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Lectures 1-2

.
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Clustering

Partition the data into meaningful groups.

.
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Graph-Based Clustering

Determine a similarity measure between images

Construct a graph based on the similarity measure.

.
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Graph-Based Clustering

Determine a similarity measure between images

Construct a graph based on the similarity measure.

Partition the graph

.
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From point clouds to graphs

Let V = {X1, . . . ,Xn} be a point cloud in Rd :

Xi

Xj

Connect nearby vertices: Edge weights Wi,j .

.
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From point clouds to graphs

Let V = {X1, . . . ,Xn} be a point cloud in Rd :
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From point clouds to graphs

Let V = {X1, . . . ,Xn} be a point cloud in Rd :

Xi

Xj

Wi,j

Connect nearby vertices: Edge weights Wi,j .
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Graph cut

Let V = {X1, . . . ,Xn} be a point cloud in Rd :

Xi

Xj

Wi,j
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A Ac

Connect nearby vertices: Edge weights Wi,j

Graph Cut: A ⊂ V .

Cut(A,Ac) =
∑
i∈A

∑
j∈Ac

Wi,j .

.
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Let V = {X1, . . . ,Xn} be a point cloud in Rd :

hhhhhh
hhhhhh
hhhhhh
hhhhhh

Connect nearby vertices: Edge weights Wi,j

Minimize: A ⊂ V .

Cut(A,Ac) =
∑
i∈A

∑
j∈Ac

Wi,j .
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Let V = {X1, . . . ,Xn} be a point cloud in Rd :
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A Ac

Graph Cut: A ⊂ V .

Cut(A,Ac) =
∑
i∈A

∑
j∈Ac

Wi,j .

Cheeger Cut: Minimize

GC(A) =
Cut(A,Ac)

min{|A|, |Ac|}
.

.
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Graph Constructions

proximity based graphs

Wi,j = η(Xi − Xj)

η

L

η

L

kNN graphs: Connect each vertex with its k nearest neighbors

.
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Task

Minimize GC(A) =

∑
i∈A
∑

j∈Ac Wi,j

min{|A|, |Ac|}

.
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Task

Minimize GC(A) =

∑
i∈A
∑

j∈Ac Wi,j

min{|A|, |Ac|}

Algorithm of Bresson, Laurent, Uminsky and von Brecht (2013).
.
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Graph Total Variation

Graph total variation

For a function u : V → R

GTVn(u) =
1
n2

∑
i,j

Wi,j |ui − uj |

where ui = u(Xi).

Note that for a set of vertices A ⊂ V

GTVn(χA) =
1
n2 Cut(A,Ac)

where χA is the characteristic function of A

χA(Xi) =

{
1 if Xi ∈ A

0 otherwise.

.
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Relaxed Problem

GTVn(u) =
1
n2

∑
i,j

Wi,j |ui − uj |.

Balance term
Bn(u) =

1
n

min
c∈R

∑
i

|ui − c|

Bn(χA) =
1
n

min{|A|, |Ac|}.Note that

Relaxed problem

Minimize GCn(u) =
GTVn(u)

Bn(u)

Theorem
Relaxation is exact: There exists a set of vertices An such that un = χAn

minimizes GCn.
.
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Relaxation is sharp

GTVn(u) = 1
n2

∑
i,j Wi,j |ui − uj |, Bn(u) = 1

n minc∈R
∑

i |ui − c|.

Minimize GCn(u) =
GTVn(u)

Bn(u)

Assume u : V → [0, 1]. Then u(x) =
∫ 1

0 χ{u≥λ}(x)dλ.

Coarea formula: GTVn(u) =
∫ 1

0 GTVn(χ{u≥λ})dλ.

Convexity Bn(u) ≤
∫ 1

0 Bn(χ{u≥λ})dλ

If u is a minimizer then for all λ

GTVn(χ{u≥λ})

Bn(χ{u≥λ})
≥ GTVn(u) ≥

∫ 1
0 GTVn(χ{u≥λ})dλ∫ 1

0 Bn(χ{u≥λ})dλ
.

Thus {u ≥ λ} minimizes the Cheeger cut for a.e. λ.

.
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Ground Truth Assumption

Assume points X1,X2, . . . , are drawn i.i.d out of measure dν = ρdx

.
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Consistency of Cheeger cut clustering

Consistency of clustering

Do the minimizers of

GC(A) =

∑
i∈A
∑

j∈Ac Wi,j

min{|A|, |Ac|}

converge as the number of data points n→∞?
Can one characterize the limiting object as a minimizer of a continuum
functional?

.
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Localizing the kernel

Localizing the kernel as n→∞

ηε(z) =
1
εd η

(z
ε

)
.

Cheeger Cut

GCn,εn (un) =
1

εn n2

∑
i,j ηεn (Xi − Xj) |un

i − un
j |

1
n minc∈R

∑
i |un

i − c|
=:

GTVn,εn (un)

Bn(un)

Question (Consistency) Do minimizers of GCn,εn converge as the number
of data points n→∞?

Characterize the limit and the rates ε(n) for which the asymptotic behavior
holds.

.
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Heuristics for the limiting functional

Cheeger Cut

GCn,εn (un) =
1
n

1
εn

∑
i,j ηεn (Xi − Xj) |un

i − un
j |

minc∈R
∑

i |un
i − c|

=:
GTVn,εn (un)

Bn(un)

Heuristics for smooth u. Let µn = 1
n

∑
i δXi be the empirical measure

GTVn,ε(u) =
1
εn2

∑
i,j

ηεn (Xi − Xj)|u(Xi)− u(Xj)|

=
1
ε

∫∫
ηε(x − y)|u(x)− u(y)|dµn(x)dµn(y)

n�1
≈ 1

ε

∫∫
ηε(x − y)|u(x)− u(y)|dµ(x)dµ(y) =: TVε(u)

ε�1
≈ 1

ε

∫∫
ηε(x − y)|∇u(x) · (x − y)|dµ(y)dµ(x)

ε�1
≈ ση

∫
|∇u(x)|ρ2(x)dx .

.
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Total variation in continuum setting
dν = ρdx probability measure, supp(ν) = D, 0 < λ ≤ ρ ≤ 1

λ on D.

Weighted relative perimeter

Given A ⊂ D P(A; D, ρ2) =

∫
D∩∂A

ρ2dSd−1

Weighted TV

TV (u, ρ2) =

∫
D
|∇u|ρ2dx

.
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Total variation in continuum setting
dν = ρdx probability measure, supp(ν) = D, 0 < λ ≤ ρ ≤ 1

λ on D.

