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The Einstein equations

A spacetime is (M, gαβ); signature −+ ++

In mathematical cosmology one usually assumes M = I × G where G
is spatially compact

Einstein equations (with c=G=1):

Gαβ + gαβΛ = 8πTαβ

where Gαβ = Rαβ − 1
2gαβR is divergence-free



The Universe as a fluid

The equation of state P = f (ρ) relates the pressure P with the energy
density ρ. The velocity of the fluid/observer is uα

Tαβ = (ρ+ P)uαuβ + Pgαβ

The Euler equations of motion coincide with the requirement that Tαβ has
to be divergence-free. In the Matter-dominated Era P = 0 which
corresponds to dust



Late-time behaviour of the Universe with a cosmological
constant Λ:

The Cosmic no hair conjecture

∃Λ => Vacuum +Λ at late times
(Gibbons-Hawking 1977, Hawking-Moss 1982)

Non Bianchi IX homogeneous models with a perfect fluid (Wald 1983)

Non-linear Stability of ‘Vacuum +Λ’ (Friedrich 1986)

Non-linear Stability of FLRW for 1 < γ < 4
3 -fluid (Rodnianski-Speck

2011)

For Bianchi except IX and Vlasov (Lee 2004)



What about the situation Λ = 0?

Mathematically more difficult, since no exponential behaviour

Late-time asymptotics are well understood for perfect fluid

Stability of the matter model?

Stability of the perfect fluid model at late times:

Is the Einstein-Vlasov system well-approximated by the
Einstein-dust system for an expanding Universe?



Why Vlasov?

Vlasov = Boltzmann without collision term

Nice mathematical properties

More ‘degrees of freedom’

Kinetic description f (t, xa, pa) is often used in (astro)physics

A starting point for the study of non-equilibrium

Galaxies when they collide they do not collide

Plasma is well aproximated by Vlasov



What is a Bianchi spacetime?

A spacetime is said to be (spatially) homogeneous if there exist a
one-parameter family of spacelike hypersurfaces St foliating the
spacetime such that for each t and for any points P,Q ∈ St there
exists an isometry of the spacetime metric 4g which takes P into Q

It is defined to be a spatially homogeneous spacetime whose isometry
group possesses a 3-dim subgroup G that acts simply transitively on
the spacelike orbits (manifold structure is M = I × G ).



Bianchi spacetimes have 3 Killing vectors and they can be classified
by the structure constants C i

jk of the associated Lie algebra

[ξj , ξk ] = C i
jkξi

They fall into 2 catagories: A and B

Bianchi class A is equivalent to C i
ji = 0 (unimodular)

In this case ∃ unique symmetric matrix with components ν ij such that
C i

jk = εjklν
li

Relation to Geometrization of 3-manifolfds (Reiris 2005)



Classification of Bianchi types class A

Type ν1 ν2 ν3

I 0 0 0

II 1 0 0

VI0 0 1 -1

VII0 0 1 1

VIII -1 1 1

IX 1 1 1



Subclasses of homogeneous spacetimes

Homogeneous spacetimes

Bianchi spacetimes

Bianchi A spacetimes Bianchi B spacetimes

Kantowski-Sachs spacetimes

FLRW closed ⊂ Bianchi IX

FLRW flat ⊂ Bianchi I and Bianchi VII0

FLRW open ⊂ Bianchi V and VIIh with h 6= 0



Collisionless matter

Vlasov equation: L(f ) = 0, f satisfies pαpα = −m2

L =
dxα

ds

∂

∂xα
+

dpa

ds

∂

∂pa

Geodesic equations

dxα

ds
= pα

dpa

ds
= −Γa

βγpβpγ

Geodesic spray

L = pα ∂

∂xα
− Γa

βγpβpγ ∂

∂pa



Connection to the Einstein equation

Energy-momentum tensor

Tαβ =

∫
f (xα, pa)pαpβµ

with

µ = |p0|−1| det g |
1
2 dp1dp2dp3

Here det g is the determinant of the spacetime metric. Let us call the
spatial part Sij and S = g ijSij

f is C 1 and of compact support



Vlasov equation with Bianchi symmetry

Vlasov equation with Bianchi symmetry (in a left-invariant frame
where f = f (t, pa))

∂f

∂t
+ (p0)−1Cd

bapbpd
∂f

∂pa
= 0

From the Vlasov equation it is also possible to define the
characteristic curve Va:

dVa

dt
= (V 0)−1Cd

baV bVd

for each Vi (t̄) = v̄i given t̄.



Time origin choice

initial data are (gij(t0), kij(t0), f (t0)) on a 3-dim manifold S(t0)

Assume that k < 0.

Tecnical choice: without loss of generality t0 = −2/k(t0).



