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Mass aggregation phenomena

Stars
Smog formation

Nanostructures



Smoluchowski’s mean-field model

Motivation: (Smoluchowski, Z. phys. Chemie, 1917)

Coagulation in homogeneous colloidal gold solution

Setting

Uniformly distributed particles

ξ ∈ (0,∞): particle size

g(ξ): number density of ξ-clusters

Assumptions

binary coagulation

Coagulation rate

K (ξ, η)g(ξ)g(η)

with rate kernel K
η

ξ

ξ η

ξ η

ξ η ξ η
ξ η



Smoluchowski’s coagulation equation

Rate equation:

∂tg(t, ξ) = 1
2

∫ ξ

0
K (ξ−η, η)g(ξ−η)g(η) dη

− g(ξ)

∫ ∞
0

K (ξ, η)g(η) dη

Smoluchowski (1917): K ≡ const.: explicit solutions; comparison
with experiment “essentially satisfactory”



Smoluchowski’s classical kernel

Assumptions

Clusters move independently by Brownian motion

Adsorption if clusters come close

K (ξ, η) =
(
ξ1/3 + η1/3

)(
ξ−1/3 + η−1/3

)
where

ξ1/3 ∼ Cluster radius

ξ−1/3 ∼ Diffusion constant



Further examples: soot agglomeration

K (ξ, η) =
(
ξ1/3 + η1/3

)2(
ξ−1 + η−1

)1/2
free molecular kernel (Mulholland et al ’88)



Polymers (Flory & Stockmayer)

1-unit

=⇒

4-mer

Rate kernel

ξ-mer has ξ + 2 free A-atoms

η-mer has (ξ + 2)(η + 2) possibilites to join ξ-mer

K (ξ, η) = (ξ + 2)(η + 2) ∼ ξη



Example: schooling of fish

K (ξ, η) = ξηe1/ξe1/η

(Niwa ’98)



Example: particles in a shear flow

K (ξ, η) = U
(
ξ1/3 + η1/3

)3



Extensions

Fragmentation (linear or nonlinear)

Diffusion of clusters

Transport (e.g. particles in a flow)

Kinetic coalescence
(additional characterization by momentum)

Condensation; evaporation

Friction

Maximal admissible mass

.....

Today:

only pure coagulation



Well-posedness of the initial value problem

∂tg(t, ξ) = 1
2

∫ ξ

0
K (ξ−η, η)g(t, η)g(t, ξ−η) dη

− g(t, ξ)

∫ ∞
0

K (ξ, η)g(t, η) dη

g(0, ξ) = g0(ξ)

Goal:

Given g0 ≥ 0, g0 ∈ L1(0,∞) there exists a unique nonnegative
solution for all times

Bounded Kernels:

follows via standard fixed point argument



Well-posedness for unbounded kernels

Problem:

Integral operators do not map subsets of spaces into itself, e.g.
if g(t, ·) ∈ L1(0,∞) then in general K (ξ, ·)g(t, ·) /∈ L1(0,∞)

Strategy: [White ’80, Ball & Carr ’92, Norris ’01, Laurençot & Mischler ’02,

Fournier & Laurençot ’06]

For cut-off kernel Kn obtain solutions gn

Derive uniform moment and equiintegrability estimates for gn

⇒ subsequence converges weakly in L1

pass to limit in the equation

Uniqueness via contraction argument for integrated density



Further properties of solutions

Moment identity

d

dt

∫ ∞
0

ψ(ξ)g(t, ξ) dξ

= 1
2

∫ ∞
0

∫ ∞
0

K (ξ, η)g(ξ)g(η)
[
ψ(ξ+η)− ψ(ξ)− ψ(η)

]
dξ dη

(Formal) consequence

M1(t) =

∫ ∞
0

ξg(t, ξ) dξ = M1(0)

However: e.g. K (ξ, η) = ξη, assume M1(t) = 1, then

d

dt
M0(t) = −1

2
⇒ M0(t) < 0 for t > 2M0(0)

Something must be wrong!



Failure of mass conservation: Gelation

Superlinear growth:
If K grows sufficiently fast, e.g. if K is homogeneneous of degree
γ > 1, then mass is not conserved for all times, i.e. ∃t∗ <∞ with

∫ ∞
0

ξg(t, ξ) dξ =

∫ ∞
0

ξg(0, ξ) dξ for t ∈ [0, t∗]∫ ∞
0

ξg(t, ξ) dξ strictly decreases for t > t∗

i.e. clusters of infinite size are created in finite time

(McLeod ’62, Leyvraz & Tschudi ’81, Carr & Da Costa ’92, Jeon ’98, Norris

’00, Escobedo & Mischler & Perthame ’03)



Gelation in polymers

Polymer chemistry

Gelation: change
from sol to gel

typically abrupt
change in viscosity
⇒ gelation point



Mass conservation

Suppose K homogeneous of degree γ ∈ R, i.e.