Weighted relative perimeter

Given A ⊂ D P(A; D, ρ2) =

∫
D∩∂A

ρ2dSd−1 = TV (χA, ρ
2)

Weighted TV

TV (u, ρ2) = sup
{∫

D
u div(φ)dx : |φ| ≤ ρ2 , φ ∈ C∞c (D,Rd )

}

.
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Clustering in continuum setting
ν probability measure with compact support supp(ν) = D.
ν has continuous on D density ρ and 0 < λ ≤ ρ ≤ 1

λ on D.

Weighted TV

TV (u, ρ2) = sup
{∫

D
u div(φ)dx : |φ| ≤ ρ2 , φ ∈ C∞c (D,Rd )

}
Weighted relative perimeter

Given A ⊂ D P(A; D, ρ2) = TV (χA, ρ
2)

Balance term

B(A) = min{|A|, 1− |A|} where |A| = ν(A).

Weighted Cheeger Cut: Minimize

C(A) =
P(A; D, ρ2)

B(A)

.
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Relaxation in continuum setting

ν probability measure with compact support supp(ν) = D.
ν has continuous on D density ρ and 0 < λ ≤ ρ ≤ 1

λ on D.

Weighted TV

TV (u, ρ2) = sup
{∫

D
u div(φ)dx : |φ| ≤ ρ2 , φ ∈ C∞c (D,Rd )

}

Balance term

B(u) = min
c∈R

∫
D
|u(x)− c|ρ(x)dx

Minimize

C(u) =
TV (u, ρ2)

B(u)

.
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Clustering in continuum setting

Minimize

C(u) =
TV (u, ρ2)

B(u)

.
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Localizing the kernel as n→∞

ηε(z) =
1
εd η

(z
ε

)
.

Consistency of clustering II

Do the minimizers of

GCn,εn (un) =
1
n

1
εn

∑
i,j ηεn (Xi − Xj) |un

i − un
j |

minc∈R
∑

i |un
i − c|

converge as the number of data points n→∞ to a minimizer of

C(u) =
TV (u, ρ2)

minc∈R
∫

D |u(x)− c|ρ(x)dx
?

Question 1: For what scaling of ε(n) can this hold?
Question 2: What is the topology for which un −→ u?

.
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n = 120, ε = 0.15 n = 120, ε = 0.20

n = 120, ε = 0.30 n = 120, ε = 0.40

.
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n = 500, ε = 0.14

n = 500, ε = 0.2

.
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What was known

Consistency results in statistics/machine learning

Arias Castro, Pelletier, and Pudlo 2012 - partial results on the
problem

Pollard 1981 - k -means

Hartigan 1981 - single linkage

Belkin and Niyogi 2006 - Laplacian eigenmaps

von Luxburg, Belkin, and Bousquet 2004, 2008 - spectral embedding

.
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What was known

Consistency results in statistics/machine learning

Arias Castro, Pelletier, and Pudlo 2012 - partial results on the
problem

Pollard 1981 - k -means

Hartigan 1981 - single linkage

Belkin and Niyogi 2006 - Laplacian eigenmaps

von Luxburg, Belkin, and Bousquet 2004, 2008 - spectral embedding

Calculus of Variations
Discrete to continuum for functionals on grids: Braides 2010, Braides and
Yip 2012, Chambolle, Giacomini and Lussardi 2012, Gobbino and Mora
2001, Van Gennip and Bertozzi 2014

.
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Γ-Convergence

(Y , dY ) - metric space, Fn : Y → [0,∞]

Definition

The sequence {Fn}n∈N Γ-converges ( w.r.t dY ) to F : Y → [0,∞] if:

Liminf inequality: For every y ∈ Y and whenever yn → y

lim inf
n→∞

Fn(yn) ≥ F (y),

Limsup inequality: For every y ∈ Y there exists yn → y such that

lim sup
n→∞

Fn(yn) ≤ F (y).

Definition (Compactness property)

{Fn}n∈N satisfies the compactness property if

{yn}n∈N bounded and
{Fn(yn)}n∈N bounded

}
=⇒ {yn}n∈N has convergent subsequence

.
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Proposition: Convergence of minimizers

Γ-convergence and Compactness imply: If yn is a minimizer of Fn and
{yn}n∈N is bounded in Y then along a subsequence

yn → y as n→∞

and
y is a minimizer of F .

In particular, if F has a unique minimizer, then a sequence {yn}n∈N
converges to the unique minimizer of F .

.
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Consistency of clustering III

Show that

GCn,εn (un) =
1
n

1
εn

∑
i,j ηεn (Xi − Xj) |un

i − un
j |

minc∈R
∑

i |un
i − c|

Γ-converge as the number of data points n→∞, and εn → 0 at certain
rate to

F (u) =
σTV (u, ρ2)

minc∈R
∫

D |u(x)− c|ρ(x)dx

and show that compactness property holds.

Questions
1 For what scaling of ε(n) can this hold?
2 What is the topology for un −→ u?

.
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Consistency of graph total variation

Show that

GTVn,εn (un) =
1

εn n2

∑
i,j

ηεn (Xi − Xj) |un
i − un

j |

Γ-converge to σTV (u, ρ2), as the number of data points n→∞, and
εn → 0 at certain rate and show that compactness property holds.

Questions
1 For what scaling of ε(n) can this hold?
2 What is the topology for un −→ u?

.
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Topology

Consider domain D and Vn = {X1, . . . ,Xn} random i.i.d points.

How to compare un : Vn → R and u : D → R in a way consistent with
L1 topology?

Note that u ∈ L1(ν) and un ∈ L1(νn), where νn = 1
N

∑n
i=1 δXi .

.
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Topology

Consider domain D and Vn = {X1, . . . ,Xn} random i.i.d points.

How to compare un ∈ L1(νn) and u ∈ L1(D) in a way consistent with
L1 topology?
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Transport map

Let µ and ν be probability measures.

Assume that all measures are supported in B(0,R) for some large R.

X = supp(µ), Y = supp(ν).

Transport map. T : X → Y ,

T]µ = ν, that is ∀A measurable µ(T−1(A)) = ν(A)

.
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Transport map

Let µ and ν be probability measures.

X = supp(µ), Y = supp(ν).

