
PDEs for neural networks
analysis and behaviour
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Integrate & Fire

Goals :

understand physiologically based models of information
processing

‘small homogeneous’ neural networks

Recover properties as synchronization



Leaky Integrate & Fire (linear)

The Leaky Integrate & Fire model is simpler

dV (t) =
(
− V (t) + I (t)

)
dt + σdW (t), V (t) < VFiring

V (t−) = VFiring =⇒ V (t+) = VReset

0 < VR < VF

I (t) input current

Noise or not

Much simpler than Hodgkin-Huxley/FitzHugh-Nagumo models
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Leaky Integrate & Fire (linear)
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Solution to the LIF model

N. Brunel and V. Hakim, R. Brette, W. Gerstner and W. Kistler,
Omurtag, Knight and Sirovich, Cai and Tao...

Fit to measurements

Use more realistic dynamics in place of − v



Leaky Integrate & Fire (linear)

From C. Rossant et al, Frontiers in Neuroscience (2011)



Leaky Integrate & Fire (linear)

The probability n(v , t) to find a neuron at the potential v solves
the Fokker-Planck Eq. on the half line

∂n(v ,t)
∂t + ∂

∂v

leak+external currents︷ ︸︸ ︷[(
− v + I (t)

)
n(v , t)

]
−

Noise︷ ︸︸ ︷
a
∂2n(v , t)

∂v2
=

neurons reset︷ ︸︸ ︷
N(t) δ(v = VR),

v ≤ VF ,

n(VF , t) = 0, n(−∞, t) = 0,

N(t) := −a∂n(VF ,t)
∂v ≥ 0, (flux of neurons firing at VF )
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N(t) is also a Lagrange multiplier for the constraint∫ VF

−∞
n(v , t)dv = 1.



Leaky Integrate & Fire (linear)
∂n(v ,t)
∂t + ∂

∂v

[(
− v + I (t)

)
n(v , t)

]
− a∂

2n(v ,t)
∂v2 = N(t) δ(v = VR),

v ≤ VF

n(VF , t) = 0, n(−∞, t) = 0

N(t) := −a∂n(VF ,t)
∂v ≥ 0, (flux of firing neurons at VF )

Properties (Cáceres, Carrillo, BP) For I (t) ≡ 0 the solutions
satisfy

n ≥ 0,
∫ VF

−∞ n(v , t)dv = 1,

n(v , t) −→
t→∞

P(v) the unique steady state (probability density)

The convergence rate is exponential

Conclusion : Total desynchronization



Leaky Integrate & Fire (linear)

The proof uses

the Relative Entropy. For H(·) convex,

d

dt

∫ VF

−∞
P(v)H

(n(v , t)

P(v)

)
dv = −Ddiff − Djump,

Hardy/Poincaré inequality,∫ VF

−∞
P(v)|u(v)|2dv ≤ C

Ddiff︷ ︸︸ ︷∫ VF

−∞
P(v)|∇u(v)|2dv ,

when

∫ VF

−∞
P(v)u(v)dv = 0, P(VF ) = 0

See : Ledoux, Barthe and Roberto (2006)



Noisy LIF networks

For networks, the current I (t) = bN(t) is related to the network
activity

∂n(v ,t)
∂t + ∂

∂v

[(
− v+bN(t)

)
n(v , t)

]
− a
(
N(t)

)∂2n(v ,t)
∂v2 = N(t) δVR

(v),

v ≤ VF ,
n(VF , t) = 0, n(−∞, t) = 0,

N(t) := −a
(
N(t)

)
∂
∂v n(VF , t) ≥ 0, flux of firing neurons at VF
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(v),
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n(VF , t) = 0, n(−∞, t) = 0,

N(t) := −a
(
N(t)

)
∂
∂v n(VF , t) ≥ 0, flux of firing neurons at VF

Constitutive laws

b = connectivity

b > 0 excitatory neurones b < 0 inhibitory neurones

a(N) = a0 + a1N



Noisy LIF networks

∂n(v ,t)
∂t + ∂

∂v

[(
− v+bN(t)

)
n(v , t)

]
− a
(
N(t)

)∂2n(v ,t)
∂v2 = N(t) δVR

(v),

v ≤ VF ,
n(VF , t) = 0, n(−∞, t) = 0,

N(t) := −a
(
N(t)

)
∂
∂v n(VF , t) ≥ 0, flux of firing neurons at VF .

