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The informal problem and the PDE translation for
size-structured population

A cell grows.
Depending on its size x , the cell has a certain chance to divide
itself in 2 offsprings, ie 2 cells of size x/2.
We are interesting by the evolution of the whole population of
cells, each of them having this behavior.
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The informal problem and the PDE translation for
size-structured population

A cell grows.
Depending on its size x , the cell has a certain chance to divide
itself in 2 offsprings, ie 2 cells of size x/2.
We are interesting by the evolution of the whole population of
cells, each of them having this behavior.

Size-Structured Population Equation (finite time)










∂

∂t

(

n(t, x)
)

+ κ
∂

∂x

(

g(x)n(t, x)
)

+ B(x)n(t, x) = 4B(2x)n(t, 2x),

n(t, x = 0) = 0, t > 0
n(0, x) = n0(x), x ≥ 0.

n(t, x) the ”amount” of cells with size x (6= density),

g the ”qualitative” growth rate of one cell: linear is g = 1 ...

B is the division rate, which depends on the size
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Asymptotics of the PDE
It can be shown (Perthame Ryzhik 2005 for instance) that

n(t, .) grows exponentially fast ie It =
∫

n(t, x)dx
asymptotically proportional to eλt ,

the renormalized n(t, x)/It tends to a density N, which
satisfies

Size-Structured Population Equation (asymptotics)
{

κ
∂

∂x

(

g(x)N(x)
)

+ λN(x) = L
(

BN
)

(x),

B(0)N(0) = 0,
∫

N(x)dx = 1,

where N step D step κ step L step H step B step

for any real-valued function x  ϕ(x),
L
(

ϕ
)

(x) := 4ϕ(2x) − ϕ(x).

κ = λ

∫
R+

xN(x)dx
∫
R+

g(x)N(x)dx
.
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The inverse problem

Under the previous differential equation, we consider the inverse
problem of finding B given a ”noisy” version of N.
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Under the previous differential equation, we consider the inverse
problem of finding B given a ”noisy” version of N.

Practical: biologists take a sample of, say, plankton in a lake,
and they look at the respective size of the cells. Then they
perform a preprocessing, by, say a kernel estimator. This is
Nǫ. (probably more approximation than that).

Analytical point of view: Nǫ is a noisy version of N, less
regular than N (it is likely that no derivative exists) and
||N − Nǫ||2 ≤ ǫ. (see Perthame, Zubelli, etc)

Statistical point of view: we observe a n-sample X1, ...,Xn of
iid variables with density N.
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Pro and Con

Analytical point of view

Pro: taking into account maybe more approximations (but not all),
results true for any Nǫ.
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Assumptions

1 For the considered nonnegative functions g and B and for
κ > 0, there exists a unique solution (λ, N) of SSPS

2 This solution satisfies, for all p ≥ 0,
∫

xpN(x)dx < ∞ and
0 <

∫

g(x)N(x)dx < ∞.

3 The functions N and gN belong to Ws+1 with s ≥ 1
Ws+1 denotes the Sobolev space of regularity s + 1 measured
in L

2-norm.

4 We have g ∈ L
∞(R+) with R+ = [0,∞).
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1 For the considered nonnegative functions g and B and for
κ > 0, there exists a unique solution (λ, N) of SSPS

2 This solution satisfies, for all p ≥ 0,
∫

xpN(x)dx < ∞ and
0 <

∫

g(x)N(x)dx < ∞.

3 The functions N and gN belong to Ws+1 with s ≥ 1
Ws+1 denotes the Sobolev space of regularity s + 1 measured
in L

2-norm.

4 We have g ∈ L
∞(R+) with R+ = [0,∞).

The statistical methodology is based on kernel rules. Classical
assumptions on kernels are made (not specified in the sequel).
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Estimation of N
Given K a kernel, we set Kh(x) =

1
h
K
(

x
h

)

and

N̂h(x) :=
1

n

n
∑

i=1

Kh(x − Xi)

Bias-Variance decomposition

E

[∥

∥

∥
N − N̂h

∥

∥

∥

2

]

≤ ‖N − Kh ⋆ N‖2 +
1√
nh

‖K‖2,

where Kh ⋆ N = E(N̂h)

For H a family of bandwidths, the ”best choice” is the oracle:

h̄ := argminh∈H
{

‖N − Kh ⋆ N‖2 +
1√
nh

‖K‖2
}

.

How to select the bandwidth h only based on data?