Transport map. T : X → Y ,

T]µ = ν, that is ∀A measurable µ(T−1(A)) = ν(A)

∫
T−1(A)

ρ(x)dx =

∫
A
η(y)dy

.
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Transport map

Transport map. T : X → Y ,

T]µ = ν, that is ∀A measurable µ(T−1(A)) = ν(A)

∫
T−1(A)

ρ(x)dx =

∫
A
η(y)dy =

∫
T−1(A)

η(T (x)) | det(DT (x)|dx

.
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Transport map

Transport map. T : X → Y ,

T]µ = ν, that is ∀A measurable µ(T−1(A)) = ν(A)

∫
T−1(A)

ρ(x)dx =

∫
A
η(y)dy =

∫
T−1(A)

η(T (x)) | det(DT (x)|dx

ρ(x) = η(T (x)) | det(DT (x)|

.
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Transport map

Transport map. T : X → Y ,

T]µ = ν, that is ∀A measurable µ(T−1(A)) = ν(A)

Change of variables: y = T (x), for f = χA, using χT−1(A)(x) = χA ◦ T (x)∫
Y

f (y)dν(y) = ν(A) = µ(T−1(A)) =

∫
X

f (T (x)) dµ(x)

.
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Transport map

Transport map. T : X → Y ,

T]µ = ν, that is ∀A measurable µ(T−1(A)) = ν(A)

Change of variables: y = T (x), for all f ∈ L1(dν)∫
Y

f (y)dν(y) =

∫
X

f (T (x)) dµ(x)

.
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Transport cost

c(x , y) cost of transporting unit mass from x to y

Assume c is nonnegative and continuous

Typically c(x , y) = c(|x − y |), in particular c(x , y) = |x − y |p, p ≥ 1

Transport cost: Let T be a transport map, T]µ = ν

C(T ) =

∫
X

c(x ,T (x)) dµ(x)

.
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Optimal Transport Cost – Monge formulation

Monge 1781

Optimal Transport Cost: Given µ and ν

OTc,M(µ, ν) = inf
{T : T]µ=ν}

∫
X

c(|x − T (x)|)dµ(x)

Q1: Is the set of transport maps, T , nonempty?
Q2: Is infimum a minimum?

.
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Optimal Transport Cost – Monge formulation

Monge 1781

Optimal Transport Cost: Given µ and ν

OTc,M(µ, ν) = inf
{T : T]µ=ν}

∫
X

c(|x − T (x)|)dµ(x)

Q1: Is the set of transport maps, T , nonempty? Yes, if dµ = ρdx .
Q2: Is infimum a minimum?
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Optimal Transport Cost – Monge formulation

Monge 1781

Optimal Transport Cost: Given µ and ν

OTc,M(µ, ν) = inf
{T : T]µ=ν}

∫
X

c(|x − T (x)|)dµ(x)

Q1: Is the set of transport maps, T , nonempty? Yes, if dµ = ρdx .
Q2: Is infimum a minimum? Yes, if c is convex.

.
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Transport Plan

Kantorovich 1942

Let µ and ν be probability measures.

X = supp(µ), Y = supp(ν).

Transport plans, π are probability measures on X × Y with first marginal
µ and second marginal ν:

Π(µ, ν) = {π ∈ P(X × Y ) : π(A× Y ) = µ(A), π(X × A) = ν(A)}.

π(A× B) mass originally in A which is sent to B.

Unlike with transport maps, the mass can be split

Note that Π(µ, ν) is a convex set

.
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Transport Plan

Transport plans, π are probability measures on X × Y with first marginal µ and
second marginal ν:

Π(µ, ν) = {π ∈ P(X × Y ) : π(A× Y ) = µ(A), π(X × A) = ν(A)}.

µ = 1
2δx1 + 1

2δx2 ,

ν = 1
3δy1 + 1

3δy2 + 1
3δy3 .

x1

x2 y1

y2

y31
3

1
6

1
6

1
3

x1 x2

y1

y2

y3

1
3

1
6

1
6

1
3

π =
1
3
δx1,y1

+
1
6
δx1,y2

+
1
6
δx2,y2

+
1
3
δx2,y3

.
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Transport Plan

Transport plans, π are probability measures on X × Y with first marginal
µ and second marginal ν:

Π(µ, ν) = {π ∈ P(X × Y ) : π(A× Y ) = µ(A), π(X × A) = ν(A)}.

From a map to a plan: Let T be a transport map: T]µ = ν. Then
π = (I × T )]µ is a transport plan. Here (I × T )(x) = (x ,T (x)).

.
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Optimal Transport Cost - Kantorovich Formulation

c(x , y) cost of transporting unit mass from x to y

Assume c is nonnegative and continuous

Typically c(x , y) = c(|x − y |), in particular c(x , y) = |x − y |p, p ≥ 1

Transport cost: Let π be a transport plan, π ∈ Π(µ, ν)

C(π) =

∫
X×Y

c(x , y) dπ(x , y)

Optimal Transport Cost: Given µ and ν

OTc,K (µ, ν) = inf
π∈Π(µ,ν)

∫
X×Y

c(x , y) dπ(x , y)

Q1: Is the set of transport plans, nonempty?
Q2: Is infimum a minimum?
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c(x , y) cost of transporting unit mass from x to y

Assume c is nonnegative and continuous

Typically c(x , y) = c(|x − y |), in particular c(x , y) = |x − y |p, p ≥ 1

Transport cost: Let π be a transport plan, π ∈ Π(µ, ν)

C(π) =

∫
X×Y

c(x , y) dπ(x , y)

Optimal Transport Cost: Given µ and ν

OTc,K (µ, ν) = inf
π∈Π(µ,ν)

∫
X×Y

c(x , y) dπ(x , y)

Q1: Is the set of transport plans, nonempty? Yes, take π = µ× ν.
Q2: Is infimum a minimum?
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Optimal Transport Cost - Kantorovich Formulation

c(x , y) cost of transporting unit mass from x to y

Assume c is nonnegative and continuous

Typically c(x , y) = c(|x − y |), in particular c(x , y) = |x − y |p, p ≥ 1

Transport cost: Let π be a transport plan, π ∈ Π(µ, ν)

C(π) =

∫
X×Y

c(x , y) dπ(x , y)

Optimal Transport Cost: Given µ and ν

OTc,K (µ, ν) = inf
π∈Π(µ,ν)

∫
X×Y

c(x , y) dπ(x , y)

Q1: Is the set of transport plans, nonempty? Yes, take π = µ× ν.
Q2: Is infimum a minimum? Yes. Note Π(µ, ν) is a convex set, transport
cost is a linear function of π.

.
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Optimal Transportation Distance

Assume X = supp(µ), Y = supp(ν) are compact

Optimal Transportation Distance: Given µ and ν, and p ∈ [1,∞)

dp(µ, ν) =

(
inf

π∈Π(µ,ν)

∫
X×Y
|x − y |p dπ(x , y)

) 1
p

dp is a metric on P(K ) for any K compact.

dp metrizes weak convergence of measures on P(K ).

d2 is known as the Wasserstein distance.

.
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Optimal Transportation for p =∞

∞−transportation distance:

d∞(µ, ν) = inf
π∈Π(µ,ν)

esssupπ{|x − y | : x ∈ X , y ∈ Y}

There exists a minimizer π ∈ Π(µ, ν).

