
Hessian Estimates for Schrödinger Equations

Xue-Mei Li
Imperial College London

XIX school of Mathematics Louis Santaló
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Motivation
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Analysis of loop and path spaces over manifold

They are Banach manifolds,with measures from BM or Brownian
bridge. Gross, Segal, Aida, Airault, Andersson, Bakry, Bismut,
Cruzeiro, Driver, Elworthy, Fang, Franchi, Funaki, Gong, Hsu,
Ikeda, Kusuoka, Ledoux, xml, Ma, Shigekawa, Sugita, Stroock,
Wang, Watanabe, .... and global analysts working smooth loops.

Study its topology by establishing an de Rham complex, and
deRham cohomology, for which needs an L2 Hodge theory.
We need Hilbert subspaces of the tangent spaces and their
tensor spaces. This are chosen by Cameron-Martin’s invariant
theorem and are finite ‘energy’ spaces.
To define global charts and a Sobolev calculus.
study the BM measure: concentration and tail? Poincare,
Logarithmic Sobolev inequality? Need heat kernel are
Euclidean like up to 2 derivatives.
Poincare on loop space fails on some simple compact
manifolds (Eberle). Wiener space (Gross’67), Asymptotically
Euclidean: Aida, Hyperbolic space: Chen-xml-Wu (2012) 3 / 36



A solvable Schrödinger Equation


∂g

∂t
=

n∑
i=1

∂2g

∂xxi
− x · ∇g − C g

g(0, x) = f (x)

Then
g(t, ·) = e−CtQt f ,

where Qt is the Ornstein-Uhlenbeck semi-group, given by Mehler
transform:

Qt f (x) =

∫
f (z)

qV (t,x ,z)︷ ︸︸ ︷
exp

{
− |z−e

−tx |2
2(1−e−2t)

}
(2π(1− e−2t))n/2

dz ,
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The continuous Talagrand conjecture

Hyper-contractivity: Nelson 60’s, Gross 75: for t > 0, p > 1 and
q ≤ 1 + (p − 1)e2t ,

|Qtg |q ≤ |g |p.
For p = 1, Talagrand conjectured (for a discrete system)

lim
A→∞

sup
g≥0, g∈L1(γ)

A γ ({x : Qtg(x) ≥ A}) = 0, t > 0.

Lehec16, Ball-Barthe-Bednorz-Oleszkiewicz-Wolff 13, Eldan-Lee14:

γ ({x : Qsg(x) ≥ A}) ≤ α
1 ∨ 1

2s

A
√

logA
.

whose proof relies on the following estimate:

Hess(logQtg) ≥ − 1

2t
Id , g ∈ L1(γ).

Question : Does this hold if the potential U(x) = 1
2 |x |

2 is
replaced by a function h, ( a perturbation)?
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The perturbed Ornstein-Uhlenbeck semigroup

Let h be a function. Set W (x) = |x |2
2 − h(x) and

V =
1

2
(n −∆h)− 1

4
(|x |2 − |∇h|2).

Consider the semigroup Ph
t generated by

∆−∇h · ∇

and QV
t for

∆− x · ∇ − V

Then they are unitarily equivalent:

Ph
t = e−W /2QV

t (eW /2f ).

In [Gozlan, xml, Madiman, Roberto, Samson, 18+], we use this
and a Brownian-bridge to solve the conjecture for perturbed O-U
semigroup.
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Schrödinger Equation and diffusion operators
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Schrödinger Equation


∂g

∂t
= (L − V )g ,

g(0, x) = f (x)

Where L is a diffusion operator, e.g.

L =
1

2
∆ +∇h.

If L is elliptic and V is bounded Hölder continuous, then there
exists a semigroup PV

t on L2 ∩ L∞ such that

g(x , y) ≡ PV
t f (x).

And there exists an integral kernel:

PV
t f (x) =

∫
f (z)pV (t, x , z) dz .

Problem. Gradient Estimates, Hessian Estimates for solutions
and the logarithms of the kernels. 8 / 36



Diffusion Operators

In local coordinates, diffusion operators are of the form

L =
1

2

n∑
i ,j=1

ai ,j(x)
∂2

∂xi∂xj
+

n∑
k=1

bk(x)
∂

∂xk
.

A(x) := (ai ,j(x)) is a n × n symmetric non-negative matrix. If
Lipschitz continuous, A(x) = XT (x)X (x). The columns of the
n ×m matrix X represents vector fields X1, . . . ,Xm, m ≥ n.
Think: X (x) ∈ L(Rm;TxM). Then

Lf =
1

2

∑
Xk(Xk f ) + X0f .

