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Objectives

Our concern in this presentation:

pattern formation in reaction diffusion systems near a codimension
two Turing-Hopf bifurcation point.

The travelling wave initiation of time-oscillatory patterns.
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Turing instability in reaction diffusion systems

ut = Du ∆u + f (u, v ; a) (1)

vt = Dv ∆v + g (u, v ; a)

∂u
∂n
=

∂v
∂n
= 0 on ∂Ω (2)

u, v - the profiles of reactant concentrations under diffusion,
(u0, v0) spatially homogeneous steady solution
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Normal modes

Let us consider normal modes of the type

Z (x , t) = exp (σt) Uk (x) R (3)

as non-trivial solutions to the linearized equation

∂Z
∂t
= D ∆Z + Ja Z (4)

where

−∆Uk (x) = λk Uk (x)

∂nUk = 0 on ∂Ω

spatial eigenfunctions associated to the spatial eigenvalues λk ( k ∈N )
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Normal modes

Stability analysis by small disturbances with the form

Z (x , t) =
∞

∑
k=1

exp (σk t) Uk (x) Rk (5)

Ja =
(
jaij
)
be the jacobian matrix

δa = det (Ja) > 0, and τa =trace(Ja)

for each k, σk is an eigenvalue; Rk corresponding eigenvector of
Ek = (Ja − λk D)
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conditions for diffusive instability

linear stable steady state (u0, v0) in an activator-inhibitor (or
positive feedback) system

τa < 0 , δa > 0

so,
τT < 0

τT = trace (Ja − λk D) = τa − λk (Du +Dv ) (6)

and, follows the condition for instability

δT < 0

δT = det (Ja − λk D) = δa − λk (Du j
a
22 +Dv j

a
11) + λ2k DuDv (7)
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parameter space

the boundary
δT = 0

d = Dv/Du
d ja11 + ja22 > 0 (8)

so
d 6= 1.
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representation

Remark
Turing patterns might be represented by the set of positiveness of the
dominant unstable spatial eigenfunction.

steady spatially varying profiles in the reactant concentrations
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Definition of pattern

Turing showed that dissimilar diffusion coeffi cients of the participating
reactants would destabilize the steady state of the reaction kinetics leading
to pattern formation.

The appearance of Turing instabilities about the stable steady state
(τa < 0) is a consequence of algebraic inequalities between the
(reaction and diffusion) parameters. These relations are builded
from Fourier normal modes:

Z (x , t) = exp (σt) Uk (x) R

The ultimate pattern emerges (see Murray’s) due to the boundedness
of the unstable modes by the nonlinear reaction terms in Eq.1

without a nonlinear theory, we have only a presumption about the
ultimate pattern towards which the destabilized solution converges,
which is connected with the dominant unstable mode.
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stationary chemical patterns

P.K. Maini, K.J. Painter and H.N.P. Chau, (1997), Spatial Pattern
Formation in chemical and biological systems, J.Chem.Soc., Faraday
Trans., 93(20), 3601-3610

Figure: Stationary patterns in CIMA

CIMA (chlorite-iodide-malonic acid-starch)
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patterns in chemical reactions

P.K. Maini, K.J. Painter and H.N.P. Chau, (1997), Spatial Pattern
Formation in chemical and biological systems, J.Chem.Soc., Faraday
Trans., 93(20), 3601-3610

Figure: Black-eye pattern
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patterns in morphogenesis

P.K. Maini, R.E. Baker and Cheng-Ming Chuong, (2006), The Turing
Model Comes of Molecular Age, Science 314, 1397-1398 (2006); published
online 1 December 2006 (10.116/science.1136396)
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observed and simulated patterns

R.Erban, H.G. Othmer, (2005), From signal transduction to spatial pattern
formation in E. Coli: a paradigm for multiscale modeling in Biology,
Multiscale Model Simul., 3(2), 362-394

Figure: Spatial patterns arising in E.Coli
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The Hopf bifurcation

{ ·
u = f (u, v ; a)
·
v = g (u, v ; a)

(9)

Pa = (u0 (a) ; v0 (a)) (10)

Ja =
(
jaij
)
be the jacobian matrix of Eq.9

τ2a − 4δa < 0 (11)

δa = det (Ja) > 0, and τa =trace(Ja).
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reduction to a second order oscillator

[M.R. Ricard, On degenerate planar Hopf bifurcations, J. Phys. A: Math.
Theor. 44 (2011) 065202 (15pp)
weakly nonlinear oscillator in normal form:

··
ς− τa

·
ς+ δa ς = ε G

(
ς,
·
ς; ε
)
. (12)