If µ = 1
n

∑n
i=1 δXi and ν = 1

n

∑n
j=1 δyj then

d∞(µ, ν) = min
σ−permutation

max
i
|xi − yσ(i)|.

If µ has density then OT map, T exists (Champion, De Pascale,
Juutinen 2008) and then

d∞(µ, ν) = ‖T − Id‖L∞(µ).

.
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Topology

Consider domain D and Vn = {X1, . . . ,Xn} random i.i.d points.

How to compare un : Vn → R and u : D → R in a way consistent with
L1 topology?

Note that u ∈ L1(ν) and un ∈ L1(νn), where νn = 1
N

∑n
i=1 δXi .

.
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Topology

Consider domain D and Vn = {X1, . . . ,Xn} random i.i.d points.

How to compare un ∈ L1(νn) and u ∈ L1(D) in a way consistent with
L1 topology?

.
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An idea: Divide the domain D into n sets of the same ν measure and to
each piece associate a point Xi . That is, consider a map Tn : D → D such
that T#ν = νn.

.
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Divide the domain D into n pieces and to each piece associate a point Xi .
That is, consider a map Tn : D → D such that Tn]ν = νn.

To compare u ∈ L1(ν) and un ∈ L1(νn) we compare un ◦ Tn and u in L1(ν).

.
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A different partition:

.
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A different partition:

.
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Topology

Consider domain D and Vn = {X1, . . . ,Xn} random i.i.d points.

un ◦ Tn

u

ν
νn

Let Tn be a transportation map from ν to νn

.
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Topology

For u ∈ L1(ν) and un ∈ L1(νn)

d((ν, u), (νn, un)) = inf
Tn ]ν=νn

∫
D
|un(Tn(x))− u(x)|+ |Tn(x)− x |ρ(x)dx

where
Tn ]ν = νn

.
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TL1 Space

Definition

TLp = {(ν, f ) : ν ∈ P(D), f ∈ Lp(ν)}

dp
TLp ((ν, f ), (σ, g)) = inf

π∈Π(ν,σ)

∫
D×D
|y − x |p + |g(y)− f (x))|pdπ(x , y).

where

Π(ν, σ) = {π ∈ P(D × D) : π(A× D) = ν(A), π(D × A) = σ(A)}.

If T]ν = σ then π = (I × T )]ν ∈ Π(ν, σ) and the integral becomes∫
|T (x)− x |p + |g(T (x))− f (x)|pdν(x)

Lemma

(TLp, dTLp ) is a metric space.

.
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TL1 convergence

(ν, fn)
TLp

−→ (ν, f ) iff fn
L1(ν)−→ f

(νn, fn)
TLp

−→ (ν, f ) iff the measures (I × fn)]νn weakly converge to
(I × f )]ν. That is if graphs, considered as measures converge weakly.

The space TLp is not complete. Its completion are the probability
measures on the product space D × R.

If (νn, fn)
TLp

−→ (ν, f ) then there exists a sequence of transportation plans νn

such that

(1)
∫

D×D
|x − y |pdπn(x , y) −→ 0 as n→∞.

We call a sequence of transportation plans πn ∈ Π(νn, ν) stagnating if it
satisfies (1).

.
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Stagnating sequence:
∫

D×D |x − y |dπn(x , y) −→ 0

TFAE:
1 (νn, fn)

TLp

−→ (ν, f ) as n→∞.
2 νn ⇀ ν and there exists a stagnating sequence of transportation

plans {πn}n∈N for which

(2)
∫∫

D×D
|f (x)− fn(y)|p dπn(x , y)→ 0, as n→∞.

3 νn ⇀ ν and for every stagnating sequence of transportation plans
πn, (2) holds.

.
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Formally TLp(D) is a fiber bundle over P(D).
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Composition in TL1 space

Lemma

Let p ≥ 1 and let {νn}n∈N and ν be Borel probability measures on Rd with
finite second moments. Let Fn ∈ Lp(νn,Rd ,Rk ) and F ∈ Lp(ν,Rd ,Rk ).
Consider the measures ν̃n,= Fn]νn and ν̃,= F]ν. Finally, let
f̃n ∈ Lp(ν̃n,Rk ,R) and f̃ ∈ Lp(ν̃,Rk ,R). If

(νn,Fn)
TLp

−→ (ν,F ) as n→∞,

and
(ν̃n, f̃n)

TLp

−→ (ν̃, f̃ ) as n→∞.

Then,
(νn, f̃n ◦ Fn)

TLp

−→ (ν, f̃ ◦ Fn) as n→∞.

.
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Consistency

GTVn,εn (un) =
1

εn n2

∑
i,j

ηεn (Xi − Xj) |un
i − un

j |

Γ-convergence of Total Variation (Garcı́a Trillos and S.)

Let {εn}n∈N be a sequence of positive numbers converging to 0 satisfying

lim
n→∞

(log n)3/4

n1/2

1
εn

= 0 if d = 2,

lim
n→∞

(log n)1/d

n1/d

1
εn

= 0 if d ≥ 3.

Then, GTVn,εn Γ-converge to σTV ( · , ρ2) as n→∞ in the TL1 sense,
where σ depends explicitly on η.

.
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Consistency

Γ-convergence of Perimeter

The conclusions hold when all of the functionals are restricted to
characteristic functions of sets. That is, the graph perimeters Γ-converge
to the continuum perimeter.

Compactness

With the same conditions on εn as before, if

sup
n∈N
‖un‖L1(D,νn) <∞,

and
sup
n∈N

GTVn,εn (un) <∞,

then {un}n∈N is TL1-precompact.

.
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Consistency of Cheeger Cuts

Recall:

GCn,εn (un) =
1
n

1
εn

∑
i,j ηεn (Xi − Xj) |un

i − un
j |

minc∈R
∑

i |un
i − c|

C(u) =
σTV (u, ρ2)

minc∈R
∫

D |u(x)− c|ρ(x)dx

.
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Comment of εn

We require

lim
n→∞

(log n)3/4

n1/2

1
εn

= 0 if d = 2,

lim
n→∞

(log n)1/d

n1/d

1
εn

= 0 if d ≥ 3.

Note that for d ≥ 3 this means that typical degree� log(n).

Does convergence hold if fewer than log(n) neighbors are connected
to?

.
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Comment of εn

We require

lim
n→∞

(log n)3/4

n1/2

1
εn

= 0 if d = 2,

lim
n→∞

(log n)1/d

n1/d

1
εn

= 0 if d ≥ 3.

Note that for d ≥ 3 this means that typical degree� log(n).
Does convergence hold if fewer than log(n) neighbors are connected
to?