Derived from a system of N interacting neurons, see Delarue, Inglis,

Rubenthaler, Tanre, Tallay, Faugeras, Fournier, Locherbach..., for
1 ≤ i ≤ N →∞

d

dt
Vi (t) = −Vi (t) +

β

N

N∑
j=1

∑
k

δ(t − tkj )︸ ︷︷ ︸
current generated by spikes

+σdWi (t), Vi (t) < VF

with tkj the spiking times : Vj(t
k
j ) = VF .



Noisy LIF networks

Theorem (J. Carrillo, D. Salort, BP, D. Smets) [existence]

Assume a = a0 > 0. Being given an initial data n0(v)

for b ≤ B(n0) there is a solution (B > 0),

for b ≤ 0 the solution is globally bounded,

for |b| small, it converges to the steady state (exponential rate),

Open question : Large time convergence to the unique
steady state

See also Carrillo, Gonzalés, Gualdani, Schoenbeck for a reduction
to Stefan problem
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Noisy LIF networks (inhibitory)

Proof ingredients :

1. (Existence)
A universal supersolution
(b < 0)

2. (Existence) For the Fokker-Planck equation,
regularizing effects L1 → L∞

3. (Long time) Use the gap left by the Poincaré/Hardy inequality



Noisy LIF networks (inhibitory)
∂n(v ,t)
∂t + ∂

∂v

[(
− v+bN(t)

)
n(v , t)

]
− a
(
N(t)

)∂2n(v ,t)
∂v2 = N(t) δVR

(v),

v ≤ VF ,

n(VF , t) = 0, N(t) := −a
(
N(t)

)
∂
∂v n(VF , t) ≥ 0
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Noisy LIF networks (blow-up)

Theorem (M. Cáceres, J. Carrillo, BP) [excitatory, blow-up]
Assume a ≥ a0 > 0 and b > 0. Then the solution blows-up in finite
time in the two cases

initial data is concentrated enough around v = VF (depending
on b)

initial data is given, b is large enough



Noisy LIF networks (blow-up)

Theorem (M. Cáceres, J. Carrillo, BP) [excitatory, blow-up]
Assume a ≥ a0 > 0 and b > 0. Then the solution blows-up in finite
time in the two cases

initial data is concentrated enough around v = VF (depending
on b)

initial data is given, b is large enough

Surprisingly

Noise induced blow-up

The determinstic LIF does not blow-up

The kinetic LIF does not blow-up



Noisy LIF networks (blow-up)

Possible interpretation

N(t)→ ρδ(t − tBU) and tBU > 0,

partial synchronization

Simplified models : Kuramoto, Carillo-Ha-Kang, Dumont-Henry,
Giacomin, Pakdaman

Huygens



Noisy LIF networks (blow-up)

Noise does not help

Theorem (J. Carrillo, D. Salort, BP, D. Smets)[inhibitory]
Assume a = a0 + a1N and b < 0.

Then the solution blows-up in finite time

when the initial data is concentrated enough around v = VF

or for given initial data when a1 is large enough



Noisy LIF networks (blow-up)
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Noisy LIF with refractory state



∂n(v ,t)
∂t + ∂

∂v

[(
− v+bN(t)

)
n(v , t)

]
− a
(
N(t)

)∂2n(v ,t)
∂v2 = R(t)

τ δVR
(v), v ≤ VF

n(VF , t) = 0, n(−∞, t) = 0

N(t) := −a
(
N(t)

)
∂
∂v n(VF , t) ≥ 0

d
dtR(t) + R(t)

τ = N(t). Refractory state

(See also Brunel for other versions)

Theorem (M.Cáceres, BP) [Refractory]

The solution blows-up in finite time in the 2 cases :

b > 0 is fixed, if the initial data is concentrated enough around
VF .

The initial data is given, if b large enough



Noisy LIF with refractory state

Proof. For µ = 2 max( 1
b ,

VF
a0

), define

φ(v) = eµv , Mµ(t) :=
∫ VF

−∞ φ(v)n(v , t).

For smooth solutions, we prove that Mµ(t) becomes larger than
eµVF

dMµ

dt
= µ

∫ VF

−∞

(
bN(t)− v + µa

)
φ(v)p(v , t)− N(t)φ(VF ) +

R(t)

τ
φ(VR)

≥ N(t)
[
bµMµ(t)− φ(VF )

]︸ ︷︷ ︸+µ
[
µa0 − VF

]︸ ︷︷ ︸
≥ µVF >0

Mµ(t)

↘
> 0 is needed only initially

OK for b large enough or Mµ(0) large enough

To go further : the difficulty : no relation between Mµ and N



Spontaneous activity (regularized)

Assume refractory state and that the firing potential VF is random.