ε- small parameter to be determined later
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subsequent reduction via averaging

(Krylov-Bogoliubov technique)

�
r =

r
2
{τa − p (r ; ε)} (13)

�
θ = q (r ; ε) (14)

considering φ = ωat + θ.

p (r ; ε) =
ε

πωar

2π∫
0

sin φ G (r cos φ,−rωa sin φ; ε) dφ (15)

q (r ; ε) = − ε

2πωar

2π∫
0

cos φ G (r cos φ,−rωa sin φ; ε) dφ . (16)
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properties of the discriminant

p (r ; ε) /r2 and q (r ; ε) /r2 have a finite limit as r → 0.

the Taylor expansions of p (r ; ε) and q (r ; ε) must not contain odd
powers of r , and

p (r ; ε) = p3 ε2r2 + p5 ε4r4 + · · · (17)

in which ps = ps (τa).

The classical perturbation theory gives a uniform O(ε)-estimation for
the difference between the corresponding solutions to the given
system and to the average systems, but only on the time scale 1/ε. In
our scenario, we have that the amplitude of any solution to the given
system starting in the region of attraction of the limit cycle can be
uniformly expanded by the average solution uniformly for t > 0.
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negligible coeffi cients

Definition

Let p2s+1 be a coeffi cient in the formal development Eq.17, which is
derived from the formal ∞-jet of F . It shall be called negligible if satisfying

|p2s+1| ≤ Ks |τa| (18)

for a certain constant Ks > 0 as τa → 0.

Definition
The function p (r ; ε) in Eq.17 is said to be negligible if for all s ∈N the
coeffi cient p2s+1 is negligible.
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Theorem on non-negligible discriminant

Theorem

If the function p (r ; ε) is non-negligible, there must exist a positive integer
N and a positive real value r0 = r0 (τa) such that p (r , ε) has the
non-trivial Taylor expansion:

p (r ; ε) = χ ε2N r−2N0 r2N +O
(

ε2N+2 r2N+2
)

(19)

where χ = +1 or −1. In addition, the behavior of the factor r−2N0 as
τa → 0 obeys the following alternative: either

lim
τa→0

r−2N0 = r−2N∗ > 0 (20)

or, for a given γ, 0 < γ < 1,

r−2N0 = OS
(
|τa|γ

)
as τa → 0 . (21)
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Classifying HB

Definition

We shall say that the HB is first type degenerate if p is negligible. Let N
be given as in Eq.19. The bifurcation shall be called second type
degenerate, if there exists a number γ, 0 < γ < 1, such that

r−2N0 = OS
(
|τa|γ

)
as τa → 0 .

holds. The HB shall be called non-degenerate, provided

lim
τa→0

r−2N0 = r−2N∗ > 0 .
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Amplitude of the limit cycle at non-degenerate HB

Let p (r ; ε) be non-negligible and also, that r0 in Eq.19 has the property in
Eq.20 then, there is a positive root ρ to the discriminant equation

p (r ; ε)− τa = 0 . (22)

Furthermore, up to the leading term, the root to Eq.22 has the form

ρ =

(
|τa|
ε2N

)1/2N

(r∗ +O (|τa|)) +O
(
ε2
)
. (23)

Taking
ε2N = |τa| . (24)

from Eq.24 it follows that Eq.23 can now be written as

ρ = r∗ + O
(
|τa|1/N

)
. (25)
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Amplitude of the limit cycle at second type degenerate HB

If Eq.21 takes place instead of Eq.20, we may proceed similarly as we do
to obtain Eq.24, to get

ε2N = |τa|1−γ . (26)

Moreover, if r−2N0 = rL |τa|γ + o
(
|τa|γ

)
as τa → 0 for a certain positive

number rL, then Eq.23 can be rewritten as

ρ = rL + O
(
|τa|(1−γ)/N

)
. (27)
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The Hopf bifurcation Theorem (N-D)

Theorem (Hopf bifurcation)
Let us assume that Eq.11 holds. Then, one of the following possibilities
arises: (i) (Non-degeneracy at HB) If Eq.22 has a root Eq.25 with the
property Eq.20 for positive (respectively, negative) values of the
bifurcation parameter τa but suffi ciently close to zero then, a single limit
cycle to the former system emerges. Furthermore, the limit cycle is
orbitally asymptotically stable (respect., unstable) if and only if the
bifurcation is supercritical (respect., subcritical). The amplitude of the

emerging cycle is r = OS
(
|τa|1/2N

)
, while the frequency is

v = ωa +O
(
|τa|1/N

)
as τa → 0.
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The Hopf bifurcation Theorem (Deg)

