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1 Solutions of an evolution equation in an ab-

stract separable Banach space

This notes contain well-known results on the equivalence of several concepts
of solution to an evolution equation. They are based on personal notes by
Stphane Mischler [2].

We are interested in defining the concept of solution to the following
evolution equation in a certain complete separable normed space X:

d

dt
f = F, (1)

where F : (0, T ) → X (for some 0 < T ≤ +∞). We also want to define a
solution of the initial value problem

d

dt
f = F (2)

f(0) = f 0 (3)

for some f 0 ∈ X.1

There are many concepts of solution that occur naturally, and in many
situations one cannot just stick to one of them and study solutions in that
sense. It is good to be able to find solutions with strong differentiability,
but it might be difficult to prove their existence, so one usually needs to
find solutions in a weaker sense first. Actually, it may happen that some

1The theory developed here is valid for a general interval I ⊆ R instead of (0, T ) and
a point x0 ∈ Ī instead of 0, with minor modifications.
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problems have solutions in a weak sense but not strong solutions, so some of
the properties and behavior of the equation is lost if we only look at strong
solutions.

Here we will always suppose that F : (0, T ) → X is integrable. Under
this regularity requirement we will be able to prove that all the concepts
or solution of equation (1) or the initial value problem (2) defined below
are indeed the same one. We will make use of the theory of integration of
functions with values on a Banach space; for an introduction see [1].

Let us first state the different definitions of solution we will consider.
In the following, X is a complete separable normed space, T ∈ (0,+∞], f
is a function f : (0, T ) → X (with no particular regularity assumed) and
F : (0, T ) → X is in L1((0, T ), X). Here we mean a concrete function F and
not a class of functions in L1((0, T ), X), though the following definitions are
the same if F is changed in a set of measure zero. We will denote the norm
of X by ‖·‖.

Some of the definitions below have a distinctive name (such as “mild
solution” or “weak solution”) and others are stated simply as “solutions”. We
will always make clear which definition we are talking about when referring
to these.

1.1 Definitions of solution to the equation

Definition 1.1 (Mild solution). We say that f : (0, T ) → X is a mild solu-
tion (or solution in the sense of semigroups) to equation (1) if f is continuous
in the norm topology and

f(t2) = f(t1) +

∫ t2

t1

F (s) ds for all t1, t2 ∈ (0, T ). (4)

Definition 1.2 (Mild solution, no regularity). We say that f : (0, T ) →
X is a solution to equation (1) if

f(t2) = f(t1) +

∫ t2

t1

F (s) ds for almost all (t1, t2) ∈ (0, T )2. (5)

Definition 1.3 (Solution in the sense of moments). We say that f :
(0, T ) → X is a solution in the sense of moments to equation (1) if f is
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weakly continuous and

〈f(t2), φ〉 = 〈f(t1), φ〉 +

∫ t2

t1

〈F (s), φ〉 ds for all t1, t2 ∈ (0, T ), φ ∈ X ′.

(6)

Remark 1.4. By weakly continuous we mean that f : (0, T ) → X is continu-
ous when the weak topology in X is considered (and the usual one in (0, T )).
This is equivalent to the statement that t 7→ 〈f(t), φ〉 is continuous for all
φ ∈ X ′.

Remark 1.5. Note that, for all φ ∈ X ′, s 7→ 〈F (s), φ〉 is integrable in (0, T ),
since F : (0, T ) → X is integrable (see [1], part I, III.2.19 (c)).

Definition 1.6 (Solution in the sense of moments, no regularity).
We say that f : (0, T ) → X is a solution to equation (1) if for all φ ∈ X ′ it
holds that

〈f(t2), φ〉 = 〈f(t1), φ〉 +

∫ t2

t1

〈F (s), φ〉 ds for almost all (t1, t2) ∈ (0, T )2.

(7)

Definition 1.7. Let D ⊆ X ′ be dense in the weak-∗ topology. We say that
f : (0, T ) → X is a solution to equation (1) if the conditions in definition 1.6
hold for for all φ ∈ D (instead of all φ ∈ X ′).

Definition 1.8 (Weak solution). We say that f : (0, T ) → X is a weak
solution to equation (1) if for all φ ∈ X ′ we have that t 7→ 〈f(t), φ〉 is locally
integrable in (0, T ) and
∫ T

0

〈f(s), φ〉
d

ds
ψ(s) ds = −

∫ T

0

〈F (s), φ〉ψ(s) ds for all φ ∈ X ′ ψ ∈ C∞

c (0, T ).