8/28



The problem Goldenshluger and Lepski’s method Other steps Main results Simulations Perspectives and conclusions

Estimation of N
Given K a kernel, we set Kh(x) =

1
h
K
(

x
h

)

and

N̂h(x) :=
1

n

n
∑

i=1

Kh(x − Xi)

Bias-Variance decomposition

E

[∥

∥

∥
N − N̂h

∥

∥

∥

2

]

≤ ‖N − Kh ⋆ N‖2 +
1√
nh

‖K‖2,

where Kh ⋆ N = E(N̂h)

For H a family of bandwidths, the ”best choice” is the oracle:

h̄ := argminh∈H
{

‖N − Kh ⋆ N‖2 +
1√
nh

‖K‖2
}

.

How to select the bandwidth h only based on data? Recent work
of Goldenshluger and Lepski (2009, 2010)!!!

8/28



The problem Goldenshluger and Lepski’s method Other steps Main results Simulations Perspectives and conclusions

Estimation of N
Given K a kernel, we set Kh(x) =

1
h
K
(

x
h

)

and

N̂h(x) :=
1

n

n
∑

i=1

Kh(x − Xi)

Bias-Variance decomposition

E

[∥

∥

∥
N − N̂h

∥

∥

∥

2

]
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nh

‖K‖2,

where Kh ⋆ N = E(N̂h)

For H a family of bandwidths, the ”best choice” is the oracle:

h̄ := argminh∈H
{

‖N − Kh ⋆ N‖2 +
1√
nh

‖K‖2
}

.

How to select the bandwidth h only based on data? Recent work
of Goldenshluger and Lepski (2009, 2010)!!! Here just a ”toy”
version, but that’s exactly what we needed.
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Bandwidth selection by the GL method

SSPE Set for any x and any h, h′ > 0,

N̂h,h′(x) := (Kh ⋆ N̂h′)(x) =
1

n

n
∑

i=1

(Kh ⋆ Kh′)(x − Xi),
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Bandwidth selection by the GL method

SSPE Set for any x and any h, h′ > 0,

N̂h,h′(x) := (Kh ⋆ N̂h′)(x) =
1

n

n
∑

i=1

(Kh ⋆ Kh′)(x − Xi),

”Estimator” of the bias term

A(h) := sup
h′∈H

{

‖N̂h,h′ − N̂h′‖2 −
χ√
nh′

‖K‖2
}

+

where, given ε > 0, χ := (1 + ε)(1 + ‖K‖1).

ĥ := arg min
h∈H

{

A(h) +
χ√
nh

‖K‖2
}

and N̂ := N̂
ĥ
.
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Some explanations for this choice ...

A(h) = sup
h′∈H

{

‖N̂h,h′ − N̂h′‖2 −
χ√
nh′

‖K‖2
}

+

≤ sup
h′∈H

{

‖E(N̂h,h′)− E(N̂h′)‖2
}

+ ζ

where

ζ = sup
h′∈H

{

‖N̂h,h′ − E(N̂h,h′)−
(

N̂h′ − E(N̂h′)
)

‖2 −
χ√
nh′

‖K‖2
}

+

.
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(
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)
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}

+

.

E
(

N̂h,h′(x))−E(N̂h′ (x)
)

=

∫

(Kh⋆Kh′)(x−u)N(u)du−
∫

Kh′(x−v)N(v)dv
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=
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Some explanations for this choice ...

A(h) = sup
h′∈H

{

‖N̂h,h′ − N̂h′‖2 −
χ√
nh′

‖K‖2
}

+

≤ sup
h′∈H

{

‖E(N̂h,h′)− E(N̂h′)‖2
}

+ ζ

where

ζ = sup
h′∈H

{

‖N̂h,h′ − E(N̂h,h′)−
(

N̂h′ − E(N̂h′)
)

‖2 −
χ√
nh′

‖K‖2
}

+

.

‖E(N̂h,h′)− E(N̂h′)‖2 ≤ ‖K‖1‖Kh ⋆ N − N‖2
ζ is a residual controlled by ”Uniform bounds”. It is small
(n−1) if χ is large enough.
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First result

Oracle inequality

If H = {1/ℓ / ℓ = 1, ..., ℓmax} and if ℓmax = δn, if moreover
‖N‖∞ < ∞,
then for any q ≥ 1,

E

(

‖N̂ − N‖2q2
)

≤ �qχ
2q inf

h∈H

{

‖Kh ⋆ N − N‖2q2 +
‖K‖2q2
(hn)q

}

+

�q,ε,δ,‖K‖2,‖K‖1,‖N‖
∞

1

nq
.
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Estimation of D = ∂
∂x

(

g(x)N(x)
)

SSPE
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g(x)N(x)
)

SSPE If K is differentiable,
∫

K = 1 and
∫

|K ′|2 < ∞.

D̂h(x) :=
1

n

n
∑

i=1

g(Xi)K
′
h(x − Xi )
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∫

|K ′|2 < ∞.

