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Plan of the course Jil

I. The single neuron,

Il. Networks, examples

Il. Networks, Integrate & Fire

I11. 1. LIF networks

I11. 2. Blow-up and spontaneous activity

Il. 3. Mean field learning

IV. Networks, time elapsed models



Integrate & Fire JiL

Goals :

B understand physiologically based models of information
processing

B ‘small homogeneous’ neural networks

B Recover properties as synchronization



Leaky Integrate & Fire (linear) JiL

The Leaky Integrate & Fire model is simpler
dV(t) = (= V(t) + I(t))dt + odW(t), V(t) < Viiring
V(t—) = VFiring — V(t—I—) = VReset

0< Vg < VE

m /(t) input current

m Noise or not

® Much simpler than Hodgkin-Huxley/FitzHugh-Nagumo models
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Leaky Integrate & Fire (linear) JiL
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Solution to the LIF model

2.0

m N. Brunel and V. Hakim, R. Brette, W. Gerstner and W. Kistler,
Omurtag, Knight and Sirovich, Cai and Tao...

®m Fit to measurements

B Use more realistic dynamics in place of —v



Leaky Integrate & Fire (linear)
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From C. Rossant et al, Frontiers in Neuroscience (2011)




Leaky Integrate & Fire (linear) JiL

The probability n(v, t) to find a neuron at the potential v solves
the Fokker-Planck Eq. on the half line

( Noise
leak+external currents —_—N— neurons reset

n(v T h 82 7t AV TEEVA
nlvt) 1 O (— v+ I(t)) (v, t)] - a% =N(t) §(v = Vg).
v < VF,

n(Ve,t) =0, n(—oo,t) =0,

L N(t) = —aw >0, (flux of neurons firing at V)



Leaky Integrate & Fire (linear) JiL

The probability n(v, t) to find a neuron at the potential v solves
the Fokker-Planck Eq. on the half line

leak+external currents /_2N(,)i\s; neurons reset
on(v, - A #n(v,t) ——""——
08) 4 O T( v 1(t))n(v, t)] — a=p 3 = N(t) (v = Vg).
v < VF,
n(Ve,t) =0, n(—oo,t) =0,
L N(t) = —aw >0, (flux of neurons firing at V)

N(t) is also a Lagrange multiplier for the constraint

Ve
/ n(v, t)dv = 1.

o0



Leaky Integrate & Fire (linear) JiL

8 - 2 [(— v+ 1) n(v, )] — aZ2%D = N() 6(v = v,\;,/)
v<VF

n(Ve,t) =0, n(—oo,t) =0
o 8"(\/[:,1“) ..
N(t) == —a==5 >0, (flux of firing neurons at V)

Properties (Caceres, Carrillo, BP) For /(t) = 0 the solutions
satisfy

mn>0, f_VOFO n(v, t)dv =1,
mn(v,t) b P(v) the unique steady state (probability density)
oo

B The convergence rate is exponential

Conclusion : Total desynchronization




Leaky Integrate & Fire (linear)

The proof uses

m the Relative Entropy. For H(:) convex,

d [VF n(v,t)
. P(v)H( Pv)

)dV = —Dgir — Djumpy

m Hardy/Poincaré inequality, Daise

-~

Ve Ve
/_ P(v)|u(v)Pdv < c/_ P(V)[Vu(v)?dv,

o0

when /_VF P(v)u(v)dv =0,  P(Ve)=0

[e.9]

See : Ledoux, Barthe and Roberto (2006)

JiL



Noisy LIF networks Jil

For networks, the current /(t) = bN(t) is related to the network
activity

InGet) 4 & [(— v+bN (1) n(v, )] — a(N(8)) Z552 = N(e) b (v),
v < Vg,
n(Ve,t) =0, n(—00,t) =0, -

N(t) := —a(N(t))%n(VF, t) >0, flux of firing neurons at Vf



Noisy LIF networks

For networks, the current /(t) = bN(t) is related to the network
activity

8"(" 9 4 2 [(= v+bN(t))n(v,1)] — a(N(t))% = N(t) dvi(v),
v < Vg,
n(Vr,t)=0,  n(-oc0,t) =0, o

N(t) := —a(N(t))%n(VF, t) >0, flux of firing neurons at Vf
Constitutive laws
B b = connectivity

B b > 0 excitatory neurones B b < 0 inhibitory neurones

| a(N) =ag+ a1



Noisy LIF networks

Bn(v t) + av [( _ V+bN(t)) n(\/’ t)] — a(N(t))% = N(t) 5VR(V)7
v <V,
n( VF7 t) = 05 n(—OO, t) = 0’ - )

N(t) = —a(N(t))%n(VF, t) >0, flux of firing neurons at V.

