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Smoluchowski's mean-field model

Motivation: (Smoluchowski, Z. phys. Chemie, 1917)
Coagulation in homogeneous colloidal gold solution

Setting

o Uniformly distributed particles
0 £ €(0,00): particle size
o g(&): number density of {-clusters

Assumptions

o binary coagulation
o Coagulation rate K(z.n)
K(E.e(©)e) ‘:

with rate kernel K )+ " 5]



Smoluchowski’s coagulation equation

Rate equation:

13
deg(t, &) =1 /o K(&—n,n)g(§—n)g(n) dn
() [ " K& m)atn) dn

Smoluchowski (1917): K = const.: explicit solutions; comparison
with experiment “essentially satisfactory”



Smoluchowski's classical kernel

Assumptions

o Clusters move independently by Brownian motion

o Adsorption if clusters come close

K(fu ,'7) — (51/3 + ,'71/3) (571/3 + 7771/3)

where

51/3 ~ Cluster radius

§*1/3 ~ Diffusion constant




Further examples: soot agglomeration

40 micron

K(&,n) = (€3 + 9 )2 (e + )2

free molecular kernel (Mulholland et al '88)



Polymers (Flory & Stockmayer)

N

4-mer

1-unit

Rate kernel
o &-mer has & + 2 free A-atoms
o m-mer has (£ 4 2)(n + 2) possibilites to join £&-mer

K(En) =(E+2)(n+2)~&n




Example: schooling of fish

K(&,n) = Enel/sel/n

(Niwa '98)



Example: particles in a shear flow

T3

o o

dzy

K(&,m) = U3 +n'3)° J




Extensions

o Fragmentation (linear or nonlinear)
o Diffusion of clusters
o Transport (e.g. particles in a flow)

o Kinetic coalescence
(additional characterization by momentum)

o Condensation; evaporation
o Friction

o Maximal admissible mass

Today:

o only pure coagulation



Well-posedness of the initial value problem

£
Drg(t.) = 1 /0 K(e—n.me(t n)a(t, &) dn
g(t.6) /0 K (€ me(t.n) di
g(0,8) = go(¢)

Goal:

o Given go >0, go € L}(0,00) there exists a unique nonnegative
solution for all times

Bounded Kernels:

o follows via standard fixed point argument



Well-posedness for unbounded kernels

Problem:

o Integral operators do not map subsets of spaces into itself, e.g.
if g(t,-) € L1(0,00) then in general K(¢,-)g(t,-) ¢ L1(0,00)

Strategy: [White '80, Ball & Carr '92, Norris '01, Laurencot & Mischler '02,

Fournier & Laurencot '06]

o For cut-off kernel K obtain solutions g”

©

Derive uniform moment and equiintegrability estimates for g”
= subsequence converges weakly in L1

©

pass to limit in the equation

o Uniqueness via contraction argument for integrated density



Further properties of solutions
Moment identity
da / T (O
2/°{/ (M) [(&+n) = (&) = ()] dg dn

(Formal) consequence

- | et de = m(0)
However: e.g. K(&,n) = &n, assume My(t) =1, then
—My(t) = —= = Mp(t) <0 for t > 2Mp(0)

Something must be wrong!



Failure of mass conservation: Gelation

Superlinear growth:

If K grows sufficiently fast, e.g. if K is homogeneneous of degree
~ > 1, then mass is not conserved for all times, i.e. 3t, < co with

/ cg(t,€) de = / cg(0,6)de  fort e [0,t.]
0 0

/ ¢g(t,&)d¢ strictly decreases for t > t,
0

i.e. clusters of infinite size are created in finite time

(McLeod '62, Leyvraz & Tschudi '81, Carr & Da Costa '92, Jeon '98, Norris
'00, Escobedo & Mischler & Perthame '03)



Gelation in polymers

Polymer chemistry

o Gelation: change
from sol to gel

o typically abrupt
change in viscosity
= gelation point
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Mass conservation

Suppose K homogeneous of degree v € R, i.e.