No. There exists c > 0 such that εn < c log(n)1/d

n1/d then with probability
one the random geometric graph is asymptotically disconnected.
Penrose (1999); Gupta and Kumar (1999); Goel,Rai and
Krishnamachari (2004).
This implies that for large enough n, min GCn,εn = 0. While inf C > 0.

So for d ≥ 3 the condition is optimal in terms of scaling.
.
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Consistency of Cheeger Cuts

Recall:

GCn,εn (un) =
1
n

1
εn

∑
i,j ηεn (Xi − Xj) |un

i − un
j |

minc∈R
∑

i |un
i − c|

C(u) =
σTV (u, ρ2)

minc∈R
∫

D |u(x)− c|ρ(x)dx

Consistency of Cheeger Cuts (von Brecht, Garcı́a Trillos, Laurent, S.)

For the same conditions on εn as before, with probability one:

GCn,εn

Γ−→ C w.r.t. TL1 metric.

Moreover, for any sequence of sets En ⊆ {X1, . . . ,Xn} of almost
minimizers of the Cheeger energy, every subsequence has a convergent
subsequence (in the TL1 sense ) to a minimizer of the Cheeger energy on
the domain D.

.
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∞-OT between a measure and its random sample

Optimal matchings in dimension d ≥ 3: Ajtai-Komlós-Tusnády (1983), Yukich and
Shor (1991), Garcia Trillos and S. (2014)

Theorem
There are constants c > 0 and C > 0 (depending on d) such that with
probability one we can find a sequence of transportation maps {Tn}n∈N
from ν0 to νn (Tn#ν0 = νn) and such that:

c ≤ lim inf
n→∞

n1/d‖Id − Tn‖∞
(log n)1/d

≤ lim sup
n→∞

n1/d‖Id − Tn‖∞
(log n)1/d

≤ C.
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∞-OT between a measure and its random sample

Optimal matchings in dimension d = 2: Leighton and Shor (1986), new proof by
Talagrand (2005), Garcia Trillos and S. (2014)

Theorem
There are constants c > 0 and C > 0 such that with probability one we
can find a sequence of transportation maps {Tn}n∈N from ν0 to νn

(Tn#ν0 = νn) and such that:

(3) c ≤ lim inf
n→∞

n1/2‖Id − Tn‖∞
(log n)3/4

≤ lim sup
n→∞

n1/2‖Id − Tn‖∞
(log n)3/4

≤ C.
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Lectures 3-4
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Recall: Consistency

GTVn,εn (un) =
1

εn n2

∑
i,j

ηεn (Xi − Xj) |un
i − un

j |

Γ-convergence of and Compactness for Graph Total Variation

Assume d∞(νn, ν)→ 0 as n→∞. Let {εn}n∈N be a sequence of positive
numbers converging to 0 satisfying

lim
n→∞

d∞(νn, ν)

εn
= 0

Then, GTVn,εn Γ-converge to σTV ( · , ρ2) as n→∞ in the TL1 sense,
where σ depends explicitly on η.

Furthermore if ‖un‖L1(D,νn) and GTVn,εn (un) are uniformly bounded the
sequence {un}n∈N is TL1-precompact.

.
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Hint about the proof

Assume that un
TL1

−→ u as n→∞.
There exists Tn]ν = νn stagnating (i.e.

∫
|x − Tn(x)|dν(x)→ 0 ).

GTVn,εn (un) =
1
εn

∫
D×D

ηεn (x̃ − ỹ)) |un(x̃)− un(ỹ)| dνn(x̃)dνn(ỹ)

=
1
εn

∫
D×D

ηεn (Tn(x)− Tn(y)) |un ◦ Tn(x)− un ◦ Tn(y)| ρ(x)ρ(y)dxdy

Define TVε(u; ρ) :=
1
ε

∫
D×D

ηε(x − y)|u(x)− u(y)|ρ(x)ρ(y)dxdy .

TVε
Γ−→ TV ( · , ρ2) wrt L1(ν) metric.

(Alberti-Bellettini, Ponce, Chambolle-Giacomini-Lussardi,
Savin-Valdinocci)

If |Tn(x)− x | � εn then one may be able to compare GTVn,εn (un)
and TVε(un ◦ Tn; ρ).

.
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Sketch for liminf part

Assume η = χB(0,1). Assume un
TL1

−→ u as n→∞. Since Tn]ν = νn,

GTVn,εn (un)=
1
εn

∫
D2
ηεn (Tn(x)−Tn(y)) |un ◦Tn(x)− un ◦Tn(y)| ρ(x)ρ(y)dxdy .

For almost every (x , y) ∈ D × D and n large

|Tn(x)− Tn(y)| > εn ⇒ |x − y | > ε̃n := εn − 2‖Id − Tn‖∞ > 0.

η

(
|x − y |
ε̃n

)
≤ η

(
|Tn(x)− Tn(y)|

εn

)
.

Let ũn = un ◦ Tn. For large enough n

GTVn,εn (un) ≥ 1

εd+1
n

∫
D×D

η

(
|x − y |
ε̃n

)
|ũn(x)− ũn(y)| ρ(x)ρ(y)dxdy

=

(
ε̃n

εn

)d+1

TVε̃n (ũn; ρ) .

Now use ε̃n
εn
→ 1 and that un

TL1

−→ u implies ũn
L1(D)−→ u as n→∞.
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Spectral Clustering

Vn = {X1, . . . ,Xn}, similarity matrix W , as before:

Wij :=
1
εd η

(
|Xi − Xj

ε

)
.

The weighted degree of a vertex is di =
∑

j Wi,j .
Dirichlet energy of un : Vn → R is

F (u) =
1
2

∑
i,j

Wij |un(Xi)− un(Xj)|2.

Associated operator is the graph laplacian L = D −W , where
D = diag(d1, . . . , dn).
To partition the point cloud into two clusters, consider the eigenvector
corresponding to second eigenvalue:

u2 := arg min

∑
i,j

Wij |u(Xi)− u(Xj)|2 :
∑

i

u(Xi) = 0, ‖u‖2 = 1


.
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Spectral Clustering: Two moons (easy)

1D embedding: xi 7→ u2(xi)

.
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k -means clustering

Given X = {x1, . . . , xn} ⊂ Rd find a set of k points A = {a1, . . . , ak} which
minimizes

min
A

1
n

n∑
i=1

dist(Xi ,A)2

where dist(x ,A) = mina∈A |x − a|.

.
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k -means clustering

Given X = {x1, . . . , xn} ⊂ Rd and µn = 1
nδxi . Find a set of k points

A = {a1, . . . , ak} which minimizes

min
A

inf
supp(ξ)⊆A

d2(µn, ξ).

.
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Spectral Clustering

Input: Number of clusters k and similarity matrix W .

– Construct the graph Laplacian L.

– Compute the eigenvectors u1, . . . , uk of L associated to the k smallest
(nonzero) eigenvalues of L.