Derived from a system of N interacting neurons, see Delarue, Inglis,
Rubenthaler, Tanre, Tallay, Faugeras, Fournier, Locherbach..., for
1<i<N-—x

5 N
E\/"(t) szk: XY +odWi(t), Vi(t) < Vg

J:

current generated by spikes

with tj‘ the spiking times : \/j(tj‘) = VE.



Noisy LIF networks Jil

Theorem (J. Carrillo, D. Salort, BP, D. Smets) [existence]

Assume a = ap > 0. Being given an initial data n°(v)
m for b < B(n°) there is a solution (B >0),
m for b < 0 the solution is globally bounded,

m for |b| small, it converges to the steady state (exponential rate),



Noisy LIF networks Jil

Theorem (J. Carrillo, D. Salort, BP, D. Smets) [existence]

Assume a = ap > 0. Being given an initial data n°(v)
m for b < B(n°) there is a solution (B >0),
m for b < 0 the solution is globally bounded,

m for |b| small, it converges to the steady state (exponential rate),
Open question : Large time convergence to the unique steady
state

See also Carrillo, Gonzalés, Gualdani, Schoenbeck for a reduction
to Stefan problem



Noisy LIF networks (inhibitory) Jil

Proof ingredients : Tenb

A =A"er
1. (Existence)
A universal supersolution
(b<0)

2. (Existence) For the Fokker-Planck equation,
regularizing effects L1 — [

3. (Long time) Use the gap left by the Poincaré/Hardy inequality



Noisy LIF networks (inhibitory) Jil

o) 1 2 [((— vHbN(e))n(v, 1)] — a(N (1) Z5 = N(t) B, (v),

v < VFa
n(Vg, t) =0, N(t) := —a(N(t))Zn(Ve, t) >0
0.05:
"85 40 s 20 a1 -0 %8 6o os 10 E'} ) Tl %0 ao | a0 | s &0 | 70 s

Inhibitory case b < 0. Left p(v, t), Right : N(t)

[m] = = =




Noisy LIF networks (blow-up) Jil

Theorem (M. Caceres, J. Carrillo, BP) [excitatory, blow-up]
Assume a > ag > 0 and b > 0. Then the solution blows-up in finite
time in the two cases

® initial data is concentrated enough around v = Vf (depending
on b)

M initial data is given, b is large enough



Noisy LIF networks (blow-up) Jil

Theorem (M. Caceres, J. Carrillo, BP) [excitatory, blow-up]
Assume a > ag > 0 and b > 0. Then the solution blows-up in finite
time in the two cases

® initial data is concentrated enough around v = Vf (depending
on b)

M initial data is given, b is large enough

Surprisingly
m Noise induced blow-up
B The determinstic LIF does not blow-up

m The kinetic LIF does not blow-up



Noisy LIF networks (blow-up) Jil

Possible interpretation
| N(t) — p5(t - tBU) and tgy > 0,
M partial synchronization

Simplified models : Kuramoto, Carillo-Ha-Kang, Dumont-Henry,
Giacomin, Pakdaman

Huygens



Noisy LIF networks (blow-up) Jil

® Noise does not help

Theorem (J. Carrillo, D. Salort, BP, D. Smets)[inhibitory]
Assume a = ag + a1 N and b < 0.

Then the solution blows-up in finite time
B when the initial data is concentrated enough around v = V¢

| or for given initial data when a; is large enough



Noisy LIF networks (blow-up)

JiL

w3

T T
100 200 250

Excitatory integrate and fire model. Blow-up case. Left p(v, t), Right : N(t)




Noisy LIF with refractory state

n(vit) 4 D [(— vbN(E))n(v, £)] — a(N(t)) Zalet) — RO 5, (),
n(Ve, t) =0, n(—oo,t) =0
N(t) == —a(N(t)) Zn(Ve, t) >0

%R(t) + @ = N(t). Refractory state

(See also Brunel for other versions)

Theorem (M.Caceres, BP) [Refractory]

The solution blows-up in finite time in the 2 cases :

B b > 0 is fixed, if the initial data is concentrated enough around
VE.
B The initial data is given, if b large enough



Noisy LIF with refractory state Jil

Proof. For pu = 2max(#, ,TF) define

d(v)=e",  Mu(t):= [F o(v)n(v,1).

For smooth solutions, we prove that M, (t) becomes larger than
eILLVF

Ve
Pl = [ (M0 — v+ pa) ol )ply. ) = NOOVE) + B (v

e}

> N(t) [buMu(t) — 6(Ve)] + a0 — Vie] Mu(t)

v\ > NT/rF >0
> 0 is needed only initially
OK for b large enough or M,(0) large enough

To go further : the difficulty : no relation between M, and N



Spontaneous activity (regularized) JiL

Assume refractory state and that the firing potential Vf is random.
on(v 8n(v, n(v,
( t) 4 6‘/ [(— v+bN(t))n(v, t)] - a(N(t))TE/rt)—i- %][{va}
- @6%?(‘/)7

N(t‘) = —/ n(v t) ][{v>VF}dV

%R(t) + @ = N(t). Refractory state

Solutions are globally bounded.



