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Example 1

Paul trap - Fluctuations in the location of the center

State space: h = L2 (R,C)

Hamiltonian: H = − 1
2M

d2

dx2 + 1
2Mω2x2, with M > 0 and ω ∈ R

L1 = −iηx , with η > 0.

Xt = X0 +

∫ t

0

(
−iH +

1
2

L∗1L1

)
Xsds +

∫ t

0
L1XsdW k

s

M.E. Ghem, K.M. O’Hara, T.A. Savard, and J.E. Thomas - Phys. Rev. A (1998)
S. Schneider and G. J. Milburn - Phys. Rev. A (1999)
T. Grotz, L. Heaney, and W. Strunz - Phys. Rev. A (2006)
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Example 2

Application of intense laser pulse to the hydrogen-like atom

State space: h = L2 (R,C)

Hamiltonian: H = −1
2

d2

dx2 − 1√
x2+a2

+ xF (t), with

F (t) = F0 sin (βt + δ) ·

8<:
sin (πt/ (2τ)) , if t < τ
1, if τ ≤ t ≤ T − τ
cos2 (π (t + τ − T ) / (2τ)) , if T − τ ≤ t ≤ T

.

L1 = −iηx
β, η, δ ∈ R and a,F0, τ,T > 0

Xt = X0 +

∫ t

0

(
−iH +

1
2

L∗1L1

)
Xsds +

∫ t

0
L1XsdW k

s

K.P. Singh and J.M. Rost - Phys. Rev. A (2007)
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Example 3 (Quantum measurement)

Simultaneous measurement of position and momentum

State space: h = L2 (R,C)

Hamiltonian: H = −αd2

x2 + βx2, with α ≥ 0 and β ∈ R
L1 = κ

σx and L2 = −iκσ d
dx , with κ, σ ∈ ]0,∞[

Yt = Y0 +

∫ t

0
G (Ys) ds +

2∑
k=1

∫ t

0
Lk (Ys) dBk

s

G (y) =“
−iH − 1

2

P2
k=1 L∗k Lk

”
y +

P2
k=1

`
Re 〈y , Lk y〉 Lk y − 1

2 Re2 〈y , Lk y〉 y
´

Lk (y) = Lk y − Re 〈y , Lk y〉 y

A.J. Scott and G.J. Milburn - Phys. Rev. A (2001)
J. Gough and A. Sobolev - Phys. Rev. A (2004)
A. Bassi and D. Dürr - Europhys. Lett. (2008)
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Example 4

Quantum oscillator

State space: h = l2 (Z+)

H = iβ1
(
a† − a

)
+ β2N + β3

(
a†
)2 a2

L1 = α1a, L2 = α2a†, L3 = α3N,
L4 = α4a2, L5 = α5

(
a†
)2, L6 = α6N2

(en)n∈Z+
: orthonormal basis of l2 (Z+)

a†en =
√

n + 1en+1, aen =

{
0, if n = 0√

nen−1, if n > 0
, N = a†a

Xt = X0 +

∫ t

0

(
−iH +

1
2

6∑
k=1

L∗1L1

)
Xsds +

6∑
k=1

∫ t

0
L1XsdW k

s
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Linear stochastic Schrödinger equation

Belavkin (Physics Letter A, 1989)

Xt (x) = x +

∫ t

0
G (s) Xs (x) ds +

∞∑
k=1

∫ t

0
Lk (s) Xs (x) dW k

s (1)

G (s) = −iH (s)− 1
2

∞∑
k=1

Lk (s)∗ Lk (s)



Stochastic Schrödinger equations Basic properties OQS in position representation Regular invariant states Conclusion

Non-linear stochastic Schrödinger equation

Non-linear stochastic evolution equation

Y y
t = y +

∫ t

0
G
(
s,Y y

s
)

ds +
∞∑

k=1

∫ t

0
Lk
(
s,Y y

s
)

dBk
s (2)

‖y‖ = 1
B1,B2, . . . : independent Brownian motions.
Lk (s, x) = Lk (s) x − Re 〈x ,Lk (s) x〉 x .
G (s, x) = G (s) x +∑∞

k=1

(
Re 〈x ,Lk (s) x〉Lk (s) x − 1

2 Re2 〈x ,Lk (s) x〉 x
)
.
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Hypothesis 1

Hypothesis 1

Let C be a self-adjoint positive operator in h such that:

For any ξ ∈ L2
C (P, h) and T > 0, the linear stochastic Schrödinger

equation (1) has a unique strong C-solution on [0,T ] with initial datum ξ.

For all x ∈ D (C) and t ≥ 0,

2<〈x ,Gx〉+
∞X

k=1

‖Lk x‖2 = 0.

For any x ∈ D (C) and t ≥ 0, ‖G (t) x‖2 ≤ K (t) ‖x‖2
C .