– For i = 1, . . . , n, let yi ∈ Rk be

yi = [u1(xi), . . . , uk (xi)]T .

– Use the k -means algorithm to partition the set of points {y1, . . . , yn}
into k groups, that we denote by G1, . . . ,Gk .

Output: Clusters G1, . . . ,Gk .

.
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Comparison of Clustering Algorithms

(a) k - means (b) spectral (c) Cheeger cut

.
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Spectral Convergence of Graph Laplacian

von Luxburg, Belkin, Bousquet ’08, Belkin-Nyogi ’07, Ting, Huang, Jordan
’10, Singer, Wu ’13, Burago, Ivanov, Kurylev ’14, Shi, Sun ’15

un
2 := arg min

∑
i,j

Wij |u(Xi)− u(Xj)|2 :
∑

i

u(Xi) = 0, ‖u‖2 = 1


Suppose X1, . . . ,Xn, . . . are i.i.d samples of a distribution with density
ρ. Then, for εn → 0 as before

un
2

TL2

−→ u2

where u2 is eigenfunction, corresponding to second eigenvalue, of

Lc(uk ) := −div(ρ2∇u)

ρ
= λ2u in D

∂u
∂n

= 0 on ∂D.
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Spectral Convergence of Graph Laplacian II

un
k = arg min

∑
i,j

Wij |u(Xi )− u(Xj )|2 :
∑

i

u(Xi )un
m(Xi ) = 0 (∀m < k), ‖u‖2 = 1


Suppose X1, . . . ,Xn, . . . are i.i.d samples of a distribution with density
ρ. Then, for εn → 0 as before

un
k

TL2

−→ uk

where uk is eigenfunction, corresponding to k -th eigenvalue, of

−1
ρ

div(ρ2∇uk ) = λk uk in D

∂uk

∂n
= 0 on ∂D.

.
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Consistency of spectral clustering

Discrete Spectral Clustering:

– Construct the graph Laplacian L for the geometric graph of the sample

– Compute the eigenvectors un
1 , . . . , u

n
k of L associated to the k smallest

(nonzero) eigenvalues of L.

– For i = 1, . . . , n, let yn
i ∈ Rk be

yn
i = [un

1(xi ), . . . , un
k (xi )]T .

– Use the k -means algorithm to partition the set of points {yn
1 , . . . , y

n
n } into k

groups. We denote the resulting partitioning of Vn by Gn
1, . . . ,G

n
k .

Continuum Spectral Clustering:

– Compute the eigenvectors u1, . . . , uk of Lc associated to the k smallest
(nonzero) eigenvalues of Lc .

– Consider the measure µ = (u1, . . . , uk )]ν.

– Let G̃i ⊂ Rk be the clusters obtained by k-means clustering of µ.

– Gi = (u1, . . . , uk )−1(G̃i ) for i = 1, . . . , k define the spectral clustering of ν.
.
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Consistency of spectral clustering

Discrete Spectral Clustering:

– Construct the graph Laplacian L for the geometric graph of the sample

– Compute the eigenvectors un
1 , . . . , u

n
k of L associated to the k smallest

(nonzero) eigenvalues of L.

– For i = 1, . . . , n, let yn
i ∈ Rk be

yn
i = [un

1(xi ), . . . , un
k (xi )]T .

– Use the k -means algorithm to partition the set of points {yn
1 , . . . , y

n
n } into k

groups. We denote the resulting partitioning of Vn by Gn
1, . . . ,G

n
k .

Theorem. Let Gn
1, . . .G

n
k be the clusters above. Let νn

i = νnxGn
i

(the
restriction of empirical measure to clusters) for i = 1, . . . , k . Then
(νn

1 , . . . , ν
n
k ) is precompact with respect to weak convergence of measures

and converges along a subsequence to (ν1, . . . , νk ) = (νxG1 , . . . , νxGk )
where G1, . . . ,Gk is a continuum spectral clustering of ν.

.
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Normalized Graph Laplacian

As before: Wij := 1
εd η

(
|Xi−Xj
ε

)
, di =

∑
j Wi,j =

∑
j ηε(|Xi − Xj |).

Dirichlet energy of un : Vn → R is

F (u) =
1
2

∑
i,j

Wij

(
un(Xi)√

di
−

un(Xj)√
dj

)2

.

Associated operator is the normalized graph laplacian
D−1/2LD−1/2 = I − D−1/2WD−1/2, where D = diag(d1, . . . , dn).

To partition the point cloud into two clusters, consider the eigenvector
corresponding to second eigenvalue:

un := arg min

∑
i,j

Wij

∣∣∣∣∣un(Xi)√
di
−

un(Xj)√
dj

∣∣∣∣∣
2

:
∑

i

u(Xi) = 0, ‖u‖2 = 1


.
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Consistency of Normalized Graph Laplacian

un
k = arg min

∑
i,j

∣∣∣∣∣un(Xi )√
di
− un(Xj )√

dj

∣∣∣∣∣
2

:
∑

i

u(Xi )un
m(Xi ) = 0 (∀m < k), ‖u‖2 = 1


Suppose X1, . . . ,Xn, . . . are i.i.d samples of a distribution with density
ρ. Then, for εn → 0 as before

un
k

TL2

−→ uk

where uk is eigenfunction, corresponding to k -th eigenvalue, of

− 1
ρ3/2
∇ ·
(
ρ2∇

(
uk√
ρ

))
= λk uk in D

∂(uk/
√
ρ)

∂n
= 0 on ∂D.
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Consistency of Spectral Clustering in Manifold Setting

M compact manifold of dimension m. Data measure µ has density
dµ = ρdVolM.

α ≤ ρ ≤ 1
α

for some α > 0.

The continuum operator is a weighted Laplace-Beltrami operator

u 7→ 1
ρ

divM(ρ2 grad u).

This operator is symmetric with respect to L2(dµ):

‖u‖2
L2(dµ) =

∫
M

u2dµ.

It has a spectrum
0 = λ1 < λ2 ≤ λ3 ≤ · · · .

with corresponding orthornomal set of eigenfunctions uk , k = 1, . . . .

.
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Transportation estimates

Let µn = 1
n

∑n
i=1 δXi be the empirical measure of the random i.i.d sample.

Theorem

For any β > 1 and every n ∈ N there exist a transportation map
Tn : M→ X and a constant A such that

esssupx∈M d(x ,Tn(x)) ≤ ` := A


log(n)3/4

n1/2 , if m = 2,

(log n)1/m

n1/m , if m ≥ 3,

holds with probability at least 1− CK ,Vol(M),m,i0 · n−β , where A depends
only on K , i0, R, m, Vol(M), α and β.

