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Example 1

Paul trap - Fluctuations in the location of the center

State space: h = L? (R, C)

Hamiltonian: H = — 5, & + IMw2x?, with M > 0 and w € R

Ly = —inx, with n > 0.

t ' 1 t
x,:x0+/o <—/H+2L:L1)xsds+/0 L4 XsdWX

M.E. Ghem, K.M. O’Hara, T.A. Savard, and J.E. Thomas - Phys. Rev. A (1998)
S. Schneider and G. J. Milburn - Phys. Rev. A (1999)
T. Grotz, L. Heaney, and W. Strunz - Phys. Rev. A (2006)
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Example 2

Application of intense laser pulse to the hydrogen-like atom
State space: h = L? (R, C)

Hamiltonian: H = _%;72 - ;+a2 + xF (t), with
VX
sin (wt/ (27)), ift <7
F(t)=Fosin(Bt+4d)-¢ 1, ifr<t<T-—7 .
cos’(n(t+7—T)/(2r)), fT—7<t<T

L1:—i77X
B,n,0 e Rand a, Fo,7, T >0

2

t t
Xt:x0+/ (—iH+ 1L:L1>xsds+/ Ly XsdWk
0 0

K.P. Singh and J.M. Rost - Phys. Rev. A (2007) )
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Example 3 (Quantum measurement)

Simultaneous measurement of position and momentum

State space: h = L? (R, C)

Hamiltonian: H = —a% + 4x?, with @ > 0 and § € R
Ly = f£x and Lp = —iko &, with k,0 € ]0, oo

t 2 t
Y; = Y0+/ G(Ys)ds+2/ Lx (Ys) dBX

@ Gly)=
(=iH = 308 Lili) y + S5, (Re (v, Ley) Ly — 3 Re (v, L) ¥)
@ Lc(y) =Ly —Rely,Luy)y

A.J. Scott and G.J. Milburn - Phys. Rev. A (2001)
J. Gough and A. Sobolev - Phys. Rev. A (2004)
A. Bassi and D. Dirr - Europhys. Lett. (2008)
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Example 4

State space: h = ?(Z.)

H=iB4 (aT = a) + BoN + (3 (aT)Z a°
L1 = o4, Lg = agaT, L3 = Oz3N,

L4 = a482, L5 = Q5 (aT)z, L6 = O¢GN2

(€n)pez, : Orthonormal basis of /2 (Z, )
0, if n=0

— gf
en_1, If n>0’N aa

alep=+vn+1e,, aep= { /A

v

1 6t
x,:xo+/O <—/H+22L’;L1 Xsds+Z/0 L4 XsdWX
k=1 k=1
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Linear stochastic Schrédinger equation

Belavkin (Physics Letter A, 1989)

t oo t
x,(x)=x+/0 G(s)Xs(x)ds+Z/0 Ly (S) Xs (x) dWE (1)
k=1
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Non-linear stochastic Schrédinger equation

Non-linear stochastic evolution equation

t >t
yty:y+/0 G(s,YSy)dsnLZ/o L (s, YY) dBS (2
k=1

° |lyll=1
@ B' B?,...:independent Brownian motions.
@ L (s,x)=Lk(s)x —Re(x, Lk (8) x) x.
@ G(s,x)=G(s)x+
T (Re (X, Lk (8) X) L (8) x — 3 Re? (x, L () X) x) .
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Hypothesis 1

Let C be a self-adjoint positive operator in  such that:

@ Forany ¢ € L2 (P,h) and T > 0, the linear stochastic Schrédinger
equation (1) has a unique strong C-solution on [0, T] with initial datum &.

@ Forallxe D(C)and t >0,

R (x,Gx) + > ||Lkx|* = 0.

k=1

@ Forany x e D(C)and t >0, |G () x||” < K (t) ||x]|5 -

X (€) is strong C-solution iff

@ E|X: (¢ < EHEHZ,ZXf (€) e D(C) as. and
SUpse[o g E[ICXs (O)° < oo.

@ X (¢ §+f0 (8) e (Xs (€)) ds + 352 1f0 L (8) e (Xs (€)) dWE
]P’-as
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Existence and uniqueness

Theorem (C.M. M and R. Rebolledo (Ann. Appl. Probab. (2008)) - F. Fagnola and C.M. M. (2011)

Let C satisfy Hypothesis 1.
Suppose that 6 is a probability measure on % (h) such that
6(D(C)n{yeb:|lyl=1})=1and [ [Cy|?6(dx) < oo,

Then the non-linear stochastic Schrédinger equation (2) has a
unique C-solution (@, (Yi)y0 (Br)rso ) With initial law 0.
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Evolution of density operators

Quantum master equation

Gn@ = m@GO +GMn)+ Y La@LO O

k=1

po ()

v
Previous results

@ Existence of minimal solution: Davies (Rep. Math. Phys., 1977)

4

o Uniqueness: Chebotarev, Fagnola (J. Funct. Anal., 1998)

o Regularity of solutions: Davies (Comm. math. phys., 1977, Neutron diffusion equation); Chebotarev, Garcia
and Quezada (Publ. Res. Inst. Math. Sci. Kokyuroku, 1998, General results); Arnold and Sparber
(Commun. Math. Phys., 2004,Diffusion models with Hartree interaction)

- Is tr (Ap: (0)) well-posed?