Xt (ξ) is strong C-solution iff

E ‖Xt (ξ)‖2 ≤ E ‖ξ‖2, Xt (ξ) ∈ D (C) a.s. and
sups∈[0,t] E ‖CXs (ξ)‖2 <∞.

Xt (ξ) = ξ +
R t

0 G (s)πC (Xs (ξ)) ds +
P∞

`=1

R t
0 L` (s)πC (Xs (ξ)) dW `

s

P-a.s.
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Existence and uniqueness

Theorem (C.M. M and R. Rebolledo (Ann. Appl. Probab. (2008)) - F. Fagnola and C.M. M. (2011)

Let C satisfy Hypothesis 1.
Suppose that θ is a probability measure on B (h) such that
θ (D (C) ∩ {y ∈ h : ‖y‖ = 1}) = 1 and

∫
h ‖Cy‖2 θ (dx) <∞.

Then the non-linear stochastic Schrödinger equation (2) has a
unique C-solution

(
Q, (Yt )t≥0 , (Bt )t≥0

)
with initial law θ.
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Evolution of density operators

Quantum master equation

d
dt
ρt (%) = ρt (%) G (t)∗ + G (t) ρt (%) +

∞X
k=1

Lk (t) ρt (%) Lk (t)∗ (3)

ρ0 (%) = %

Previous results

Existence of minimal solution: Davies (Rep. Math. Phys., 1977)

Uniqueness: Chebotarev, Fagnola (J. Funct. Anal., 1998)

Regularity of solutions: Davies (Comm. math. phys., 1977, Neutron diffusion equation); Chebotarev, García
and Quezada (Publ. Res. Inst. Math. Sci. Kokyuroku, 1998, General results); Arnold and Sparber
(Commun. Math. Phys., 2004,Diffusion models with Hartree interaction)

- Is tr (Aρt (%)) well-posed?
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Regular density operator

Definition
Let C be an self-adjoint positive operator.
Then % ∈ L+

1,C (h) if and only if
% is a positive trace class operator in h.
There is an orthonormal basis (un)n∈Z+

of h and a
sequence of non-negative real numbers (λn)n∈Z+

such
that:

% =
∑

n∈Z+
λn |un〉 〈un|.∑

n∈Z+
λn ‖Cun‖2

< +∞

Characterizations of L+
1,C (h): Chebotarev, Garcia and Quezada (1998)

Lemma

% is C-regular if and only if there exists ξ ∈ L2
C (P, h) for which

% = E |ξ〉〈ξ|.
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Evolution of density operators

Theorem
Suppose that Hypothesis 1 holds. Then, for every t ≥ 0 there
exists a unique operator ρt belonging to L (L1 (h)) such that for
each C-regular operator % we have

ρt (%) = E
∣∣∣Y ξ

t 〉〈Y
ξ
t

∣∣∣ = E
∣∣∣X ξ

t 〉〈X
ξ
t

∣∣∣ ,
whenever ξ is an arbitrary random variable satisfying ξ ∈
L2

C (P, h) and % = E |ξ〉〈ξ|.

Theorem
Under Hypothesis 1,
ρt
(
L+

1 (h)
)
⊂ L+

1 (h) and ρt

(
L+

1,C (h)
)
⊂ L+

1,C (h).
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Mean values

Lemma
Suppose that:

% = E |ξ〉〈ξ| for ξ ∈ L2
C (P, h).

A ∈ L
((

Dom (C) , 〈·, ·〉C
)
, h
)
.

Then A% = E |Aξ〉〈ξ| and tr (A%) = E 〈ξ,Aξ〉.

If in addition Dom (C) ⊂ Dom (A∗), we have
%A = E |ξ〉〈A∗ξ|.
tr (%A) = E 〈ξ,Aξ〉.
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Existence and uniqueness of solutions for QMEs

Theorem (C.M. Ann. Probab. (to appear))

Consider the autonomous case. Let Hypothesis 1 hold. Then
for any A ∈ L (h) and t ≥ 0,

d
dt

tr (Aρt (%)) = tr

(
A

(
Gρt (%) + ρt (%) G∗ +

∞∑
k=1

Lkρt (%) L∗k

))
.

(4)

Moreover, (ρt )t≥0 is the unique semigroup of bounded operators
on L1 (h) such that:

i) supt∈[0,T ] ‖ρt‖L(L1(h)) <∞.
ii) For each x ∈ Dom (C), the function t 7→ tr (ρt (|x〉〈x |) A) is

continuous provided A ∈ L (h).
iii) Relation (4) holds with % = |x〉〈x | whenever x ∈ Dom (C).
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Hypothesis 2 (non-explosion condition)

Let C be a self-adjoint positive operator in h with the properties:

For any x ∈ D (C), ‖G (t) x‖2 ≤ K (t) ‖x‖2C .