(8)

Definition 1.9. Let D ⊆ X ′ be dense in the weak-∗ topology. We say that
f : (0, T ) → X is a solution to equation (1) if the conditions in definition 1.8
hold for for all φ ∈ D (instead of all φ ∈ X ′).

1.2 Definitions of solution to the initial value problem

The previous definitions can be easily modified to give definitions of solution
to the initial value problem (2); we state them here in the same order as
before; note that the conditions in the definitions below clearly include those
in the corresponding definition from the previous section.
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Definition 1.10 (Mild solution). We say that f : (0, T ) → X is a mild
solution (or solution in the sense of semigroups) to the initial value problem
(2) if f is continuous in the norm topology and

f(t) = f 0 +

∫ t

0

F (s) ds for all t ∈ (0, T ). (9)

Definition 1.11 (Mild solution, no regularity). We say that f : (0, T ) →
X is a solution to the initial value problem (2) if

f(t) = f 0 +

∫ t

0

F (s) ds for almost all t ∈ (0, T ). (10)

Definition 1.12 (Solution in the sense of moments). We say that f :
(0, T ) → X is a solution in the sense of moments to the initial value problem
(2) if f is weakly continuous and

〈f(t), φ〉 =
〈

f 0, φ
〉

+

∫ t

0

〈F (s), φ〉 ds for all t ∈ (0, T ), φ ∈ X ′. (11)

Definition 1.13 (Solution in the sense of moments, no regularity).
We say that f : (0, T ) → X is a solution to the initial value problem (2) if
for all φ ∈ X ′ it holds that

〈f(t), φ〉 =
〈

f 0, φ
〉

+

∫ t

0

〈F (s), φ〉 ds for almost all t ∈ (0, T ). (12)

Definition 1.14. Let D ⊆ X ′ be dense in the weak-∗ topology. We say that
f : (0, T ) → X is a solution to the initial value problem (2) if the conditions
in definition 1.13 hold for for all φ ∈ D (instead of all φ ∈ X ′).

Definition 1.15 (Weak solution). We say that f : (0, T ) → X is a weak
solution to the initial value problem (1) if for all φ ∈ X ′ we have that
t 7→ 〈f(s), φ〉 is locally integrable in (0, T ) and

∫ T

0

〈f(s), φ〉
d

ds
ψ(s) ds = −

〈

f 0, φ
〉

ψ(0) −

∫ T

0

〈F (s), φ〉ψ(s) ds

for all φ ∈ X ′ ψ ∈ C1
c ([0, T )). (13)

Definition 1.16. Let D ⊆ X ′ be dense in the weak-∗ topology. We say that
f : (0, T ) → X is a solution to the initial value problem (2) if the conditions
in definition 1.15 hold for for all φ ∈ D (instead of all φ ∈ X ′).
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The following definitions are easily seen to be equivalent to definitions
1.10 and 1.12, respectively:

Definition 1.17. We say that f : (0, T ) → X is a mild solution (or solution
in the sense of semigroups) to the initial value problem (2) if it is a mild
solution to equation (1) and ‖f(t) − f 0‖ → 0 when t→ 0+.

Definition 1.18. We say that f : (0, T ) → X is a solution in the sense of
moments to the initial value problem (2) if it is a solution in the sense of
moments to equation (1) and f(t) ⇀ f 0 in the weak topology when t→ 0+.

1.3 Existence of solutions

Theorem 1.19. There exists a mild solution f to equation (1), given by the
primitive of F :

f(t) :=

∫ t

0

F (s) ds.

Another function g is a mild solution if and only if it differs from f by a
constant: for some x ∈ X it happens that f(t) − g(t) = x for all t ∈ (0, T ).

The only mild solution to the initial value problem (2) is given by

h(t) := f 0 +

∫ t

0

F (s) ds.

Proof. It is obvious from the properties of the integral that the f defined
in the statement is a mild solution to equation (1). If g is any other mild
solution, fix t1 ∈ (0, T ); it is clear from (4) written for f and g that the
difference between f(t2) and g(t2) is f(t1)−g(t1) for all t2 ∈ (0, T ); conversely,
adding a constant in X to a solution gives another solution. Hence, the
function h defined in the theorem is a solution and also a mild solution of
the initial value problem (2) (according to definition 1.10).