The drift can always be removed so L =
∑

(Yi )
2.

L is elliptic if A(x) is strictly positive at every point,
equivalently X (x) : Rm → TxM is a surjection and so
determines a Riemannian metric.
L is semi-elliptic if

Ex := span{X1(x), . . . ,Xm(x)}
has the same rank p, so they defines a sub-bundle E .
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Connections induced by diffusion operators

Theorem [ Elworthy-LeJan-xml 97,99 ] If L is semi-elliptic,
X (x)Y (x) = TxM. For any vector field Z ∈ ΓE and for any
v ∈ TxM, we define

∇vZ = X (x)d (Y (·)Z (·)) (v0).

Then ∇ defines a linear semi-connection (a set of Christoffel
symbols), with possibly torsion.

∇ is uniquely determined by the property that

∇X (e) ≡ 0, e ∈ [kerX (x)]⊥.

Every metric semi-connection is induced by a map X .

Nice property on Derivative flow
dVt = ∇X (Vt) ◦ dBt +∇X0(Vt)dt.

extended to equi-variant diffusion pairs (Elworthy-LeJan-xml
2008]: useful for slow-fast dynamics.
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SDEs

The Gradient system. If φ = (φ1, . . . , φm) : M → Rn is an
isometric embedding of M, we set

Xi (x) = ∇φi .

Then X defines the Levi-Civita connection. Also,∑
i

(Xi )
2 = ∆.

Given L = 1
2

∑
(Xi )

2 + X0, define

dxt =
m∑
i=1

Xi (xt) ◦ dB i
t + X0(xt)dt.

The solutions are strong Markov process with generator L.

Definition: A strong Markov process with generator 1
2 ∆ is a

Brownian motion.
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BM and heat Equation

Suppose that there is no explosion to

dxt =
m∑
i=1

Xi (xt) ◦ dB i
t + X0(xt)dt = X (xt) ◦ dBt + X0(xt)dt.

By L is the generator, we meant, roughly speaking, that Ef (xt)
solves the equation

∂g

∂t
= Lg .

Proof. Let Pt f denote the solution of the heat equation with initial
value f . By Itô’s formula:

f (xt) = Pt f (x0) +

∫ t

0
dPT−s f (xs)(X (xs)dBs).

Taking expectation to see the claim.
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A BEL martingale technique
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Introducing a technique

Assume suitable growth conditions on Xi and on their derivatives.
BEL formula holds for any bounded Borel measurable function f
and v0 ∈ Tx0M:

dPt f (v0) =
1

t
E

[
f (xt)

∫ t

0
〈Ws(v0),X (xs)dBs〉

]
,

where Ws : Tx0M → TxsM is the damped stochastic parallel
transport or the derivative flow.
Proof. Multiply by

∫ t
0 〈Ws(v0),X (xs)dBs〉

f (xt) = Pt f (x0) +

∫ t

0
dPT−s f (xs)(X (xs)dBs).

E

(
f (xt)

∫ t

0
〈Ws(v0),X (xs)dBs〉

)
=

∫ t

0
E (dPt−s f (xs)(Ws(v0)) ds

=

∫ t

0
dPt f (v0) ds = t dPt f (v0).

[ xml92, Elworthy-xml, c.f. Bismut] 14 / 36



Damped Parallel translation

We used a result of Airault

dPt f (v) = Edf (Wt(v0))

and Markov property on forms.

The damped parallel translation Wt : Tx0M → TxtM solves:

D

dt
Wt =

1

2

(
−Ric]xt

)
(Wt), W0 = idTx0M

Elworthy, Eells, Malliavin,..
Proof. Apply Itô’s formula to dPt−r f (Wr (v0). Observe :

∂

∂t
dft = −1

2
∇∗∇dft − dft(

1

2
Ric]−) :

Then,

df (Wt(v0)) = dPt f (Wt(v0)) + martingale.
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Remark

1 The formula implies strong Feller property, uniqueness of the
invariant probability measure. Hairer-Mattingly, ...

2 BEL formula is equivalent to Integration by part formula holds
for the measure of the Markov process on the path space
(Wiener measure.) Clark-Ocone fomula, Logarithmic Sobolev
inequality, Poincare inequality. Aida, Bismut, Elworthy, Driver,
Fang, Hsu, LeJan, xml, Malliavin, Norris, Shigekawa,