For all x ∈ D (C), ‖Lk (t) x‖2 ≤ K (t) ‖x‖2C .
There exists α ≥ 0 and a core D1 of C2 such that for all
x ∈ D1,

2<
〈

C2x ,G (t) x
〉

+
∞∑

k=1

‖CLk (t) x‖2 ≤ α (t) ‖x‖2C .

There exist a core D2 of C such that for any x in D2,

2< 〈x ,G (t) x〉+
∞∑

k=1

‖Lk (t) x‖2 ≤ 0.
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Theorem (C.M. M. , F. Fagnola, 2011)

Assume that Hypothesis 2 holds.
Let ξ ∈ L2

C (P, h).
Then, the linear stochastic Schrödinger equation (1) has a
unique strong C-solution (Xt (ξ))t≥0 with initial datum ξ.
Moreover,

E ‖CXt (ξ)‖2 ≤ exp (αt)
(
E ‖Cξ‖2 + αtE ‖ξ‖2 + βt

)
.
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Model 1

Consider h = L2 (Rd ,C
)
. Let the Hamiltonian be

H(t) = −α∆ + i
d∑

j=1

(
Aj(t , ·)∂j + ∂jAj(t , ·)

)
+ V (t , ·),

where t ≥ 0, α ≥ 0, and V ,A1, . . . ,Ad are real-valued measur-
able smooth functions on [0,+∞[×Rd .

For a given m ∈ N and for all t ≥ 0 choose

L` (t) =

{ ∑d
k=1 σ`k (t , ·) ∂k + η` (t , ·) , if 1 ≤ ` ≤ m

0, if ` > m
,

where σ`k , η` : [0,+∞[×Rd → C are complex-valued measur-
able smooth functions.
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Hypothesis 3

Adopt Model 1. Define G (t) = −iH (t)− 1
2
∑m

`=1 L∗` (t) L` (t).

(H3.1)

Suppose that: V (t , ·) ∈ C2 (Rd ,R
)
, Aj (t , ·) ∈ C3 (Rd ,R

)
,

max
{
|V (t , x)| , |∆V (t , x)| ,

∣∣∂j(∆Aj)
∣∣} ≤ K (t)

(
1 + |x |2

)
,

max
{∣∣∂jV (t , x)

∣∣ , ∣∣Aj (t , x)
∣∣ , ∣∣(∂j ′∂jAj)(t , x)

∣∣} ≤ K (t) (1 + |x |)∣∣∂j ′Aj (t , x)
∣∣ ≤ K (t)

H(t) = −α∆ + i
d∑

j=1

(
Aj(t , ·)∂j + ∂jAj(t , ·)

)
+ V (t , ·)
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Hypothesis 3

(H3.2)

|σ`k (t , ·)| ≤ K (t),
η` (t , ·) ∈ C3 (Rd ,C

)
and the absolute values of all the par-

tial derivatives of η` (t , ·) from the first up to the third order are
bounded by K (t).

At least one of the following conditions holds:
|η` (t , ·)| ≤ K (t), σ`k (t , ·) ∈ C3 (Rd ,C

)
, and the absolute

values of all partial derivatives of σ`k (t , ·) up to the third
order are dominated by K (t).
(t , x) 7→ σ`k (t , x) does not depend on x and
|η` (t ,0)| ≤ K (t).

L` (t) =
∑d

k=1 σ`k (t , ·) ∂k + η` (t , ·)
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Theorem (CMM, F. Fagnola (2011)

Suppose that Hypothesis 3 holds.
Set C = −∆ + |x |2.
Let ξ be a F0-measurable random variable taking values in
L2 (Rd ,C

)
such that E ‖ξ‖2 = 1 and E ‖Cξ‖2 <∞.

Then the linear SSE (1) has a unique strong C-solution with
initial datum ξ. Moreover, E ‖Xt (ξ)‖2 = ‖ξ‖2 for all t > 0.
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Hypothesis 4

Let C satisfy Hypotheses 1. Suppose that:
For all t ≥ 0 and any x belonging to a core of C,

∞∑
`=1

∥∥∥C1/2L` (t) x
∥∥∥2
≤ K (t) ‖x‖2C .

Let A = B∗1B2, where B1,B2 are operators in h such that:

For all x ∈ D
(
C1/2), max{‖B1x‖2 , ‖B2x‖2} ≤ K ‖x‖2C1/2 .

max
{
‖Ax‖2 , ‖A∗x‖2

}
≤ K ‖x‖2C whenever x ∈ D (C).
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Theorem F. Fagnola and C.M. M. (2012)

Let Hypothesis 4 hold.
Assume the existence and uniqueness of a strong C-solution to
the linear SSE (1) with initial datum ξ ∈ L2

C (P; h) on any bounded
interval.