K (cξ, cη) = cγK (ξ, η) for all c , ξ, η > 0

Mass conservation

If γ ≤ 1 and
∫∞
0 ξg0(ξ) dξ <∞ then∫ ∞

0
ξg(t, ξ) dξ =

∫ ∞
0

ξg0(ξ) dξ for all t > 0

(Ball & Carr ’90, Laurençot & Mischler ’02)

From now on: K homogeneous with degree γ ≤ 1



Scaling

Main aspects

Mass goes into larger and larger clusters

Entirely dynamical problem, no equilibrium

Question

Is there a dynamic equilibrium, i.e. a solution that becomes
stationary after a similarity transformation?

unscaled scaled



In other words

Expectation

• There exist self-similar solutions of the form

g(t, ξ) = s(t)−αf
( ξ

s(t)

)
for a scaling s(t) and a self-similar profile f

• Convergence to self-similar form

s(t)αg(t, s(t)x)→ f (x) as t →∞

Questions

• Do such solutions exist?

• Are they stable? What are their domains of attraction?



Solvable kernels

Scaling hypothesis well understood for

The constant kernel
K (ξ, η) ≡ 2

The additive kernel

K (ξ, η) = ξ + η

The multiplicative kernel

K (ξ, η) = ξη

Today exclusively

solutions with finite mass



The constant kernel K ≡ 2

Explicit self-similar solution

f (x) = e−x

Domains of attraction (Menon & Pego ’04)
There exists a scaling function s(t) such that the rescaled solution
to the coagulation equation converges to f if and only if the data
g(0, ·) satisfy∫ x

0
yg(0, y) dy ∼ L(x) for a slowly varying L.

Remarks:

L(x)→∞ as x →∞ possible, e.g. L(x) = ln x

Proof based on Laplace transform



Non-solvable kernels

The case γ < 1:

Existence and properties of self-similar profile with finite mass
(Fournier-Laurençot ’05,’06; Escobedo-Mischler-Ricard ’05,’06;

Mischler-Canizo ’11, N.-Velázquez ’11)

Recent progress:

Uniqueness for K (ξ, η) = (ξη)−α (Laurençot ’18)

Uniqueness for kernels close to constant (N.-Throm-Vel. ’15)

Domains of attraction for diagonal kernel (Laurençot-N.-Vel. ’18)

Open:

General uniqueness

Domains of attraction of self-similar profiles

The case γ = 1:

Only the case K (ξ, η) = ξ + η has been considered



The borderline case: γ = 1:

Two different cases
(van-Dongen & Ernst ’88)

Class II:

lim
ξ→0

K (ξ, 1) = 1

Examples:

K (ξ, η) = ξ + η

K (ξ, η) =
(
ξ1/3 + η1/3

)3

Class I:

lim
ξ→0

K (ξ, 1) = 0

Examples:

K (ξ, η) = (ξη)1/2

K (ξ, η) = ξ2δξ−η



A change of variables

Original equation: conservative form

∂t
(
ξg(t, ξ)

)
= −∂ξ

(∫ ξ

0

∫ ∞
ξ−η

K (η, ζ)ηg(t, η)g(t, ζ) dζ dη
)
.

New variables

ξ = ex , u(t, x) = ξ2g(t, ξ)

Equation in new variables

∂tu = −∂x
(∫ x

−∞

∫ ∞
x+ log(1−ey−x )

K (ey−z , 1)u(t, y)u(t, z) dz dy
)

Note:

M :=

∫ ∞
0

ξg(t, ξ) dξ =

∫ ∞
−∞

u(t, x) dx = const.



Special solutions

Ansatz: u(t, x) = G (x − bt)

bG (x) =

∫ x

−∞

∫ ∞
x+ln(1−ey−x )

K (ey−z , 1)G (y)G (z) dz dy

=

∫ 0

−∞

∫
ln(1−ey )

K (ey−z , 1)G (x + y)G (x + z) dz dy

Hence:

Self-similar solutions in variable ξ with finite mass correspond
to traveling waves in variable x with finite integral



Formal considerations

Note ∫ 0

−∞

∫ ∞
ln(1−ey )

K (ey−z , 1) dz dy

{
=∞ Class II
<∞ Class I

First conclusions:

Class II: self-similar solutions with finite mass can exist
(Bonacini-N.-Velázquez ’17)

Class I: Formal asymptotics

G (x)→ G−∞ > 0 as x → −∞ ⇒
∫ ∞
−∞

G (x) dx =∞

Consequence: Solutions with finite mass cannot exist.

What happens for solutions with integrable data in the
long-time limit?