”New” variables

kab = σab − Hgab

Hubble parameter (’Expansion velocity’)

H = −1

3
k

Shear variables (’Anisotropy’)

Σ+ = −σ
2
2 + σ3

3

2H

Σ− = −σ
2
2 − σ3

3

2
√

3H

F =
1

4H2
σabσ

ab



Σ+

Σ−

F

Kasner circle

1

1

C.-S.E.-M.

The different solutions projected to the Σ+Σ−-plane



Results I

Previous results: Reflection Symmetric Bianchi I; Rendall (1996)

Reflection symmetry

f (p1, p2, p3) = f (−p1,−p2, p3) = f (p1,−p2,−p3)

(Implies diagonal metric and T0i = 0)

’New’ result: Drop RS for Bianchi I and small data assumption



Small data assumptions for Bianchi I, II and VI0

Close to Einstein-De Sitter/Collins-Stewart/Ellis-Maccallum

gED = t
4
3 diag(1, 1, 1)

gCS = (2t)
3
2 diag((2t)−

1
2 , 1, 1)

gEM = t2 diag(1, t−1, t−1)

Dispersion of Velocities P is bounded, i.e. the spacetime is close to
dust, where P is

P(t) = sup{|p| = (gabpapb)
1
2 |f (t, p) 6= 0}



Keys o the proof

The expected estimates are obtained from the linearization of the
Einstein-dust system + a corresponding plausible decay of the
velocity dispersion

Bootstrap argument



Central equations for Bianchi I

∂t(H−1) =
3

2
+ F +

4πS

3H2

Ḟ = −3H[F (1− 2

3
F − 8πS

9H2
)− 4π

3H3
Sabσ

ab]

dVa

dt
= 0

F =
3

2
(1− 8πT00/3H2)



Expected Estimates

Linearization of the equations corresponding to Einstein-de Sitter with dust

F = O(t−2)

P = O(t−
2
3 )



Bootstrap assumption

A little worse decay rates then we the ones expect for the interval [t0, t1)

F = AI (1 + t)−
3
2

P = Am(1 + t)−
7
12

Remark:

S

H2
≤ CP2



Estimate of H

∂t(H−1) =
3

2
+ F +

4πS

3H2

Integrating and since t0 = 2
3H−1(t0):

H(t) =
1

3
2 t + I

=
2

3
t−1 1

1 + 2
3 It−1

with

I =

∫ t

t0

(F +
4πS

3H2
)(s)ds

With Bootstrap assumptions

F +
4πS

3H2
≤ ε(1 + t)−

7
6

where ε = C (AI + A2
m). So I is bounded by ε

H =
2

3
t−1(1 + O(t−1))



Estimate of the metric

Define

ḡab = t
4
3 gab

Introduce for technical reason a small γ

d

dt
(t−γ ḡab) ≤ t−γ−1ḡab[−γ +

4

3
+ 2tH(CH2F

1
2 − 1)]



Estimate of P

pa is constant along the geodesics

P(t) ≤ Amt−
2
3
+ζ



Estimate of F

Let us have a look at the evolution equation

Ḟ = −3H[F (1− 2

3
F − 8πS

9H2
)− 4π

3H3
Sabσ

ab]

By a contradiction argument



Estimates

Theorem

Consider any C∞ solution of the Einstein-Vlasov system with Bianchi
I-symmetry and with C∞ initial data. Assume that F (t0) and P(t0) are
sufficiently small. Then at late times the following estimates hold:

H(t) =
2

3
t−1(1 + O(t−1))

F (t) = O(t−2)

P(t) = O(t−
2
3 )



More Results

Previous results: LRS case for Bianchi II: Rendall-Tod (1998) ,
Rendall-Uggla (2000)

New result: Bianchi II and reflection symmetric VI0



Reflection symmetric Bianchi II
The evolution equations are

∂t(H−1) =
3

2
− N2

1

24
+

3

2
(Σ2

+ + Σ2
−) +

4πS

3H2

Σ̇+ = H[
1

3
N2

1 − (3 +
Ḣ

H2
)Σ+ +

4π

3H2
(S2

2 + S3
3 − 2S1

1 )]

Σ̇− = H[−(3 +
Ḣ

H2
)Σ− +

4π√
3H2

(S2
2 − S3

3 )]

Ṅ1 = −N1H(4Σ+ + 1 +
Ḣ

H2
)

and the constraint equation:

Σ2
+ + Σ2

− = 1− Ω− 1

12
N2

1

The Vlasov equation

∂f

∂t
+ (p0)−1p1(p2 ∂f

∂p3
− p3 ∂f

∂p2
) = 0



Conclusions

We have extended the possible initial data which gave us certain
asymptotics

Made a few steps towards the understanding of homogeneous
spacetimes

Bianchi spacetimes and the Vlasov equation are interesting

PDE-techniques are needed to understand cosmology



Outlook

Other Bianchi types? Inhomogeneous cosmologies?

Is it possible to remove the small data assumption(s)?

Direction of the singularity?