K – upper bound on absolute value of sectional curvature
i0 – injectivity radius
R – reach ofM is Rd

.
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Consistency of Spectral Clustering in Manifold Setting

Techniques inspired by Burago, Ivanov, Kurylev

Theorem (Garcı́a Trillos, Gerlach, Hein and S.)

There exists a constant Cm,K ,Vol(M),i0 such that for every β > 1 and every
n ∈ N the following holds with probability at least 1− Cm,K ,Vol(M),i0 · n−β .
For every k ∈ {1, . . . , n} there exists a constant C > 0 depending on K ,
m, ρ, η, R and λk (M) such that∣∣∣∣ 2

nε2ση
λk (Γ)− λk (M)

∣∣∣∣ ≤ C
(
ε+

`

ε

)
,

whenever ` < ε < C−1.

K – upper bound on absolute value of sectional curvature

i0 – injectivity radius

R – reach ofM is Rd

.
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Semi-supervised learning

Colors denote real-valued labels
Task: Assign real-valued labels to all of the data points

.
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Semi-supervised learning

Graph is used to represent the geometry of the data set

.
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Semi-supervised learning

Consider graph-based objective functions which reward the regularity
of the estimator and impose agreement with preassigned labels

.
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p-Dirichelt energy

Vn = {x1, . . . , xn}, weight matrix W :

Wij := η (|xi − xj |) .

p-Dirichlet energy of fn : Vn → R is

E(fn) =
1
2

∑
i,j

Wij |fn(xi)− fn(xj)|p.

For p = 2 associated operator is the (unnormalized) graph laplacian

L = D −W ,

where D = diag(d1, . . . , dn) and di =
∑

j Wi,j .

.
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p-Laplacian semi-supervised learning

Assume we are given k labeled points

(x1, y1), . . . (xk , yk )

and unlabeled points xk+1, . . . , xn.

Question. How to label the rest of the points?

p-Laplacian SSL

E(fn) =
1
2

∑
i,j

Wij |fn(xi)− fn(xj)|pMinimize

f (xi) = yi for i = 1, . . . , k .subject to constraint

Zhu, Ghahramani, and Lafferty ’03 introduced the approach with p = 2.
Zhou and Schölkopf ’05 consider general p.

.
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p-Laplacian semi-supervised learning: Asymptotics

p-Laplacian SSL

E(fn) =
1
2

∑
i,j

Wij |fn(xi)− fn(xj)|pMinimize

f (xi) = yi for i = 1, . . . , k .subject to constraint

Questions.

What happens as n→∞?

Do minimizers fn converge to a solution of a limiting problem?

In what topology should the question be considered?

Remark.

We would like to localize η as n→∞.

.
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p-Laplacian semi-supervised learning: Asymptotics

p-Laplacian SSL

En(fn) =
1

εpn2

∑
i,j

ηε(xi − xj)|fn(xi)− fn(xj)|pMinimize

fn(xi) = yi for i = 1, . . . , k .subject to constraint

where
ηε( · ) =

1
εd η

( ·
ε

)
.

Questions.

Do minimizers fn converge to a solution of the limiting problem?

In what topology should the question be considered?

How shall εn scale with n for the convergence to hold?

.
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Ground Truth Assumption

We assume points x1, x2, . . . , are drawn i.i.d out of measure dν = ρdx

We also assume ρ is supported on a Lipschitz domain Ω and is bounded
above and below by positive constants.

.
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Ground Truth Assumption: Manifold version

Assume points x1, x2, . . . , are drawn i.i.d out of measure dν = ρd VolM,
whereM is a compact manifold without boundary, and 0 < ρ < C is
continuous.
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Harmonic semi-supervised learning

Nadler, Srebro, and Zhou ’09 observed that for p = 2 the minimizers are
spiky as n→∞. [Also see Wahba ’90.]

0.5

1

1

0.5

0
0

0.5

1

Figure: Graph of the minimizer for p = 2, n = 1280, i.i.d. data on square; training
points (0.5, 0.2) with label 0 and (0.5, 0.8) with label 1.
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p-Laplacian semi-supervised learning

El Alaoui, Cheng, Ramdas, Wainwright, and Jordan ’16, show that spikes
can occur for all p ≤ d and propose using p > d .

Heuristics.

E(p)
n (f ) =

1
εpn2

n∑
i,j=1

ηε(xi − xj)|f (xi)− f (xj)|p

n→∞
≈

∫∫
ηε(xi − xj)

(
|f (x)− f (y |

ε

)p

ρ(x)ρ(y)dxdy

ε→0
≈ ση

∫
|∇f (x)|pρ(x)2dx

Sobolev space W 1,p(Ω) embeds into continuous functions iff p > d .

.
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Continuum p-Laplacian semi-supervised learning

µ- measure with density ρ, positive on Ω.

Continuum p-Laplacian SSL

Minimize
E∞(f ) =

∫
Ω
|∇f (x)|pρ(x)2dx

subject to constraints that

f (xi) = yi for all i = 1, . . . , k .

The functional is convex

The problem has a unique minimizer iff p > d . The minimizer lies in
W 1,p(Ω)

.
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p-Laplacian semi-supervised learning

Here: d = 1 and p = 1.5. For ε > 0.02 the minimizers lack the expected
regularity.
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(b) minimizers for ε = 0.023, n =
1280, ten realizations. Labeled points
are (0, 0) and (1, 1).
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p-Laplacian semi-supervised learning

Theorem (Thorpe and S. ’17)

Let p > 1. Let fn be a sequence of minimizers of E(p)
n satisfying

constraints. Let f be a minimizer of E(p)
∞ satisfying constraints.

(i) If d ≥ 3 and n−
1
p � εn �

(
log n

n

) 1
d

then p > d, f is continuous and

fn converges locally uniformly to f , meaning that for any Ω′ ⊂⊂ Ω

lim
n→∞

max
{k≤n : xk∈Ω′}

|f (xk )− fn(xk )| = 0.

(ii) If 1� εn � n−
1
p ; then there exists a sequence of real numbers cn

such that fn − cn converges to zero locally uniformly.

Note that in case (ii) all information about labels is lost in the limit.
The discrete minimizers exhibit spikes.
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p-Laplacian semi-supervised learning
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(a) discrete minimizer
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(b) continuum minimizer

Minimizer for p = 4, n = 1280, ε = 0.058 i.i.d. data on square, with
training points (0.2, 0.5) and (0.8, 0.5) and labels 0 and 1 respectively.
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p-Laplacian semi-supervised learning

(a) ε = 0.058 (b) ε = 0.09 (c) ε = 0.2

p = 4 which in 2D is in the well-posed regime
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Improved p-Laplacian semi-supervised learning

p > d . Labeled points {(xi , yi) : i = 1, . . . , k}.

p-Laplacian SSL

Minimize

En(fn) =
1

ε2n2

∑
i,j

ηε(xi − xj)|fn(xi)− fn(xj)|p

subject to constraint

fn(xm) = yi whenever |xm − xi | < 2ε, for all i = 1, . . . , k .

where
ηε( · ) =

1
εd η

( ·
ε

)
.
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Asymptotics of improved p-Laplacian SSL

Theorem (Thorpe and S. ’17)

Let p > d.

fn be a sequence of minimizers of improved p-Laplacian SSL on
n-point sample.

f minimizer of E(p)
∞ satisfying constraints. Since p > d we know f is

continuous.