The solution to the initial value problem is unique, as we have proved
that any other solution differs from it by a constant x 6= 0 and so does not
satisfy equation (9).

1.4 Equivalence of the definitions of solution

Under the previous assumptions, these definitions are equivalent: a solution
in the sense of any of them is also a solution in the sense of all the others,
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possibly after being changed in a set of measure zero. The key assumption
is the regularity of the function F in equation (1); some of these solutions
make sense when F is less regular and then it may happen that not all of
these concepts are equivalent; however, they are when F is integrable. Let
us prove this.

Theorem 1.20 (Equivalence of the concepts of solution to the equa-
tion). If a function f : (0, T ) → X is a solution to equation (1) in the sense
of any of the previous definitions, then it can be modified in a set of measure
zero so that it becomes a solution to equation (1) in the sense of all of the
previous definitions.

In the following proof we say that a given definition implies some other
if a solution in the sense of the former must also be a solution in the sense
of the latter. Though it looks long, the only difficulty in it lies in going “up
hill” to show that a weak solution is a.e. equal to a strong solution; the rest
— proving that every solution implies the next one (in the order given here)
— is done by means of straightforward arguments.

Proof. Definition 1.1 includes definition 1.2. Conversely, if f is a solution in
the sense of definition 1.2, then fix t1 ∈ (0, T ) such that (5) holds for almost
all t2 ∈ (0, T ); we see that f(t) coincides with f̃(t) := f(t1) +

∫ t

t1
F (s) ds for

almost all t ∈ (0, T ), and this latter function is a mild solution as we know
from theorem 1.19.

A solution according to definition 1.1 is also a solution according to 1.3:
the regularity of f is already given, and (6) can be obtained by applying φ

to the equality (4) (recall that
〈

∫ t2

t1
F (s) ds, φ

〉

=
∫ t2

t1
〈F (s), φ〉 ds; see for

example [1], part I, III.2.19 (c)).
Definition 1.3 clearly implies definition 1.6; definition 1.6 implies 1.7.

Actually, definition 1.7 also implies definition 1.6; this can be seen by taking
a sequence {φn} of elements in D that converges weak-∗ to a given φ ∈ X ′.
One can pass to the limit in equation (7) (written for φn) by using the usual
dominated convergence theorem for real functions, as ‖φn‖ is bounded by
some constant K > 0 and thus |〈F (s), φ〉| ≤ K ‖F (s)‖, which is integrable
in s.

It is easy to see that definition 1.6 implies definition 1.8: let f be a
solution according to definition 1.6. Pick any φ ∈ X ′ and fix t1 ∈ (0, T ) so
that (7) holds for almost all t2 ∈ (0, T ). This shows that t2 7→ 〈f(t2), φ〉 is
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locally integrable in (0, T ) (actually, it is equal a.e. to the right hand side, a
continuous function).

Now take any ψ ∈ C1
c (0, T ) and fix t1 < inf supp φ such that (7) holds for

almost all t2 ∈ (0, T ). Multiply (7) by d
dt
ψ and integrate:

∫ T

0

〈f(s), φ〉
d

dt
ψ(s) ds

= 〈f(t1), φ〉

∫ T

0

d

dt
ψ(s) ds+

∫ T

0

∫ s

t1

〈F (τ), φ〉
d

dt
ψ(s) dτ ds

=

∫ T

t1

∫ s

t1

〈F (τ), φ〉
d

dt
ψ(s) dτ ds

=

∫ T

t1

∫ T

τ

〈F (τ), φ〉
d

dt
ψ(s) ds dτ

=

∫ T

t1

〈F (τ), φ〉

∫ T

τ

d

dt
ψ(s) ds dτ

= −

∫ T

t1

〈F (τ), φ〉ψ(τ) dτ = −

∫ T

0

〈F (τ), φ〉ψ(τ) dτ.

Definition 1.8 evidently implies 1.9; 1.9 also implies 1.8, as we can use
the same argument used to prove that definition 1.7 implies definition 1.6.

Let us gather what we have proved. If we write “definition A implies
definition B” as A =⇒ B and “a solution in the sense of definition A is a.e.
equal to a solution in the sense of definition B” as A 99K B, then we have
that 1.1 =⇒ 1.3 =⇒ 1.6 =⇒ 1.8. Also, 1.1 =⇒ 1.2 99K 1.1, 1.6 ⇔ 1.7
and 1.8 ⇔ 1.9. If we prove that a solution in the sense of definition 1.8 is
equal to a solution in the sense of definition 1.1 a.e. (1.8 99K 1.1), then the
theorem is proved.