Spontaneous activity (regularized)
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Left : Excitatory integrate and fire model with refractory state and random firing threshold

Right : Conhaim et al (2011) J. of physiology 589(10) 2529-2541.

=] F

JiL




Related models : cell polarization

Similarity with a Keller-Segel type model
by V. Calvez and R. Voituriez

for microtubules arrangments on the membrane

on(z,t)

2” z
(28) _ 0 [(t)n(z, t)] - L&t — o,

2-n(0, t) + p(t)n(0, t) =0,

G = n(0.1) = 1.

B Blow-up for large mass

® Smooth solutions for small mass (and stable steady state)



Mean field learning in LIF networks Jil

For Wilson-Cowan model,

d

SN(E) = ~Ni(8) + 0 (Z wi(t +s,<t))

One completes the with a rule

d
EW,L,-(t) = f(N;(t)) f(N;(t))

If both N's are active together, increase the weight. Otherwise
decrease it
Hebbian learning

%W;J(t) = kiNi(£) Nj(t) — wij(t)



Mean field learning in LIF networks Jil

Learning reinforces synaptic weights w which are activated
8 _
P+ 2 (= v+I(w)+wa(N(t)) p]
+e [(¢—w)p] — aa—’g = N(w, t)d(v — VR),

o0
N(w,t) = —aa P(VE,w,t) >0, N(t) = / N(w, t)dw,
—00
® /(w) input current
m ®(w) = K(w)N(w, t)N(t) Learning rule (Hebbian type)
m N(w, t) output activity (sub-network activity)



Mean field learning in LIF networks Jil

Learning reinforces synaptic weights w which are activated
% O [(—v+I(w)+wo(N(t))) pl
+e [(¢—w)p] — aa—’é = N(w, t)d(v — VR),

o0
N(w,t) = —aa P(VE,w,t) >0, N(t) = / N(w, t)dw,
—00
® /(w) input current
m ®(w) = K(w)N(w, t)N(t) Learning rule (Hebbian type)
m N(w, t) output activity (sub-network activity)

m C(w,t) = [ p(v,w, t)dv = connectivity - number of elements
with synaptic weight w



Mean field learning in LIF networks Jil

Questions

m Given a weight distribution C(w),
What are the possible outputs ?
Is the mapping one-to-one : /(w) — N(w)

® Which connectivities C(w) can be learned from an input /(w)?

H Discrimination property : For which learning rules can a network
distinguish the signal used for learning ?



Mean field learning in LIF networks Jil

Theorem (Representation)

Being given the input signal /(w) and the output N(w), then there
is always a compatible synaptic weight distribution C(w).
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Theorem (Representation)
Being given the input signal /(w) and the output N(w), then there
is always a compatible synaptic weight distribution H(w).

Theorem (Discrimination property)

Being given two currents /(w), J(w) and a synaptic weight
distribution C(w), then

/|N,(W)—NJ(W)|dW2 C/L(W)C(W)]I(W)—J(W)\dw

with L(w) a weight to avoid too large w > 1.
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Learning reinforces synaptic weights w which are activated
8 _
L+ T (= v+I(w)+wo(N(1)) p]
+e [(¢—w)p] — aa—’é = N(w, t)d(v — VR),
o0
N(w,t) = —aa P(VE,w,t) >0, N(t) = / N(w, t)dw,
—0o0
® /(w) input current
m ®(w) = K(w)N(w, t)N(t) Learning rule (Hebbian type)
m N(w, t) output activity (sub-network activity)

m C(w,t) = [ p(v,w, t)dv = connectivity - number of elements
with synaptic weight w



Mean field learning in LIF networks Jil

Theorem (Representation)
Being given the input signal /(w) and the output N(w), then there
is always a compatible synaptic weight distribution H(w).

Theorem (Discrimination property)
Being given two currents /(w), J(w) and a connectivity C(w),
then

/|N,(W)—NJ(W)|dWZ C/L(W)C(W)|I(W)—J(W)|dw.

Theorem (Connectivity arising from a learning rule)

For inhibitory networks, being given the input signal, the learning
rule K, there is a (unique) connectivity C(w) generated by the
Hebbian learning.



Mean field learning in LIF networks

Jil
Learned -~

Other input

Connect.




Mean field learning in LIF networks

JiL

Learned

. A/\ - /\ Other input
Output [”\ . M
Connect. K\




CONCLUSION JiL

m Several highly nonlinear PDEs are used in the neuroscience
B One of the questions is emergence of synchronization
B Networks of nertworks
H Open problems
® coupled inhibitory/excitatory
B convergence to a steady state (inhibitory)

m Derivation of LIF models



CONCLUSION
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