D
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Regular density operator

Let C be an self-adjoint positive operator.
Then ¢ € £{ ; (b) if and only if

@ pis a positive trace class operator in b.

@ There is an orthonormal basis (Un) ., of h and a
sequence of non-negative real numbers (An),cz, such
that:

® 0=73 pcz, AnlUn) (Unl.
© Ynez, AnllCun|* < 400

Characterizations of ET ¢ (h): Chebotarev, Garcia and Quezada (1998) J

o is C-regular if and only if there exists ¢ € ch (P, ) for which

o =E[5)(].
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Evolution of density operators

Theorem
Suppose that Hypothesis 1 holds. Then, for every t > 0 there

exists a unique operator p; belonging to £ (£ (h)) such that for
each C-regular operator o we have

)

pe(e) = E|YO (Y| = E XD

whenever ¢ is an arbitrary random variable satisfying £ €
L2, (P,h) and ¢ = E¢)(€].

Under Hypothesis 1,
pi(£F () € £ (b) and e (255 (h) < £7 ¢ (b).
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Mean values

Lemma
Suppose that:

® o =E[¢)(¢] for ¢ € L (P, D).
@ Ac £((Dom(C),{-,")¢c),h)-

Then Ao = E |AS) (€| and tr (Ap) = E (£, AE).

If in addition Dom (C) c Dom (A*), we have
® oA =E[){A¢].
o tr(oA) = E (¢, AS).
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Existence and uniqueness of solutions for QMEs

Theorem (C.M. Ann. Probab. (to appear))

Consider the autonomous case. Let Hypothesis 1 hold. Then
forany Ac £(h)and t > 0,

iff (Apt (0)) = tr (A (Gpt (0) +pt(0) G+ > Lipt (o) L2>> :
k=1
(4)

Moreover, (pt) is the unique semigroup of bounded operators
on £4 (h) such that:

1) suPeqo, 7y 1ot o2y )y < 0°-
i) For each x € Dom(C), the function t — tr (p: (|x)(x|) A) is
continuous provided A € £(b).

i) Relation (4) holds with ¢ = |x) (x| whenever x € Dom(C).
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Hypothesis 2 (non-explosion condition)
Let C be a self-adjoint positive operator in h with the properties:

@ Forany x e D(C), ||G(t) x|? < K (t) ||x]% .
@ Forall x € D(C), ||Lk (t) x||® < K (t) ||x]|5.

@ There exists o > 0 and a core ©4 of C? such that for all
X € D4,

25 (C2x, G(1) x) + Z ICLK (1) X|I? < o (8) [IX|I2.
@ There exist a core D, of C such that for any x in ©,,

R (x,G(t)x +Z||Lk(t x| < 0.
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Assume that Hypothesis 2 holds.

Let ¢ € L2 (P, h).

Then, the linear stochastic Schrodinger equation (1) has a
unique strong C-solution (X; (£))~, With initial datum &.
Moreover,

EICX: (€)1 < exp(at) (E | CEIP + ot [I6] + 5t)
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Model 1

Consider h = L? (R9,C). Let the Hamiltonian be
H(t) :—aA—i—IZ( )9+ A (L)) + V(E,-),

where t > 0, « > 0, and V,A',..., A9 are real-valued measur-
able smooth functions on [0, +oo[xRY.

For a given m € N and for all t > 0 choose

Lo (f) = Zk 100k (8,-) Ok +me(t,-), 1 <L<m
¢ if¢>m

where o, 10 : [0, +00[xR? — C are complex-valued measur-
able smooth functions.
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Hypothesis 3

Adopt Model 1. Define G (1) = —iH (t) — 1 ™, L3 (1) Lo (1).
(H3.1)
Suppose that: V (t,-) € C2 (R9,R), A/ (t,-) € C® (R, R),

max {|V (t,x)|, |AV (t,x)|, |5;(AA)|} < K (1) (1 + |x|2>,

max {|9; V (
A, x)| < K (1)

)| [@r o)t X)[} < K (1) (1 + x])

H(t :—aA—i—IZ( (8,)0) + A (L, )) + V(1)
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Hypothesis 3

(H3.2)

o (£, )] < K(2),

ne(t,-) € C®(RY,C) and the absolute values of all the par-
tial derivatives of 7, (t,-) from the first up to the third order are
bounded by K(t).

At least one of the following conditions holds:

@ [ (t,-)] < K(t), ou (t,-) € C3 (RY,C), and the absolute
values of all partial derivatives of o (t,-) up to the third
order are dominated by K(t).

@ (t,x) — oy (t, x) does not depend on x and
[ne (£, 0)] < K(2).