K(c&, en) = c7K(& ) forall c,§,n >0

Mass conservation

If v <1and [5°&go(€) d€ < oo then

o o]
/ £g(t,€) d¢ =/ €go(€)de  forall t >0
0 0
(Ball & Carr '90, Laurencot & Mischler '02)

From now on: K homogeneous with degree v <1



Scaling

Main aspects

o Mass goes into larger and larger clusters
o Entirely dynamical problem, no equilibrium
Question

o Is there a dynamic equilibrium, i.e. a solution that becomes
stationary after a similarity transformation?

time
!
|
| |

unscaled scaled



In other words

Expectation
There exist self-similar solutions of the form

() = =(0°F (55

for a scaling s(t) and a self-similar profile f
Convergence to self-similar form
s(t)“g(t,s(t)x) — f(x) as t — 0o
Questions

Do such solutions exist?
Are they stable? What are their domains of attraction?



Solvable kernels

Scaling hypothesis well understood for

o The constant kernel

K(&m) =2
o The additive kernel
K(&mn) =&+n
o The multiplicative kernel
K(&mn) =&n

Today exclusively

o solutions with finite mass



The constant kernel K =2

Explicit self-similar solution

f(x)=e™*

Domains of attraction (Menon & Pego '04)
There exists a scaling function s(t) such that the rescaled solution
to the coagulation equation converges to f if and only if the data

g(0, -) satisfy
X
/ yg(0,y) dy ~ L(x) for a slowly varying L.
0
Remarks:

o L(x) — oo as x — oo possible, e.g. L(x) =Inx

o Proof based on Laplace transform



Non-solvable kernels

The case v < 1:

o Existence and properties of self-similar profile with finite mass
(Fournier-Laurencot '05,"06; Escobedo-Mischler-Ricard '05,’06;
Mischler-Canizo '11, N.-Veldzquez '11)

Recent progress:
o Uniqueness for K(&,n) = (£n)™% (Laurengot '18)
o Uniqueness for kernels close to constant (N.-Throm-Vel. '15)

o Domains of attraction for diagonal kernel (Laurencot-N.-Vel. '18)
Open:
o General uniqueness

o Domains of attraction of self-similar profiles

The case v = 1:
o Only the case K(§,n) = & + 1 has been considered



The borderline case: v = 1:

Two different cases
(van-Dongen & Ernst '88)

Class Il: Class I:
lim K(¢,1) =1 : _
€0 E"_TPO K(£1)=0
Examples: Examples:
K(&m) =&+ K(&n) = (¢n)'/?

K(&m) = (€3 +n/?)° K(&m) = €20ey




A change of variables

Original equation: conservative form

outee(e.9) = ~oc( [ [ KO Cmatene(e.c)dcan).

New variables

§= eX7 u(t,x) = €2g(t7§)

Equation in new variables

et = —ax(/ / K(e~2,1)u(t, y)u(t, z) dz dy>
—00 J x+ log(1—ey—x)

Note:

M = /OOO Eg(t,&)dg = /Z u(t, x) dx = const.



Special solutions
Ansatz: u(t,x) = G(x — bt)

b= [ [ KETDEGE) by

0
:/ / K(e"%,1)G(x + y)G(x + 2) dz dy
—oo JIn(1—eY)

Hence:

o Self-similar solutions in variable £ with finite mass correspond
to traveling waves in variable x with finite integral



Formal considerations

Note
0 o)
y—z =oo Class Il
/oo /|n(1ey) K(e?™, 1) dzdy { <oo Class |

First conclusions:

o Class Il: self-similar solutions with finite mass can exist
(Bonacini-N.-Veldzquez '17)
o Class I: Formal asymptotics
(0.0
G(x) = G_oo >0 as x — —00 = / G(x) dx = o0
—00

Consequence: Solutions with finite mass cannot exist.

What happens for solutions with integrable data in the
long-time limit?



Long-time behaviour

Recall evolution equation

0 00
Oru = —0y (/ / K(e’ %, 1)u(t, y+x)u(t, z+x) dz dy)
—o0 Jlog(l—eY)

and -
/ u(t, x) dx = const.
Rescaling:
- 1 /7 X
us (7, %) = gu<€—2, g>
Result:
0 oo K ey;Z,l
Oru; = —8;( , %ue(%—i—y)ug()?—i—z) dz dy)
—oo Jeln (lfeE) €



The inviscid Burgers equation

Burgers equation; positive data with finite mass

2
Deu + ax(%) =0  and / u(0,x) dx = M
R

If u(0,-) >0, then u converges to the N-wave

u(t, x) ~ 7 N(2=; M) with ~ N(x; M) = %X[sz}(x)

ﬂ*

Riemann data: convergence to a traveling wave

Conjecture:

o Solutions to coagulation equation display the same long-time
behaviour



Special case: K(&,n) = £20¢,,

Equation:
dru(t,x) = u(t,x—1)% — u(t,x)?

