

We can identify X (t) with a finite point measures on
R+ \{0} thanks to

MX (t) =

]X (t)∑
i=1

δXi (t).

Identity between point measures

X (t) =
∞∑
i=1

1{Xi (t)>0}δXi (t) =
∑
u∈U

δξueκ(t−au)1{au≤t<au+ζu}.
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Main probabilistic tools

Px law of X started at ξ∅ = x .

Branching property: conditional on MX (s) =
∑]X (s)

i=1 δsi ,
the process MX (t+s) has the same law as ]X (s)

independent processes MX (i)(t), where the X (i) are
independent with marginal law Psi .

Mass conservation: Let Xu(t) = ξue
κ(t−au)1{au≤t<au+ζu}. Then

∑
t∈[au,au+ζu)

Xu(t)
e−τu(t)

x
≡ 1

where τu(t) denotes the cumulative growth along the node u

(and τu(t) := 0 after the time of death of the cell associated to

the node u).
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The tagged fragment approach

Inspired from fragmentation processes techniques
(Bertoin, Haas, among others).

Pick a cell at random at each division and follow its size
χ(t) through time.

χ(t) = ξ∅
eτt

2Nt

where

Nt is the number of divisions of the tagged fragment up to
time t.
τt = κt is the cumulative growth of the tagged fragment
(very simple when no variability in the population)

This enables to obtain a many-to-one formula.
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A many-to-one formula

Exists in other contexts for Branching Markov processes in
a general setting (e.g. Bansaye et al., 2009, Cloez, 2011).

We have, for every f ∈ Cc
(
(0,∞)× (0,∞)

)
E
[
f
(
χ(t), τt

)]
= E

[∑
u∈U

ξu(t)
e−τu(t)

x
f
(
ξu(t), τu(t)

)]
from which we obtain

E
[ f (χ(t)

)
χ(t)

xeτt
]

= E
[ ∞∑

i=1

f
(
Xi (t)

)]
.

Proof: genealogical representation + fragmentation
technique.
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Transport-fragmentation equation

Set, for f ∈ Cc
(
(0,∞)

)
,

〈µt , f 〉 := E
[ ∞∑

i=1

f
(
Xi (t)

)]
.

Then, we have (in a weak sense)

∂tµt(x) + ∂x

(
κxµt(x)

)
+ B(x)µt(x) = 4B(2x)µt(2x).

Therefore the mean empirical distribution of X (t) satisfies
the deterministic transport-fragmentation equation.
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Statistical reconstruction

What is a relevant observation scheme ?

Natural candidates : (X (t), t ∈ [0,T ]
)

or(
(ξu, ζu), |u| ≤ n

)
with asymptotics taken as T or n→∞.

What we rather have is a stopping line, compare for
instance cell subcultivation for E. Coli.

Denote by Un ⊂ U a set of nodes of n individuals “before”
a stopping line; in particular

u ∈ Un =⇒ u− ∈ Un.

Observation scheme{
(ξu, ζu), u ∈ Un

}
,

asymptotics taken as n→∞.
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Statistical estimation

Given a pair ξu−, ζu− and ξu, we can identify κ through
2ξu = ξu−eκζu− .

How about the nonparametric estimation of B ?

We have

P(ζu ∈ [t, t + dt] |ζu ≥ t, ξu = x) = B(xeκt)dt

from which we obtain the density of the lifetime ζu
conditional on the size at birth au = x :

f (t, x) = B(xeκt) exp
(
−
∫ t

0
B(xeκs)ds

)
.
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Estimation of B

Conditional on ξu = x , the variable ξue
κζu has density

p(y , x) =
B(y)

κy
1{y≥x} exp

(
−
∫ y

0

B(s)

κs
1{s≥x}ds

)
= λ(y , x) exp

(
−
∫ y

0
λ(s, x)ds

)
,

with

λ(y , x) =
B(y)

κy
1{y≥x}.

Reminiscent of conditional survival function estimation.
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Elementary survival analysis

Let f be a density function on R+ of the form

f (y) = λ(y) exp
(
−
∫ y

0
λ(s)ds

)
.

Then

λ(y) =
f (y)

1− F (y)
=

f (y)

P(X1 ≥ y)
.

We mimic the same scheme: let Kh(y) = h−1K (h−1y)
denote a smooth kernel with bandwidth h > 0.
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Nonparametric estimation of B

For bandwidths h and x , y > 0, let

An(y)h :=
∑
u∈Un

Kh(ξue
κζu − y).

Then

An(y)h1 ≈
∑
x

p(x , y) µn(x)

where µn(x) is the “density” of the ξu’s.
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Nonparametric estimation of B (cont.)