So, let f be a weak solution to equation (1), and take φ ∈ X ′. Equation
(8) means that

d

dt
〈f(t), φ〉 = 〈F (t), φ〉 in D′(0, T ).

As t 7→ 〈F (t), φ〉 is integrable on (0, T ), from the theory of distributions we
know that there exists C ∈ R and a set Eφ ⊆ (0, T ) such that (0, T ) \Eφ has
measure zero and

〈f(t), φ〉 = C +

∫ t

0

〈F (s), φ〉 ds for all t ∈ Eφ.
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Hence, for all (t1, t2) ∈ Eφ × Eφ,

〈f(t2), φ〉 = 〈f(t1), φ〉 +

∫ t2

t1

〈F (s), φ〉 ds.

(We already have definition 1.6). The problem is that the set Eφ depends
on φ; if it was true for all φ and a fixed set E, then the last equality would
imply (5) (if a, b ∈ X are such that 〈a, φ〉 = 〈b, φ〉 for all φ ∈ X ′ then a = b;
apply this for a = f(t2), b = f(t1) +

∫ t2

t1
F (s) ds). To overcome this, take

{φn}n∈N a countable subset of X ′ which is dense in the weak-∗ topology on
X ′. This can be done because when X is separable (for the norm topology),
X ′ is separable for the weak-∗ topology (actually, every ball in X ′ is weak-∗
compact, and every ball is also metrizable; hence, the weak-∗ topology in
every ball is separable; see [1, theorems V.4.2, V.5.1, I.6.19]).2 Then the
argument above, applied to each φn, proves that with

E :=
⋂

n∈N

Eφn

we have that

〈f(t2), φn〉 = 〈f(t1), φn〉+

∫ t2

t1

〈F (s), φn〉 ds for all n ∈ N, (t1, t2) ∈ E×E.

(14)
Note that, E being the intersection of countably many sets whose comple-
ments have measure zero, (0, T ) \E has measure zero. Now, for any φ ∈ X ′

we can choose a sequence {φn(m)}m∈N which converges weak-∗ to φ and pass
to the limit in (14) with the help of the dominated convergence theorem (as
we did earlier in the proof) to obtain that

〈f(t2), φ〉 = 〈f(t1), φ〉+

∫ t2

t1

〈F (s), φ〉 ds for all φ ∈ X ′, (t1, t2) ∈ E×E.

This does imply, as explained above, the conditions in definition 1.2, and so
f coincides a.e. with a solution in the sense of definition 1.1. This finishes
the proof.

2Another way to see this: one can show that, given {xn} a countable dense subset of
X , the family of sets

{

φ ∈ X ′ | s < 〈φ, xni
〉 < r for i = 1, . . . , k

}

for r, s ∈ Q, k ∈ N, n1, . . . , nk ∈ N

forms a countable base for the weak-∗ topology in X ′.
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1.5 Equivalence of the definitions of solution to the
initial value problem

Theorem 1.21. If a function f : (0, T ) → X is a solution to the initial
value problem (2) in the sense of any of the definitions in section 1.2, then
it can be modified in a set of measure zero so that it becomes a solution to
the initial value problem in the sense of all of the definitions in section 1.2.

Proof. If f is a solution to the initial value problem (2) in the sense of any
of our definitions, then in particular it is a.e. equal to a solution to equation
(1) in the sense of any of the definitions 1.1–1.9, thanks to theorem 1.20.
Hence, it is a.e. equal to a solution which is continuous on (0, T ), which
we still denote by f . It is enough then to prove that a continuous function
f : (0, T ) → X which is a solution to the i.v.p. in the sense of any of the
definitions 1.10–1.16 is also a solution to the i.v.p. in the sense of all the
others.

It is easy to see, using very similar arguments to those in the proof of
theorem 1.20, that if f is continuous in the norm topology then every defini-
tion implies the next one, in the order given. The only difficulty is to show
that if f satisfies 1.16, then it satisfies 1.10. Let us prove this.