∂n(v ,t)
∂t + ∂

∂v

[(
− v+bN(t)

)
n(v , t)

]
− a
(
N(t)

)∂2n(v ,t)
∂v2 + n(v ,t)

ε 1I{v>VF }

= R(t)
τ δVR

(v),
N(t) := −

∫
n(v , t)

ε
1I{v>VF }dv

d
dtR(t) + R(t)

τ = N(t). Refractory state

Solutions are globally bounded.



Spontaneous activity (regularized)
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Left : Excitatory integrate and fire model with refractory state and random firing threshold

Right : Conhaim et al (2011) J. of physiology 589(10) 2529-2541.



Related models : cell polarization

Similarity with a Keller-Segel type model
by V. Calvez and R. Voituriez
for microtubules arrangments on the membrane

∂n(z,t)
∂t − ∂

∂z [µ(t)n(z , t)]− ∂2n(z,t)
∂z2 = 0, z ≥ 0,

∂
∂z n(0, t) + µ(t)n(0, t) = 0,

dµ(t)
dt = n(0, t)− µ(t)

L .

Blow-up for large mass

Smooth solutions for small mass (and stable steady state)



Mean field learning in LIF networks

For Wilson-Cowan model,

d

dt
Ni (t) = −Ni (t) + σ

∑
j

wi ,j(t)Nj(t) + sj(t)


One completes the with a rule

d

dt
wi ,j(t) = f (Ni (t)) f (Nj(t))

If both N’s are active together, increase the weight. Otherwise
decrease it
Hebbian learning

d

dt
wi ,j(t) = kijNi (t)Nj(t)− wi ,j(t)



Mean field learning in LIF networks

Learning reinforces synaptic weights w which are activated

∂p
∂t + ∂

∂v

[(
− v + I (w) + wσ(N̄(t))

)
p
]

+ε ∂
∂w

[(
Φ− w

)
p
]
− a ∂

2p
∂v2 = N(w , t)δ(v − VR),

N(w , t) := −a ∂p∂v (VF ,w , t) ≥ 0, N̄(t) =

∫ ∞
−∞

N(w , t)dw ,

I (w) input current

Φ(w) = K (w)N(w , t)N̄(t) Learning rule (Hebbian type)

N(w , t) output activity (sub-network activity)
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C (w , t) =
∫
p(v ,w , t)dv = connectivity - number of elements

with synaptic weight w



Mean field learning in LIF networks

Questions

Given a weight distribution C (w),

What are the possible outputs ?

Is the mapping one-to-one : I (w) 7→ N(w)

Which connectivities C (w) can be learned from an input I (w) ?

Discrimination property : For which learning rules can a network
distinguish the signal used for learning ?



Mean field learning in LIF networks

Theorem (Representation)
Being given the input signal I (w) and the output N(w), then there
is always a compatible synaptic weight distribution C (w).



Mean field learning in LIF networks

Theorem (Representation)
Being given the input signal I (w) and the output N(w), then there
is always a compatible synaptic weight distribution H(w).

Theorem (Discrimination property)
Being given two currents I (w), J(w) and a synaptic weight
distribution C (w), then∫

|NI (w)− NJ(w)|dw ≥ C

∫
L(w)C (w)|I (w)− J(w)|dw

with L(w) a weight to avoid too large w � 1.
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Mean field learning in LIF networks

Theorem (Representation)
Being given the input signal I (w) and the output N(w), then there
is always a compatible synaptic weight distribution H(w).

Theorem (Discrimination property)
Being given two currents I (w), J(w) and a connectivity C (w),
then∫

|NI (w)− NJ(w)|dw ≥ C

∫
L(w)C (w)|I (w)− J(w)|dw .

Theorem (Connectivity arising from a learning rule)
For inhibitory networks, being given the input signal, the learning
rule K , there is a (unique) connectivity C (w) generated by the
Hebbian learning.



Mean field learning in LIF networks

Connect.

Output

Learned Other input
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CONCLUSION

Several highly nonlinear PDEs are used in the neuroscience

One of the questions is emergence of synchronization

Networks of nertworks

Open problems

coupled inhibitory/excitatory

convergence to a steady state (inhibitory)

Derivation of LIF models



CONCLUSION
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D. Salort K. Pakdaman C. Wainrib
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