Lo(t) = Y01 ok (£,) O +me (1) J




Stochastic Schrédinger equations  Basic properties  OQS in position representation  Regular invariant states ~ Conclusion
000000 000000000 00000000

Theorem (CMM, F. Fagnola (2011)

Suppose that Hypothesis 3 holds.

Set C = —A +|x[%.

Let ¢ be a Fg-measurable random variable taking values in
L2 (R?,C) such that E ||¢]|2 = 1 and E || C¢|? < oc.

v

Then the linear SSE (1) has a unique strong C-solution with
initial datum &. Moreover, E || X; (¢)||> = ||¢||? for all t > 0.

V.
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Let C satisfy Hypotheses 1. Suppose that:
For all t > 0 and any x belonging to a core of C,

> [levee o < oy 1xi3.
=1

Conclusion

Let A= BjB,, where By, B are operators in b such that:

e Forall x € D (C'/2), max{||Bix|1?, || Box|[*} < K ||X[51/2-

o max {|yAx”2 , HA*XHZ} < K ||x|2 whenever x € D (C).
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Theorem k Fagnola and C.M. M. (2012)

Let Hypothesis 4 hold.

Assume the existence and uniqueness of a strong C-solution to
the linear SSE (1) with initial datum & € L2C (P; ) on any bounded
interval.

Then, for all £ > 0 we have
t
E (X (€),AX (€) = E(¢ A¢)+ /0 E (A"Xs (€) , GXs (¢)) ds
t
T / E (GXs (), AXs (€)) ds
0

+/t < S E<B1L5Xs (f),BngXs (f))) as
0

=1

v
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Theorem k Fagnola and C.M. M. (2012)

Assume the context of Model 1, together with Hypothesis 3.
For any j = 1,2, let B; be either 9 [a;|, [b;]| 9k or [cj|, where
k=1,...,d, a € C?(R?%R) and bj, ¢ € C' (R?,R).

Suppose that:
max {|a; (x)|, |bj (x)|} < K,
max {|c; (x)|,|ia; (x)|, |ab; (x)|} < K (1 + |x]), and

max {|9,¢; (x)| , |0kdiaj (X)|} < K (1 + ]x|2) :

lfA=B{B,and ¢ Lim\x\z (P; ), then
t
E(X () AX(€)) = E(&A+ /0 E (A" X (€), GXs (€)) ds

+ / E (GXs (€) , AXs (¢€)) ds
0

+/t ( S E(B1LeXs (§), B2LeXs (5))) ds
0

=1
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State space: h = L? (R, (C)

Hamiltonian: H = — 54, & + 1Mw?x?, with M > 0 and w € R

Ly = —inx, with n > 0.

Theorem k Fagnola and C.M. M. (2012)

In Example 1, for all t > 0 we have

E (Xt (€) HXt (€)) = EX&, HE) + 5m t.
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Hypothesis 5

Hypothesis 5
Suppose that there exist: (i) a self-adjoint positive operator D
in b satisfying Hypothesis 1; and (ii) a probability measure I' on
B (h) such that:

® Forany t>0and Ae B (h), I (A) = [, Pi(x,A)T (dx)

@ (Dom(D)n{xeh:|x||=1}) = 1

o [ 11Dz|?T (dz) < o0
Qx(Y¥ €A), xeDom(D)
dx (A), x ¢ Dom (D)

Here P; (x,A) = {

Sufficient condition: AAP (2008) C.M.M - R. Rebolledo
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Regular invariant density operator

Theorem

Let D satisfy Hypothesis 5.
Then, there exists a D-regular operator o, such that

pt(@oo) = O

forall t > 0.
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Example 4 (quantum oscillator)

State space: h = 2 (Z,) J
(n)pez, - Orthonormal basis of /2 (Z, )
0 if n=0
e, — — )
aten, =+v/n+1enq, aep { Jnen . if n>0

N = afa

H=iB; (a" — a) + BoN + 33 (aT)2 a
Ly =woa, L = OzgaT, L3 = 043N,
Ly = a432, Ls = as (aT)2, Le = a6N2

Unbounded observables

@ N: number of photons
° i(azT — a) /v/2: The position operator

° (aT + a) /v/2: The momentum operator
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Example 4

H = iB(at —a) + BN+ 85 (a)2 &, Ly = aqa, Lp = apal,
Lz =agN, Ly = a432, Ls = as (aT)Z, Lg = a6N2

Theorem
In the set-up of Example 4 we assume

sl > las]

If p > 4, then there exists a unique NP-regular solution to the
quantum master equation (3).

In addition, there exists a NP-regular operator o., which is invari-
ant for (3) provided that either

|las| > |as| or

lag| = |os| with |ap|? — |12 + 4 (20 + 1) |as)? < 0.
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Conclusion

@ We can study theoretical properties of the quantum
Markovian master equations with the help of stochastic
Schrédinger equations.

@ We obtain an Ehrenfest’s-type theorem for open quantum
systems.

@ We can prove rigorously the heating of ion traps in a
simple model.

@ In many physical situations, there exists a regular
stationary solution for the quantum master equations.




Thank you very much!

& = = E DA
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