Theorem (Hopf bifurcation)

(ii) (First type degenerate HB) If p negligible, then none of the cycles
surrounding the singular point bifurcate from this point. (iii) (Second
type degenerate HB) If Eq.22 has a root with the property Eq.21 for
suffi ciently close to zero values of the parameter τa, then the emergence
can be assured of at least one limit cycle to the former system, the
amplitude of which has order r = OS

(
|τa|(1−γ)/2N

)
while the frequency

is v = ωa +O
(
|τa|(1−γ)/N

)
as τa → 0.
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classification

the number N corresponds to the considered (2N + 1)-jet, provided
conditions for HB:
behavior
at τa = 0

standard
classification

classification on the basis of C C

weak focus non-degenerate non-degenerate (N = 1) 1

center degenerate
non-degenerate (N > 1)
first type degenerate
second type degenerate

1
0
>1
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oscillatory patterns (hexagonal chemical)

http://hopf.chem.brandeis.edu/yanglingfa/pattern/oscTu/index.html
regular tesselation pattern
hexagonal cells
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Turing-Hopf bifurcation

use to be considered as the overlap of the corresponding regions for
TI and for HB in the parameter space. So, the problem can be
considered near a codimension-two bifurcation point.

we considered the problem starting from the diffusive instabilities
generated by the limit cycle emerging at HB

M.R. Ricard, S. Mischler, Turing instabilities at Hopf bifurcation, J.
Nonlinear Sci., Vol.19, Issue 5 (2009), 467-496
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Turing-Hopf bifurcation

We remark the following differences,

in Turing-Hopf instabilities, the limit cycle is always unstable. This
instability may be weak or strong.

In the first case slight oscillations superpose over a dominant steady
inhomogeneous pattern. In the second, the unstable modes show an
intermittent switching between “complementary” spatial patterns,
producing the effect known as twinkling patterns.

Turing-Hopf instabilities may appear even though the diffusion
coeffi cients are equal, while diffusive instabilities may appear provided
the diffusion coeffi cients are different enough.
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Definition of oscillatory pattern

Diffusive instabilities generated by the limit cycle are often called
Turing-Hopf (TH) instabilities or bifurcations, which eventually result
in time-oscillatory patterns.
The behavior of such TH instabilities is considered “chaotic”by many
authors. The alternative: the system is directed forward steady patterns,
the system oscillates near the steady pattern, the system shows a
twinkling pattern.
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Turing-Hopf instabilities

Now, we may have

τT = τa − λk (Du +Dv ) > 0 (28)

The sign of τT becomes relevant in the study of these instabilitites,
because the supercritical HB happens provided τa > 0.

Consequently, if τT > 0 then the sign of δT is irrelevant, so we would
expect the appearance of TH instabilities even if Du = Dv .

For instance, real or even complex roots with positive real part always
appear if τT > 0, and it would be interesting to study the way in which
the oscillations due to the limit cycle are transferred to the resulting
diffusive instabilities.
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Turing-Hopf instabilities

Let the spatially homogeneous periodic solution

Θ (t) = (u (t) , v (t)) (29)

to Eqs.1 and 2.
Denoting the corresponding perturbations by capital letters we get,

u (t, x) = u (t) + U (t, x)

v (t, x) = v (t) + V (t, x)

The linear stability problem leads to the system with periodic coeffi cients
for the perturbations

∂Z
∂t
= D ∆Z + JΘ (t) Z (30)

where Z (x , t) = (U (t, x) ,V (t, x))T .
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Turing-Hopf instabilities

Substituting the development of Θ we get

JΘ (t) = Ja + τ
1
2N
a J1/2N (t) +O

(
τ
1
N
a

)
where

J1/2N (t) = (κij ) (31)

Let us assume that the solutions to Eq.30

Z = Z0 (t, x) + τ
1
2N
a Z1 (t, x) +O

(
τ
1
N
a

)
. (32)
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extended normal modes

Proposition. Let us assume the existence of a supercritical non-degenerate
HB, and let 0 < τa � 1. Then, the extended normal modes:

Z (x , t) = exp (σt)Uk (x)
{
I + τ

1
2N
a Wk (t) +O

(
τ
1
N
a

)}
R (33)

are asymptotic expansions of solutions to Eq.30, or more exactly, they are
normal modes disturbances corresponding to the spatial eigenvalue λk in
the stability analysis of Θ (t) as a spatially homogeneous solution to Eqs.1
and 2.
The expansion between brackets in Eq.33 is uniform up to the leading
term or can be easily transformed into a uniform one.
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Weak or strong Turing-Hopf instabilities

Definition
Let us assume that the reaction part in Eq.1 admits a supercritical HB and
let 0 < τa � 1. Then, TH instabilities generated by the limit cycle arise if
<e (σ) > 0. We shall call this weak TH instability if there is at least one
real root σ > 0. If the roots are complex conjugated σ = σr ± i σi with
σr > 0, then we shall call it strong TH instability.