Then, for all t ≥ 0 we have

E 〈Xt (ξ) ,AXt (ξ)〉 = E 〈ξ,Aξ〉+

∫ t

0
E 〈A∗Xs (ξ) ,GXs (ξ)〉ds

+

∫ t

0
E 〈GXs (ξ) ,AXs (ξ)〉ds

+

∫ t

0

( ∞∑
`=1

E 〈B1L`Xs (ξ) ,B2L`Xs (ξ)〉

)
ds
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Theorem F. Fagnola and C.M. M. (2012)

Assume the context of Model 1, together with Hypothesis 3.
For any j = 1,2, let Bj be either ∂k

⌈
aj
⌉
,
⌈
bj
⌉
∂k or

⌈
cj
⌉
, where

k = 1, . . . ,d , aj ∈ C2 (Rd ,R
)

and bj , cj ∈ C1 (Rd ,R
)
.

Suppose that:
max

{∣∣aj (x)
∣∣ , ∣∣bj (x)

∣∣} ≤ K ,
max

{∣∣cj (x)
∣∣ , ∣∣∂laj (x)

∣∣ , ∣∣∂lbj (x)
∣∣} ≤ K (1 + |x |), and

max
{∣∣∂lcj (x)

∣∣ , ∣∣∂k∂laj (x)
∣∣} ≤ K

(
1 + |x |2

)
.

If A = B∗1 B2 and ξ ∈ L2
−∆+|x|2 (P; h), then

E 〈Xt (ξ) ,AXt (ξ)〉 = E 〈ξ,Aξ〉+
Z t

0
E 〈A∗Xs (ξ) ,GXs (ξ)〉 ds

+

Z t

0
E 〈GXs (ξ) ,AXs (ξ)〉 ds

+

Z t

0

 
∞X

`=1

E 〈B1L`Xs (ξ) ,B2L`Xs (ξ)〉

!
ds
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Example 1

State space: h = L2 (R,C)

Hamiltonian: H = − 1
2M

d2

dx2 + 1
2Mω2x2, with M > 0 and ω ∈ R

L1 = −iηx , with η > 0.

Theorem F. Fagnola and C.M. M. (2012)

In Example 1, for all t ≥ 0 we have

E 〈Xt (ξ) ,HXt (ξ)〉 = E 〈ξ,Hξ〉+
1

2M
η2t .
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Hypothesis 5

Hypothesis 5
Suppose that there exist: (i) a self-adjoint positive operator D
in h satisfying Hypothesis 1; and (ii) a probability measure Γ on
B (h) such that:

For any t ≥ 0 and A ∈ B (h), Γ (A) =
∫
h Pt (x ,A) Γ (dx)

Γ (Dom (D) ∩ {x ∈ h : ‖x‖ = 1}) = 1∫
h ‖Dz‖2 Γ (dz) <∞

Here Pt (x ,A) =

{
Qx (Y x

t ∈ A) , x ∈ Dom (D)
δx (A) , x /∈ Dom (D)

Sufficient condition: AAP (2008) C.M.M - R. Rebolledo
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Regular invariant density operator

Theorem
Let D satisfy Hypothesis 5.
Then, there exists a D-regular operator %∞ such that

ρt (%∞) = %∞

for all t ≥ 0.
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Example 4 (quantum oscillator)

State space: h = l2 (Z+)

(en)n∈Z+
: orthonormal basis of l2 (Z+)

a†en =
√

n + 1en+1, aen =

{
0, if n = 0√

nen−1, if n > 0
N = a†a

H = iβ1
(
a† − a

)
+ β2N + β3

(
a†
)2 a2

L1 = α1a, L2 = α2a†, L3 = α3N,
L4 = α4a2, L5 = α5

(
a†
)2, L6 = α6N2

Unbounded observables
N: number of photons
i
(
a† − a

)
/
√

2: The position operator(
a† + a

)
/
√

2: The momentum operator
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Example 4

H = iβ1
(
a† − a

)
+ β2N + β3

(
a†
)2 a2, L1 = α1a, L2 = α2a†,

L3 = α3N, L4 = α4a2, L5 = α5
(
a†
)2, L6 = α6N2

Theorem
In the set-up of Example 4 we assume

|α4| ≥ |α5| .

If p ≥ 4, then there exists a unique Np-regular solution to the
quantum master equation (3).

In addition, there exists a Np-regular operator %∞ which is invari-
ant for (3) provided that either
|α4| > |α5| or
|α4| = |α5| with |α2|2 − |α1|2 + 4 (2p + 1) |α4|2 < 0.
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Conclusion

We can study theoretical properties of the quantum
Markovian master equations with the help of stochastic
Schrödinger equations.

We obtain an Ehrenfest’s-type theorem for open quantum
systems.

We can prove rigorously the heating of ion traps in a
simple model.

In many physical situations, there exists a regular
stationary solution for the quantum master equations.
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Thank you very much!
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