D̂h(x) :=
1

n

n
∑

i=1

g(Xi)K
′
h(x − Xi )

Bias-Variance decomposition:

E(
∥

∥

∥
D − D̂h

∥

∥

∥

2
) ≤ ‖D − Kh ⋆ D‖2 + 1√

nh3
‖g‖∞‖K ′‖2.
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)
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∫

K = 1 and
∫

|K ′|2 < ∞.

D̂h(x) :=
1

n

n
∑

i=1

g(Xi)K
′
h(x − Xi )

GL’s trick

D̂h,h′(x) :=
1
n

∑n
i=1 g(Xi )(Kh ⋆ Kh′)

′(x − Xi),

Ã(h) := sup
h′∈H̃

{

‖D̂h,h′ − D̂h′‖2 −
χ̃√
nh′3

‖g‖∞‖K ′‖2
}

+

,

where, given ε̃ > 0, χ̃ := (1 + ε̃)(1 + ‖K‖1).
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Ã(h) := sup
h′∈H̃

{

‖D̂h,h′ − D̂h′‖2 −
χ̃√
nh′3

‖g‖∞‖K ′‖2
}

+

,

where, given ε̃ > 0, χ̃ := (1 + ε̃)(1 + ‖K‖1).

Finally, we estimate D by using D̂ := D̂h̃ with

h̃ := argminh∈H̃

{

Ã(h) +
χ̃√
nh3

‖g‖∞‖K ′‖2
}

.
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Result for the derivative D

Oracle inequality for D

If H̃ = {1/ℓ / ℓ = 1, ..., ℓmax} and if ℓmax =
√
δ′n, if moreover

‖N‖∞ and ‖g‖∞ < ∞, then for any q ≥ 1,

E

(

‖D̂ − D‖2q2
)

≤ �qχ̃
2q inf

h∈H̃

{

‖Kh ⋆D − D‖2q2 +

[‖g‖∞‖K ′‖2√
nh3

]2q
}

+�q,ε̃,δ′,‖K ′‖2,‖K‖1,‖K ′‖1,‖N‖
∞
,‖g‖

∞

1

nq
.
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SSPE λ is estimated via another (or simultaneous experiment).

Assumption on λ̂

There exist some q > 1 such that

ελ = E[|√n(λ̂− λ)|q] < ∞,

Rλ = E(λ̂2q) < ∞.

Let c > 0,

κ̂ = λ̂

∑n
i=1 Xi

∑n
i=1 g(Xi ) + c

.
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The inversion of L
In SSPE , it remains to (approximately) invert L. (see Perthame,
Zubelli, Doumic (2009))
Define T > 0, an integer k ≥ 1 and the regular grid on [0,T ] with
mesh k−1T defined by
0 = x0,k < x1,k < · · · < xi ,k := i

k
T < . . . < xk,k = T .

Set ϕi ,k =: k
T

∫ xi+1,k

xi ,k
ϕ(x)dx for i = 0, . . . , k − 1, and define by

induction the sequence

Hi ,k(ϕ) :=
1

4
(Hi/2,k(ϕ)+ϕi/2,k) with

{

H0(ϕ) :=
1
3ϕ1,k ,

H1(ϕ) :=
4
21ϕ0,k +

1
7ϕ1,k
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(Hi/2,k(ϕ)+ϕi/2,k) with

{

H0(ϕ) :=
1
3ϕ1,k ,

H1(ϕ) :=
4
21ϕ0,k +

1
7ϕ1,k

for any sequence ui , i = 1, 2, . . .,

ui/2 :=

{

ui/2 if i is even
1
2(u(i−1)/2 + u(i+1)/2) otherwise.
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The (approximative) inversion of L
Finally, we define

L−1
k (ϕ)(x) :=

k−1
∑

i=0

Hi ,k(ϕ)1[xi,k ,xi+1,k)(x).

Proposition

L−1
k : L2[0,T ] 7→ L

2[0,T ] is continuous

‖L−1
k (ϕ)− L−1(ϕ)‖2,T ≤ C T√

k
‖ϕ‖W1 , with C < 1√

6
.

We estimate H = BN by

Ĥ = L−1
k (κ̂D̂ + λ̂N̂).

SSPE
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Oracle inequality for the estimation of H = BN

We establish an oracle inequality for H = BN which is true under
all previous assumptions.