(Universidad de La Habana) 06/03/2012 37 / 48



Turing-Hopf instabilities

Theorem

Let λk be a given positive spatial eigenvalue. Assume further that the
reaction system has a limit cycle via an HB. If τT ≤ 0 , δT < 0 then, TH
instabilities appear and they are weak. If τT > 0 instabilities appear and
they are weak provided τ2T − 4δT ≥ 0, while they are strong if
τ2T − 4δT < 0. If the diffusion coeffi cients are equal ( d = 1), or
close enough each other, only strong TH instabilities could appear.
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Turing-Hopf instabilities

So, if instabilities are weak (σ ∈ R+)

Z (x , t) = exp (σt)
{
I + τ

1
2N
a Wk (t) +O

(
τ
1
N
a

)}
Uk (x) R

If the TH instabilities are strong we have

Z (x , t) = exp (σr t)
{
cos ( σi t) Uk (x) +O

(
τ

1
2N
a

)}
R . (34)
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Turing-Hopf instabilities

For strong TH instabilities we would depict the oscillatory pattern by the
set of positiveness of

cos ( σi t) Uk (x) (35)

oscillating with the frequency σi =
√

δT − τ2T /4, which is different from
the frequency of the limit cycle.
While strong instabilities are featured by an intermittent switching
between the inhomogeneous pattern, represented by the set of positiveness
of the spatial eigenfunction, with its “complementary pattern”,
represented by the set of negativeness of the eigenfunction. The frequency
of these oscillations are different from the frequency of the cycle.

(Universidad de La Habana) 06/03/2012 40 / 48



Scaling

We recall that in a practical problem a length scale is selected (for
instance, S = (diffusivity× time scale)1/2) and the spatial eigenvalues
depend on the nondimensional size of it. It can be noted that the relation
λkL2 = λ̂k L̂2 holds if λk and λ̂k are the spatial eigenvalues for two similar
domains with nondimensional characteristic lengths L and L̂ respectively.
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conditions for twinkling patterns

If we have an appropriate nondimensional characteristic length in Ω, the
lowest positive spatial eigenvalue λ1 would be so small that τT > 0. If in
addition τ2T − 4δT < 0 holds, then TH instabilities associated with this
eigenvalue induce a “twinkling”pattern.
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presumptions from the linear theory

TH spatially inhomogeneous patterns based on the extended modes near a
codimension-2 TH point (i.e., laying at the intersection of the manifolds
τa = 0 , and δT = 0), and recalling that τa > 0.
Case THI type expected

patterns
1 τT ≤ 0 , δT < 0 , weak SO
2 τT > 0 , δT ≤ 0 , weak SO
3 τT > 0 , 0 < δT < τ2T /4 , weak steady or SO
4 τT > 0 , δT = τ2T /4 , weak SO
5 τT > 0 , δT > τ2T /4 , strong twinkling

( SO- slightly oscillatory )
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and phase

rt =
r
2
{τa − p (r ; τa)}+

1
2ωa
{(Du −Dv ) ja11 (2∇r · ∇θ + r∆θ)(36)

+ωaDv
(

∆r − r ‖∇θ‖2
)}

,

θt = q (r ; τa) +
1

2ωar

{
(Du −Dv ) ja11

(
−∆r + r ‖∇θ‖2

)
(37)

+ωaDv (2∇r · ∇θ + r∆θ)} .
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the case

Du = Dv
takes the λ-ω normal form:

rt =
r
2
{τa − p (r ; τa)}+

D̂
2

(
∆r − r ‖∇θ‖2

)
(38)

θt = q (r ; τa) +
D̂
2
r−2 ∇ ·

(
r2 ∇θ

)
.
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equal diffusivities

|θx | is negligible with respect to the O (τa) terms, because
|θx | = O (τa/c) as τa → 0,

1/c is another small parameter to be considered.

Then, up to main terms, we arrive to the following uncoupled system

rt =
τa
2
r
{
1 − r−2N0 r2N

}
+
D̂
2

∆r (39)

θt = q (r ; τa) , (40)
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Conclusions

Many different oscillatory patterns may appear in presence of Turing-Hopf
instability. If Du and Dv are close, we may expect strongly time oscillatory
patterns. The way of propagation of such bifurcations is given by a
travelling wave
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