3 Method of proof extends to
Dirichlet and Neunman boundary conditions and local:
Arnaudon, Deuschel, xml, Thalmaier, Wang, Zambotti,
semi-elliptic case: Elworthy, LeJan, xml
SPDE: Elworthy, Da Prato, Zabczyck, ...
jumps: Takeuchi, Kateregga, Zabczyk, Peszat, Da Prato, ..
mean field PDE: .D. Banos
numerical, simulation irregular dritfs, finance:
Henry-Labordere, Tang, Touzi, Caas Friz, Bayer, Dong, Xu
higher order derivatives (caution): Elworthy, xml, Malliaivin,
Stroock,
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Application to Reaction-Diffusion equations


∂uεt (x)

∂t
=
ε2

2
∆uεt (x) +

1

ε2
c(t, x , uεt (x))uεt (x),

uε(0, x) = T0(x) exp{−S0(x)

ε2
}.

For example take c = 1− u, Freidlin showed that the solutions
converges to a travelling waves. : there exists V (t, x) such that
the limit is 1 when V (t, x) > 0 and equals 0 if V (t, x) < 0. In fact
the derivatives converges to 0 at the trough exponentially fast.
[xml-Zhao96.]
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Heat kernel estimates
(a quick review)
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Examples

On Rn, pt(x , y) = (2πt)−
n
2 e−

|x−y|2
2t .

∇ log pt = −x − y

t
, ∇2 log pt(u, v) = −〈u, v〉

t
.

∇2 log pt(u, v) +
〈u, v〉
t

= 0.

Messy in general, even on the hyperbolic space, r = d(x , y),

Geometers typically work on Gaussian and gradient or derivative
for positive solutions: Cheeger, Li-Yau estimates, Mckean,
Grigoryan, Davies, Cheng, Gromov, Taylor,...

Stochastic analysts are interested in logarithm of the heat kernel:
Varadhan, Azencott, Molchanov, Aida, Airault, Hsu, Sheu,
Malliavin, Stroock,...
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Kernel estimates

How does the integral kernel (heat kernel )behave? If L is strictly
elliptic with bounds λ1 and λ2, then the kernel is controlled by
that for λi∆.
The gradient of the kernel cannot be bounded as such. They
depend on differentiating ai ,j . Treating (ai ,j) as the inverse of the
Riemannian tensor, we want the dependence on the derivatives of
the Riemannian metric only through the Ricci curvature or its
derivatives. This is where the methods /results depart from
Euclidean methods.

Rici ,j =
∂Γl

ik

∂x l
− Γm

il Γl
km −∇k

(
∂

∂x l
log
√
|g |
)
.

Γk
i ,j =

1

2
rm,k (gk,i , j + gkj ,i − gi ,.j , k) .

These quantities are a mess in terms of ai ,j .
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Varadhan Estimates

Varadhan, Molchanov, Azencott et al. Suppose K ⊂ M is a
compact subset of M, then

lim
t↓0

t log p(t, x , y) = −dM(x , y)2

2
, ∀ x , y ∈ M, (0.1)

and the convergence is uniformly for (x , y) ∈ K × K .
Moreover, for every connected bounded open set D ⊇ K with
smooth boundary,

lim
t↓0

t logPx (τD > t) = −1

2
dM(x , ∂D)2, ∀ x ∈ K , (0.2)

and the convergence is uniformly for x ∈ K Here
τD(γ) := inf{t > 0; γ(t) /∈ D}, dM(x , ∂D) := infz∈∂D dM(x , z).
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Small time

The following statements hold [Chen-xml-Wu 18+]

(1) Suppose x , y ∈ M and x /∈ CutM(y), then

lim
t↓0

t∇x log p(t, x , y) = −∇x

(
d2
M(x , y)

2

)
. (0.3)

Here the convergence is uniformly for x ∈ K̃ with K̃ being a
compact subset of CutcM(y).

(2) Suppose K ⊂ M is a compact subset of M, then there exists a
positive constant C1(K ), (which depends on K ) such that

|∇x log p(t, x , y)|TxM
≤ C1

(
dM(x , y)

t
+

1√
t

)
, x , y ∈ K , t ∈ (0, 1].

(0.4)

Use a perturbation result on the canonical SDE on the orthonormal
frame bundle.
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Small time Hessian heat kernel/ no curvature conditions

Assume complete and stochastic complete. The following
statements hold [[Chen-xml-Wu 18+]

(1) Suppose y ∈ M and K̃ ⊂ CutcM(y) is a compact set, then

lim
t↓0

sup
x∈K̃

∣∣∣∣t∇2
x log p(t, x , y) +∇2

x

(
d2
M(x , y)

2

)∣∣∣∣
TxM⊗TxM

= 0.