Consider first:

u(t) = ui_y — u7, JEZ
Integrable data: If uJ(-) >0 and Zj uj(.’ = M, then
Z ‘uj(t — ﬁ; )‘ —0

as t — oo, with the N-wave N(x; M) = %X[o,wm(x)



Numerical simulations for diagonal kernel

Integrable data

time = 0.0 time = 50.0 time = 5000.0
0.126f & 0.093 0.014
0.063}| , 0.047¢| 2 0.007
0,000 0.0001¢ 0.000 -
0 150 0 iE 0 150
.
Riemann data
time = 0.0 time = 10.0 time = 50.0
1.0fees 1.0[ecsessesce, 1.0 ",
.
05 05 05
.
00| 00| 0.0 eee
0 50 0 50 0 50



Family of lattices

Equation with diagonal kernel
deu(t,x) = u(t,x—1)% — u(t,x)?
Reduction: suffices to study u(t, n+ ) with 6 € [0, 1)

We have ) Lo
u(t,n+0) ~ WN(T; M(e))

= oscillatory behaviour for nonconstant M(#):

u(t, X) M(6)




A family of Class | kernels

Family of kernels:

Ka(&,n) = cal®n®(E+0)' 2, a>0

Simulations K(x,1-X) versus x
Lo 6.0 a=0.10
o initial data: smooth a=2.00
with compact support
° Snapshots of the L e
evolution for different ool —_ T~

values of « 0.0 0.5



Results of simulations: small and moderate «

t=1.0, a=8.0 t=20.0, a=8.0 t=40.0, @=8.0
0.25| 0.07] 0.05]
0.00 0.00 0.00
0 20 40 0 20 40 0 20 40
t=5.0, a=1.2 t=30.0, a=1.2 t=65.0, a=1.2
0.17] 0.08| 0.05]
0.00| 0.00] i 0.00
0 30 60 0 30 60 0 30 60
t=20.0, a=0.6 t=50.0, a=0.6 t=200.0, a=0.6
0.12 0.08| 0.03]
0.00 0.00! 0.00!

60 120 0 60 120

o
o
S
-
Y]
S



Traveling waves

a=10.0 a=2.00
1.0 1.2
0 25 50 0 25 50
a=0.50 a=0.01
2.0 2.6
0 25 50 0 25 50

o Detailed asymptotics of waves (N.-Veldzquez

'18)



First conclusions

Formal asymptotics and simulations suggest

Oscillations
o For small « there are traveling waves with oscillations in front
of the shock
o For moderate «, there are monotone traveling waves

o For kernels with very large a: unclear

Instabilities
o For small « the constant solution (and probably the traveling
wave) is linearly stable
o For large « the constant solution (and probably the traveling
wave) is unstable



Instabilities for kernels close to diagonal

a=70.0, time=0.0

a=70.0, time=2.2

a=70.0, time=4.3

0.798 0.220 0.173]
0.000 0.000 0.000¢

10 20 10 20 10 20

a=70.0, time=6.5 a=70.0, time=8.7 a=70.0, time=10.8

0.155| 0.143] 0.139
0.000 0.000 0.000¢

10 20 10 20 10 20
Conjecture:

o Evolutions towards peak solutions




Summary on Class | kernels

Conjectures

Qo

Integrable data; a not
too large = J ~Int
Convergence to
N-wave

For small « profile
governed by
oscillating traveling
wave

Instability of constant solutions for large o suggests that in
this case there is no convergence to N-wave

Simulations suggest evolution into peaks

Corresponding result for v < 1 is work in progress



Summary

Smoluchowski’s coagulation equation

o Mass conservation vs gelation

Self-similar long-time behaviour
o Solvable kernels understood

o Mostly open for all other kernels

General expectation:

o convergence to self-similar form

Our conjecture:

o In general not true if the kernel concentrates on the diagonal