Observe first that f can be extended continuously to [0, T ). Take any
decreasing sequence tn → 0. As f is a mild solution to the equation (1), for
any m > n we have

‖f(tn) − f(tm)‖ ≤

∫ tn

tm

‖F (s)‖ ds ≤

∫ tn

0

‖F (s)‖ ds,

which tends to 0 when n → ∞. Hence, f(tn) is a Cauchy sequence, so it
is convergent in X (as X is complete). As this is true for any decreasing
sequence tn → 0, we know that f(t) has a limit when t → 0. Define f(0)
as this limit; this makes f : [0, T ) → X continuous. Taking the limit when
t1 → 0 in (4) we obtain that

f(t) = f(0) +

∫ t

0

F (s) ds for all t ∈ (0, T ),

so f is a solution of the initial value problem (2) with initial value f(0); we
need to show that f(0) = f 0. But we know definition 1.10 implies the rest
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of definitions, so in particular we have that

∫ T

0

〈f(s), φ〉
d

ds
ψ(s) ds = −〈f(0), φ〉ψ(0) −

∫ T

0

〈F (s), φ〉ψ(s) ds

for all φ ∈ D ψ ∈ C1
c ([0, T )).

As f is a solution of the initial value problem in the sense of definition 1.16,
the same is true with f 0 instead of f(0). Hence,

〈f(0), φ〉 =
〈

f 0, φ
〉

for all φ ∈ D.

This proves that f(0) = f 0.

2 Solutions of an evolution equation in L1

Let Ω be an open subset of RN and µ a positive Borel measure on Ω. We can
put X = L1(Ω, µ) (which we denote as L1(Ω), understanding the measure
µ) in the previous section and obtain several definitions of solution of an
evolution equation in L1(Ω), which have been proved to be equivalent when
the F in equation (1) is regular enough. Here we want to particularize the
definitions in this case and add another one when µ is finite on compact sets,
that of renormalized solution, which does not have a direct analogy in an
abstract Banach space.

Of course, definitions in the previous section do directly apply to the
case X = L1(Ω), but it is sometimes more convenient to phrase them in
slightly different terms: equality between functions in L1 is usually expressed
as equality a.e., and an integrable function F : (0, T ) → L1(Ω) is more
commonly regarded as a real integrable function on (0, T ) × Ω. We start by
stating this latter relationship precisely, after [1, theorem III.11.16]:

Theorem 2.1. Let 0 < T ≤ +∞ and (S,A, µ) be a positive measure space.
We consider the Lebesgue measure dt on (0, T ) and the product measure dt⊗µ
on (0, T ) × S.

1. If f̃ : (0, T ) → L1(S) is integrable, then there exists an integrable
function f : (0, T ) × S → R such that f(t, ·) = f̃(t) for almost all
t ∈ (0, T ).
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2. Let f : (0, T ) × S → R be an integrable function. Then the function
f̃ : (0, T ) → L1(S) defined for almost all t ∈ (0, T ) by f̃(t) := f(t, ·) is
integrable.

In any of these cases
∫ T

0
f(t, x) dt (which exists for almost all x ∈ S) is

a.e. equal to
∫ T

0
f̃(t) dt.

This enables us to speak interchangeably of integrable functions from
(0, T ) to L1(Ω) and integrable functions on (0, T ) × Ω.

Now we state definitions 1.1–1.9 in this particular case. Definitions of
solution of the initial value problem are the analogous modification of the
definitions in section 1.2 and are not explicitly given.

Below, Ω ⊆ RN is an open set and µ is a positive Borel measure on Ω
which is finite on compact sets.3 We always consider the Lebesgue measure
dt on (0, T ), the measure µ on Ω and the product measure dt⊗µ on (0, T )×Ω.
All integrals are taken with respect to these measures; integrals with respect
to µ will be indicated with dµ(x). As before, T ∈ (0,+∞]. Now, F :
(0, T )×Ω → R is a function in L1((0, T )×Ω), and again we mean a concrete
function F and not a class of functions in L1((0, T ) × Ω).

Definition 2.2 (Mild solution). We say that an integrable function f :
(0, T ) × Ω → R is a mild solution (or solution in the sense of semigroups)
to equation (1) if f is continuous in the norm topology (when viewed as a
function f : (0, T ) → L1(Ω) as specified in theorem 2.1) and for all t1, t2 ∈
(0, T ) one has that

f(t2, x) = f(t1, x) +

∫ t2

t1

F (s, x) ds for almost all x ∈ Ω. (15)

Definition 2.3 (Mild solution, no regularity). We say that f : (0, T )×
Ω → R is a solution to equation (1) if f(t, ·) is integrable for almost all
t ∈ (0, T ) and for almost all (t1, t2) ∈ (0, T )2 one has that

f(t2, x) = f(t1, x) +

∫ t2

t1

F (s, x) ds for almost all x ∈ Ω. (16)