(0.5)
(2) For every y ∈ M and r0 ∈ (0, inj(y)), there exist positive

constants t0(y , r0) and C1(y , r0), such that∣∣t∇2
x log p(t, x , y) + ITxM

∣∣
TxM⊗TxM

≤ C1

(
dM(x , y) +

√
t
)
, x ∈ By (r0), t ∈ (0, t0],

(0.6)
where ITxM is identical map on TxM.

(3) Suppose K ⊂ M is a compact subset of M, then there exists a
positive constant C2(K ), such that∣∣∇2

x log p(t, x , y)
∣∣
TxM⊗TxM

≤ C2

(
d2
M(x , y)

t2
+

1

t

)
, x , y ∈ K , t ∈ (0, 1].

(0.7)
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Crucial lemma 1

For any m ∈ N, there exists a stochastic process(vector fields)
lm : [0, 1]× C ([0, 1];M)→ [0, 1], such that [Chen-xml-Wu 18+]

(1) lm(t, γ) =

{
1, t ≤ τm−1(γ) ∧ 1
0, t > τm(γ)

.

(2) Given any x ∈ Dm, lm(t, γ) is
Fγt := σ{γ(s); s ∈ [0, t]}-adapted and lm(·, γ) is absolutely
continuous for µx -a.s. γ ∈ Px(M).

(3) For every positive integer k ∈ Z+, we have

sup
x∈Dm

∫
Px (M)

∫ 1

0
|l ′m(s, γ)|kds µx(dγ) ≤ C1(m, k) (0.8)

for some positive constant C1(m, k) (which may depends on
m and k).
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Crucial Lemma 2: embed open subsets in compact
manifolds

We construct a family of functions fm defining a sequence of
bounded connected open set {Dm}∞m=1:
Dm = {x ∈ M; fm(x) > 0}. Then there exists a compact
Riemannian manifold M̃m such that Dm is isometrically embedded
into M̃m as an open set (i.e. we could view Dm ⊂ M̃m as an open
subset of M̃m).
Given a compact subset K ⊂ M and a constant L > 1 (which
could be taken to be arbitrarily large), then there exist positive
constants m0(K , L) ∈ Z+, t0(K , L) and C1(K , L) such that
K ⊂ Bo(2m0 − 2) ⊂ Dm0 ⊂ M̃m0 , and for all t ∈ (0, t0],

|p(t, x , y)− pM̃m0
(t, x , y)| ≤ C1e

− L
t ,

|t∇x log p(t, x , y)− t∇x log pM̃m0
(t, x , y)|TxM ≤ C1e

− L
t ,∣∣∣t∇2

x log p(t, x , y)− t∇2
x log pM̃m0

(t, x , y)
∣∣∣
TxM⊗TxM

≤ C1e
− L

t ,
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Leading to

On complete and stochastically complete manifolds [ Chen-xml-Wu
18+], Construct a cut off process:

1 Brownian bridge measure exists (defined to terminal value).

2 Existence of a O-U process on loop space

3 Local integration by part formula on path and loop spaces:
For every F in the domain of a specific local Dirichlet form,
and h ∈ H0, we have

Eo,o [dF (U·h(·))]

= Eo,o

[
F (γ)

(∫ 1

0

〈
h′(t) +

1

2
Ric
Ut

h(t)−
(
∇2 log p (1− t, γ(t), o)

)
Ut

h(t), dbt

〉)]
.

4 local log sobloev.
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Higher order Feynman-Kac formulas
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The Feynman-Kac Formula and Brownian Bridges

Path Integration formula [ Kac, Feynman, Simon]:

PV
t f (x) = E

(
f (xt)e

∫ t
0 V (xs)ds

)
.

If p(t, x , y) is the kernel for L, then

pV (t, x , y) = p(t, x , y)E
(
e
∫ t

0 V (ys)ds
)

where yt is the Brownian bridge (L-bridge) from x , ending at y at
time t .
What happens if we were to differentiate the equation w.r.t. to the
initial data? The Brownian bridge ys solves:

dyt = X (yt) ◦ dBt + X0(yt)dt +∇ log p(T − t, yt , y) dt.

The derivative flow solves:

dVt = ∇X (Vt)◦dBt +∇X0(Vt)dt +∇2 log p(T − t, yt , y)(Vt , · dt.
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1st Order Feynman-Kac Formula

Lemma [xml-Thompson’16] Assume Ricci − 2Hessh is bounded

from below. Then, for VT = e−
∫ T

0 V (xs)ds , and f ∈ L2 ∩ L∞,

dPh,V
T f (v) =

1

t
E

[
VT f (xT )

∫ t

0
〈Ws(v), usdBs〉

]
− 1

t
E

[
VT f (xT )

∫ t

0

∫ r

0
dV (Ws(v)) ds dr

]
.