If d ≥ 3 and 1� εn �
(

log n
n

) 1
d

then fn converges locally uniformly to f ,

meaning that for any Ω′ ⊂⊂ Ω

lim
n→∞

max
{k≤n : xk∈Ω′}

|f (xk )− fn(xk )| = 0.
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Comparing the original and improved model

Here: d = 1, p = 2, and n = 1280. Labeled points are (0, 0) and (1, 1).
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(b) improved model

Note that the axes on the error plots for the models are not the same
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Techniques

general approach developed with Garcia–Trillos (ARMA ’16)

Γ-convergence. Notion and set of techniques of calculus of variations
to consider asymptotics of functionals (here random discrete to
continuum)

TLp space. Notion of topology based on optimal transportation which
allows to compare functions defined on different spaces (here
fn ∈ Lp(µn) and f ∈ Lp(µ))

We also need

Nonlocal operators and their asymptotics

In SSL, for constraint to be satisfied we need uniform convergence.
This also requires discrete regularity and finer compactness results.
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Γ convergence for p-Laplacian

Energy

En(fn) =
1

ε2n2

∑
i,j

ηε(xi − xj)|fn(xi)− fn(xj)|p

Γ-converges in TLp space to

σE∞(f ) = σ

∫
Ω
|∇f (x)|pρ(x)2dx

as n→∞ provided that

1� εn �


(log n)

3
4√

n
if d = 2(

log n
n

) 1
d if d ≥ 3;
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Role of nonlocal operators

Heuristics.

E(p)
n (f ) =

1
εpn2

n∑
i,j=1

ηε(xi − xj)|f (xi)− f (xj)|p

n→∞
≈

∫∫
ηε(xi − xj)

(
|f (x)− f (y |

ε

)p

ρ(x)ρ(y)dxdy

ε→0
≈ ση

∫
|∇f (x)|pρ(x)2dx

Discrete problem on graph is closer to a nonlocal functional (with
scale ε) than to limiting differential one

Nonlocal energy does not have the smoothing properties of the
differential one.
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Degeneracy of nonlocal operators

E(p)
n (f ) =

1
εpn2

n∑
i,j=1

ηε(xi − xj)|f (xi)− f (xj)|p.

Consider

f (xj) =

{
1 if j = 1

0 else.

Then

E(p)
n (f ) =

2
εp

nn2

n∑
j=2

1
εd

n
η

(
|x1 − xj |
εn

)
∼ 1
εp

nn2
nεd

n =
1
εp

nn
→ 0

as n→∞, when εp
nn→∞.
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PDE based p-Laplacian semi-supervised learning

Manfredi, Oberman, Sviridov, 2012, Calder 2017

The infinity laplacian is defined by

L∞n f (xi) = max
j

wij(f (xj)− f (xi)) + min
j

wij(f (xj)− f (xi))

and the p-laplacian is defined by

Lp
nf =

1
d

L2
nf + λ(p − 2)L∞f .
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PDE based p-Laplacian semi-supervised learning

Lp
nf =

1
d

L2
nf + λ(p − 2)L∞f .

SSL problem

Lp
nf = 0 on Ω \ ΩL

f (xi) = yi for all i = 1, . . . , k .

Theorem (Calder ’17)

Assume p > d. If d ≥ 3 and εn �
(

log n
n

) 1
3d/2

. Then fn converges

uniformly to f , the solution of the limiting problem.

Note that there is no upper bound on εn needed.
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Higher order regularizations in SSL

with Dunlop, Stuart, and Thorpe, model by Zhou, Belkin ’11.

Random sample x1, . . . xn. Labels are known if xi ∈ ΩL, open

Using graph laplacian Ln we define

An = (Ln + τ2I)α.

Power of a symmetric matrix is defined by Mα = PDαP−1 for M = PDP−1.

Higher order SSL

E(f ) =
1
2
〈fn,Anfn〉µnMinimize

fn(xi) = yi whenever xi ∈ ΩL.subject to constraint

.
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Higher order regularizations in SSL

An = (Ln + τ2I)α.

Higher order SSL

E(f ) =
1
2
〈fn,Anfn〉µnMinimize

fn(xi) = yi whenever xi ∈ ΩL.subject to constraint

Theorem (Dunlop, Stuart, S. Thorpe)

For α > d
2 , under usual assumptions, minimizers fn converge in TL2 to the

E(f ) = σ

∫
Ω

u(x)(Au)(x)ρ(x)dxminimizer of

u(xi) = yi whenever xi ∈ ΩL.subject to constraint

where A = (σLc + τ I)α and Lcu = −1
ρ div(ρ2∇u).
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Higher order regularizations in SSL

with Dunlop, Stuart, and Thorpe, model by Zhou, Belkin ’11.

k labeled points, (x1, y1), . . . (xk , yk ), and a random sample xk+1, . . . xn.

Using graph laplacian Ln we define

An = (Ln + τ2I)α.

Higher order SSL

E(f ) =
1
2
〈fn,Anfn〉µnMinimize

fn(xi) = yi for i = 1, . . . , k .subject to constraint
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Higher order regularizations

An = (Ln + τ2I)α.

Higher order SSL

E(f ) =
1
2
〈fn,Anfn〉µnMinimize

fn(xi) = yi for i = 1, . . . , k .subject to constraint

Lemma (Dunlop, Stuart, S. Thorpe)

If 1� εn � n−
1

2α then minimizers fn converge in TL2 along a
subsequence to a constant. That is spikes occur.

.
115 / 117



Denoising of labels

Housing prices per square foot in Seattle 2015.

() noisy (a) denoised
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Open problems

Finding better ways to approximate the functional (with Tenbrinck)

Pointwise assigned labels for higher-order operators

Regularity of minimizers/PDE on graphs

Error estimates for consistency of convex functionals (like the Dirichlet
functional)

Error estimates II. In particular why why is the error the smallest for
rather coarse graphs? Homogenization?

Convergence of dynamical models / evolutionary PDE on graphs.

Convergence of posterior distributions in Bayesian learning.

Mumford–Shah functional on graphs (with Caroccia and Chambolle)
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