Define likewise

Dn(y) :=
∑
u∈Un

1{ξueκζu≥y}1{ξu≤y}.

Similarly, we have

Dn(y) ≈
∑
x

(
1− F (y , x)

)
µn(x)

Finally
An(y)h1

Dn(y)
≈ B(y)

κy
,

so that eventually

κy
An(y)h

Dn(y)
≈ B(y).
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Nonparametric estimation of B (cont.)

Final estimator : for appropriate bandwidths h = h(n), we
set

B̂n(y) := κy
An(y)h(n)

Dn(y)
.

Error estimates If B ∈ Hs , for appropriate bandwidths +
SRC, we have

‖B̂n − B‖L2(K) .P n−s/(2s+1) � n−s/(2s+3).

This rate is provably optimal and is to be compared with
the global approach.
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Figure: Evolution of a E. Coli population.
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About the growth rate (cont.)

Variability of the growth rate from one cell to another:
exogeneous and endogeneous factors.

The dataset consits of 88 microcolonies followed for a few
hours (average time of division is of order 20 minutes):

Approximately 5 microcolonies are followed everyday, for
16 days.
Variability in growth rate may vary from one day to the
next (exogeneous factor).
Variability in growth rate may vary within a microcolony if
specific factors are transmitted from parents to offsprings.
(endogeneous factor).
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Variability in growth rate: experimental results

Figure: one curve = 1 day
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Variability within microcolonies for given days

Figure: one curve = 1 microcolony
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Variability within microcolonies for given days

Figure: one curve = 1 microcolony; beware of artefacts!
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Incorporating variability

To each cell labeled by u, we associate a birth time au and
a random growth rate κu.

Conditional on κu−, the variability is distributed according
to a (nice) Markov kernel

ρ(κu−, dκu).

We now have the identity between point measures

X (t) =
∞∑
i=1

1{Xi (t)>0}δXi (t) =
∑
u∈U

δξueκu (t−ζu)1{au≤t<au+ζu}.
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The corresponding many-to-one formula

κu(t): growth rate associated with the node u at time t.

κ(t): growth rate of the tagged-fragment.

The many-to-one formula becomes

E
[ f (χ(t), κt

)
χ(t)

xeτt
]

= E
[ ∞∑

i=1

f
(
Xi (t), κi (t)

)]
.

for f in C1
c

(
(0,∞)× (0,∞)

)
.
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What of the transport-fragmentation PDE?

In the context of variability, there is no hope to obtain a
transport-fragmentation equation in n(t, x).

However, if the equation is structured in both size and
variability, such a representation is still possible.

Define, for every f ∈ C1
c

(
(0,∞)× (0,∞)

)
〈µt , f (x , κ)〉 := E

[ ∞∑
i=1

f
(
Xi (t), κi (t)

)]
(slight abuse of notation).
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The corresponding transport-fragmentation
equation

We have (in a weak sense)

∂tµt(x , κ) + κ ∂x

(
xµt(x , κ)

)
+ B(x)µt(x , κ)

= 4

∫
R+

ρ(κ, dκ′)µt(2x , κ′).

What about statistical estimation? We may reasonably
assume an observation scheme of the form{

(ξu, ζu, κu), u ∈ Un

}
,

and we need to localise further the previous estimates.
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Final estimators

Set

An(y)h :=
∑
u∈Un

Kh(ξue
κuζu − y)

and

Dn(y) :=
∑
u∈Un

1{ξueκuζu≥y}1{ξu≤y}
1

κu

With growth variability, the estimator of B becomes

B̂n(y) =
yAn(y)h(n)

Dn(y)
.
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Conclusion

For constant growth rate and a global observation scheme,
estimation of the division rate is ill-posed.

Richer observation schemes enable to overcome the
ill-posedness.

Link between stochastic and deterministic modelling via
many-to-one formulas for transport-fragmentation
processes.

Variablity encompassed into richer stochastic models, with
deterministic counterparts if we enlarge the state space

Other issues: stationarity of the growth rate, relative size
of two offsprings.
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Fragmentation-transport equation when two
offsprings have different size

Assume that at division

ξ(u−,0) = α ξu− and ξ(u−,1) = (1− α)ξu−

with α ∼ ν(α)dα (such that α
(d)
= 1− α).

We obtain an extension of the fragmentation-transport
equation

∂tµ(x , κ) + κ∂x

(
xµt(x , κ)

)
+ B(x)µt(x , κ)

=

∫
R+

dκ′
∫

[0,1]

ν(dα)
α2 ρ(κ, κ′)B(x/α)µt(x/α, κ′).

Subsequently statistical analysis can presumably be carried
over in this context.
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