Remark. This formula could have been deduced from known
extrinsic formulas in [Elworthy-xml’94], where the derivative flow
was used. We avoid some unnecessary conditions.
A formula without differentiating V is also available.
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Estimates

dPh,V
T f (v) =

1

t
E

[
VT f (xT )

∫ t

0
〈Ws(v), usdBs〉

]
− 1

t
E

[
VT f (xT )

∫ t

0

∫ r

0
dV (Ws(v)) ds dr

]
.

Lemma 2. [xml-Thompson’16]

|∇ logPh,V
t f |x0 ≤

1√
t

(
2C1Ht(f , x0)

) 1
2

+ t|∇V |∞C2, t > 0.

Ht(f , x0) := E

[
f (xt)Vt

Ph,V
t f (x0)

log

(
f (xt)Vt

Ph,V
t f (x0)

)]
.

|∇ log ph,V
t |x0 ≤

1√
t

√
2C1

(
sup
y∈M

log
ph
t (y , y0)

ph
2t(x0, y0)

+ 2t(supV − inf V )
) 1

2
+ t|∇V |∞C2.

Given Harnack inequality Gaussian kernels implies good estimates.
P. Li, S.-T. Yau, Grigoryhan, Saloffe-Coste, Ndumn,... Bakry-Qian,
Wang, Chen, Kumagai,..... 30 / 36



Precise Gaussian

Corollary. Assume in addition, Φh − V ≤ c and
|∇h|+ |∇ log J| ≤ c . Then

|∇ph,VT (·, y0)|x0

kT (x0, y0)

≤ Ceh(y0)−h(x0)|βhT |∞
(
d(x0, y0)

T
+ |∇h|∞ +

1√
T

+ T |dV |∞
)
.

Local estimates: very standard even for hypoelliptic operators.
S.-T. Yau, P. Li, Cheng, Gromov, Taylor,...
Global estimates are used in analysis on loop spaces: Sheu,
Malliavin-Stroock, ...
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Doubly damped stochastic parallel transport equation
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doubly damped stochastic parallel transport

We introduce a doubly damped stochastic parallel transport driven
by R and Θ (stochastic integration )

〈Θ(w1)w2,w3〉

=
〈(
∇w3Ric

]
)

(w2)−
(
∇w2Ric

]
)

(w3),w1

〉
−
〈(
∇w1Ric

]
)

(w2),w3

〉
.

(
D

dt

)
W

(2)
t =

(
−1

2
Ric] +∇dh

)
(W

(2)
t )

+
1

2
Θ (Wt(v2))Wt(v1) +R(d{xs},Wt(v2))Wt(v1),
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HessPt f (v1, v2) =
4

t2
E

[
f (xt)

∫ t

t/2
〈d{xs},Ws(v1)〉

∫ t/2

0
〈d{xs},Ws(v2)〉

]

+
2

t
E

[
f (xt)

∫ t/2

0
〈d{xs},W (2)

s 〉

]
.

A formula in [Elworthy-xml’ 94] using Derivative flow and second
order derivatives, [Arnaudon-Plank-Thalmaier’03] has a local
intrinsic version, another version for the Laplacian in
[Elworthy-xml’98].
A formula with potential V and for manifolds with a pole can be
reduced. Estimates!.
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Second Order Feynman-Kac Formula

[Second Order Feynman-Kac Formula, xml17] Assume C1. Let V
be a bounded Hölder continuous function. Then for any
f ∈ Bb(M;R),

HessPh,V
t f (v1, v2) = e−V (x0)tE [f (xt)Nt ]

+ e−V (x0)tE

[
f (xt)

2

t

∫ t/2

0
〈d{xs},W (2)

s (v1, v2)〉

]

+ e−V (x0)t

∫ t

0
E

[
f (xt)

2Vt−r ,t
t − r

∫ (t−r)/2

0
〈d{xs},W (2)

s (v1, v2)〉

]
dr

+ e−V (x0)t

∫ t

0
E [f (xt)Vt−r ,tNt−r ] dr .

A local formula are obtained in Chen-xml-Wu 18+, integration by
parts formula leads to an infinite dimensional process on the path
space...

35 / 36



Open Question

Genralize this to the semi-elliptic hypoelliptic case, and /or to time
dependent potential.
Example:

dxt = yt ,

dyt = −xtdt + dBt .
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