Theorem

E

[

∥

∥

∥
Ĥ − H

∥

∥

∥

q

2,T

]

≤ C
{

ED + EN + Eλ + EL + n−
q
2

}
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Ĥ − H

∥

∥

∥

q

2,T

]

≤ C
{

ED + EN + Eλ + EL + n−
q
2

}

with

ED =
√
Rλ infh∈H̃

{

‖Kh ⋆ D − D‖q2 +
(

‖g‖
∞
‖K ′‖2√
nh3

)q}

EN = infh∈H
{

‖Kh ⋆ N − N‖q2 +
(

‖K‖2√
nh
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)q}

EN = infh∈H
{

‖Kh ⋆ N − N‖q2 +
(

‖K‖2√
nh

)q}

Eλ = ελn
− q

2

EL =
(

(‖N‖W1 + ‖gN‖W2) T√
k

)q

SSPS
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Rate of convergence for the estimation of B

here We finally set B̂ = Ĥ/N̂ and B̃ = max(min(B̂,
√
n),−√

n).
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Rate of convergence for the estimation of B

here We finally set B̂ = Ĥ/N̂ and B̃ = max(min(B̂,
√
n),−√

n).
If B ∈ Ws (s > 1/2) and g ∈ Ws+1, then (under suitable
assumptions and enough moments for the kernel) N ∈ Ws+1.

Theorem

one can choose a family of H and H′ independent of s such that
for any compact [a, b] of [0,T ] (under technical assumptions),

E

[
∥

∥

∥
(B̃ − B)1[a,b]

∥

∥

∥

q

2

]

= O
(

n−
qs

2s+3

)

.
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Why is it the good rate?(1)

In the deterministic set-up

we observe Nǫ = N + ǫζ, with ||ζ||2 ≤ 1 and

BN = L−1
(

κ∂x
(

g(x)N(x)
)

+ λN(x)
)

.

Since L−1 is continuous and the recovery of ∂xN is a more
difficult inverse problem than the recovery of N, hence the
ill-posedness is only due to ∂N (degree of ill-posedness =1)

Hence if N ∈ Ws , error in ǫ
s

s+1 .
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Why is it the good rate?(2)

In the n-sample set-up

problem well approximated by Nǫ = N + ǫB with B Gaussian
white noise and ǫ = n−1/2.

B is not in L2 but in W−1/2,

Hence one needs to integrate ie Zǫ = I1/2N + ǫI1/2
B to have

a noise in L2.

Hence Zǫ = I3/2(∂N) + ǫI1/2
B is of degree of ill-posedness

3/2.

Hence if N ∈ Ws , error in ǫ
s

s+3/2 = n−
s

2s+3 .
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Simulations

n=5000, Gaussian kernel, B = 3
√
x , g = 1.
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Exact L(x)=κ d/dx(gN) + λ N
Reconstructed L(x)
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Simulations
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Perspectives

Calibration and numerical optimization of the GL’s method
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Perspectives

Calibration and numerical optimization of the GL’s method

To take into account noise in the measurements: Replace
observations Xi with Xi + Zi

Extensions to fit with a more realistic biological model:
The division law is given by a kernel k(x , y):

... = 2

∫ ∞

x

B(y)k(x , y)n(t, y)dy − B(x)n(t, x),

Division of the cell of size y into 2 cells of size x and y − x with
probability density=k(x , y). Equal mitosis: k(x , y) = δx= y

2
, so

2
∫∞

x
B(y)k(x , y)n(t, y)dy = 4B(2x)n(t, 2x)
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Calibration and numerical optimization of the GL’s method

To take into account noise in the measurements: Replace
observations Xi with Xi + Zi

Extensions to fit with a more realistic biological model:
The division law is given by a kernel k(x , y):

... = 2

∫ ∞

x

B(y)k(x , y)n(t, y)dy − B(x)n(t, x),

Division of the cell of size y into 2 cells of size x and y − x with
probability density=k(x , y). Equal mitosis: k(x , y) = δx= y

2
, so

2
∫∞

x
B(y)k(x , y)n(t, y)dy = 4B(2x)n(t, 2x)

Construct a microscopic stochastic system that matches with
the PDE’s approximation and that take advantage of richer
observation schemes (Probabilistic works in progress studied by
B. Cloez, V. Bansaye, M. Doumic, M. Hoffmann, N. Krell, T.
Lepoutre, L. Robert,...)
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Simulation study with Gaussian kernel
n = 50000, κ = 1, g(x) = 1 and 3 different functions B :

B1(x) = 1
B2(x) = 1x≤1.5 + affine part + 5× 1x≥1.7 (B2 continuous)
B3(x) = exp(−8(x − 2)2) + 1
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Figure: Reconstruction of N (left) and of D (right)
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Simulation study with Gaussian kernel
κ = 1, g(x) = x , B(x) = x2 SSPS
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Simulation study with Gaussian kernel
κ = 1, g(x) = x , B(x) = x2
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Figure: Reconstruction of BN (left) and of B (right)
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