Long-time behaviour

Recall evolution equation

∂tu = −∂x
(∫ 0

−∞

∫ ∞
log(1−ey )

K (ey−z , 1)u(t, y+x)u(t, z+x) dz dy
)

and ∫ ∞
−∞

u(t, x) dx = const.

Rescaling:

uε(τ, x̃) =
1

ε
u
( τ
ε2
,
x̃

ε

)
Result:

∂τuε = −∂x̃
(∫ 0

−∞

∫ ∞
ε ln
(
1−e

y
ε

) K(e y−z
ε , 1

)
ε2

uε(x̃+y)uε(x̃+z) dz dy
)

≈ −c0∂x̃
(
uε(x̃)2

)
,



The inviscid Burgers equation

Burgers equation; positive data with finite mass

∂tu + ∂x

(u2
2

)
= 0 and

∫
R
u(0, x) dx = M

If u(0, ·) ≥ 0, then u converges to the N-wave

u(t, x) ∼ 1√
t
N
(

x√
t
;M
)

with N(x ;M) =
x

2
χ[0,2

√
M](x)

Riemann data: convergence to a traveling wave

Conjecture:

Solutions to coagulation equation display the same long-time
behaviour



Special case: K (ξ, η) = ξ2δξ−η

Equation:
∂tu(t, x) = u(t, x−1)2 − u(t, x)2

Consider first:

u̇j(t) = u2j−1 − u2j , j ∈ Z

Integrable data: If u0j ≥ 0 and
∑

j u
0
j = M, then

∑
j

∣∣∣uj(t)− 1√
t
N
( j√

t
;M
)∣∣∣→ 0

as t →∞, with the N-wave N(x ;M) = x
2χ[0,2

√
M](x)



Numerical simulations for diagonal kernel

Integrable data
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Family of lattices

Equation with diagonal kernel

∂tu(t, x) = u(t, x−1)2 − u(t, x)2

Reduction: suffices to study u(t, n + θ) with θ ∈ [0, 1)

We have

u(t, n + θ) ∼ 1√
t
N
(n + θ√

t
;M(θ)

)
⇒ oscillatory behaviour for nonconstant M(θ):

✓

M(✓)

X

u(t,X)



A family of Class I kernels

Family of kernels:

Kα(ξ, η) = cαξ
αηα

(
ξ + η)1−2α , α > 0

Simulations

initial data: smooth
with compact support

Snapshots of the
evolution for different
values of α 0.0 0.5 1.0

0.0

6.0

1.0

K(x,1-x) versus x
α=0.10
α=2.00
α=25.0



Results of simulations: small and moderate α

20 400

0.25

0.00

t=1.0, α=8.0

20 400

0.07

0.00

t=20.0, α=8.0

20 400

0.05

0.00

t=40.0, α=8.0

30 600

0.17

0.00

t=5.0, α=1.2

30 600

0.08

0.00

t=30.0, α=1.2

30 600

0.05

0.00

t=65.0, α=1.2

120600

0.12

0.00

t=20.0, α=0.6

120600

0.08

0.00

t=50.0, α=0.6

120600

0.03

0.00

t=200.0, α=0.6



Traveling waves

25 500

1.0
α=10.0

25 500

1.2
α=2.00

25 500

2.0
α=0.50

25 500

2.6
α=0.01

Detailed asymptotics of waves (N.-Velázquez ’18)



First conclusions

Formal asymptotics and simulations suggest

Oscillations

For small α there are traveling waves with oscillations in front
of the shock

For moderate α, there are monotone traveling waves

For kernels with very large α: unclear

Instabilities

For small α the constant solution (and probably the traveling
wave) is linearly stable

For large α the constant solution (and probably the traveling
wave) is unstable



Instabilities for kernels close to diagonal

10 200
0.000

0.798
α=70.0, time=0.0

10 200
0.000

0.220
α=70.0, time=2.2

10 200
0.000

0.173
α=70.0, time=4.3

10 200
0.000

0.155
α=70.0, time=6.5

10 200
0.000

0.143
α=70.0, time=8.7

10 200
0.000

0.139
α=70.0, time=10.8

Conjecture:

Evolutions towards peak solutions



Summary on Class I kernels

Conjectures

Integrable data; α not
too large ⇒
Convergence to
N-wave

For small α profile
governed by
oscillating traveling
wave

⇠
p
t

⇠ 1/
p
t

⇠ ln t

⇠ 1/
p
t

class I

Instability of constant solutions for large α suggests that in
this case there is no convergence to N-wave

Simulations suggest evolution into peaks

Corresponding result for γ < 1 is work in progress



Summary

Smoluchowski’s coagulation equation

Mass conservation vs gelation

Self-similar long-time behaviour

Solvable kernels understood

Mostly open for all other kernels

General expectation:

convergence to self-similar form

Our conjecture:

In general not true if the kernel concentrates on the diagonal