3The condition that µ be finite on compact sets is imposed so that we can integrate all
continuous functions of compact support on Ω, a fact which is used later to define weak
solutions.
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Definition 2.4 (Solution in the sense of moments). We say that f :
(0, T )×Ω → R is a solution in the sense of moments to equation (1) if f(t, ·)
is integrable for all t ∈ (0, T ), f is weakly continuous (when viewed as a
function f : (0, T ) → L1(Ω)) and

∫

Ω

f(t2, x)φ(x) dµ(x) =

∫

Ω

f(t1, x)φ(x) dµ(x)+

∫ t2

t1

∫

Ω

F (s, x)φ(x) dµ(x) ds

for all t1, t2 ∈ (0, T ), φ ∈ L∞(Ω). (17)

Definition 2.5 (Solution in the sense of moments, no regularity).
We say that f : (0, T ) × Ω → R is a solution in the sense of moments to
equation (1) if f(t, ·) is integrable for almost all t ∈ (0, T ) and

∫

Ω

f(t2, x)φ(x) dµ(x) =

∫

Ω

f(t1, x)φ(x) dµ(x)+

∫ t2

t1

∫

Ω

F (s, x)φ(x) dµ(x) ds

for almost all (t1, t2) ∈ (0, T )2, φ ∈ L∞(Ω). (18)

Definition 2.6. Let D ⊆ L∞(Ω) be dense in the weak-∗ topology. We say
that f : (0, T ) × Ω → R is a solution to equation (1) if the conditions in
definition 2.5 hold for all φ ∈ D (instead of all φ ∈ L∞(Ω)).

Definition 2.7 (Weak solution). We say that f : (0, T )×Ω → R is a weak
solution to equation (1) if f(t, ·) is integrable for almost all t ∈ (0, T ), f is
locally integrable in (0, T ) × Ω and

∫ T

0

∫

Ω

f(s, x) ∂tϕ(s, x) dµ(x) ds = −

∫ T

0

∫

Ω

F (s, x)ϕ(s, x) dµ(x) ds

for all ϕ ∈ D((0, T ) × Ω). (19)

Remark 2.8. It is not difficult to see that this definition is equivalent to
definition 1.9 in our present case (X = L1(Ω)): first, note that all functions
in D((0, T )×Ω) are dt⊗µ-integrable (as µ is a Borel measure, and finite on
compact sets). If we take ϕ of the form ϕ(t, x) = φ(x)ψ(t) for φ, ψ C∞ and of
compact support, then one sees that the previous definition implies definition
1.9, as D(Ω) is weak-∗ dense in L∞(Ω) (seen as the dual space of L1(Ω, µ)).
Conversely, definition 1.9 implies this one: if we call Y the set spanned by
functions ϕ of the form ϕ(t, x) = φ(x)ψ(t) with φ ∈ D(Ω), ψ ∈ D(0, T ), then
one can uniformly approximate functions in D((0, T )×Ω) by functions in Y
so that ∂tϕ is also uniformly approximated.
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Remark 2.9. When defining solutions to the initial value problem, the con-
dition that f(t, ·) is integrable for almost all t ∈ (0, T ) can be omitted in
definitions 2.3 and 2.7, as it is implied by the fact that the initial condition
is in L1(Ω) and F : (0, T ) × Ω → R is integrable.

2.1 Renormalized solutions

The following definition is new:

Definition 2.10 (Renormalized solution). We say that a measurable
function f : (0, T ) × Ω → R is a renormalized solution of equation (1) if, in
the sense of distributions in (0, T ) × Ω,

d

dt
β(f) = β ′(f)F for all β ∈ C1,b(R). (20)

Remark 2.11. The notation C1,b(A) represents the set of all bounded functions
with continuous and bounded first-order derivatives in a set A ⊆ RN .

Remark 2.12. Note that the expressions in the definition make sense: β

being continuous and bounded, β(f) is measurable and bounded, so it is
a distribution; for similar reasons β ′(f) is in L∞((0, T ) × Ω), so β ′(f)F is
integrable on (0, T ) × Ω and in particular is a distribution.

Theorem 2.13. Let f be a renormalized solution to equation (1). If f is in
L1((0, T )×Ω), then f is almost everywhere equal to a solution to (1) in the
sense of all of our previous definitions.

Proof of theorem 2.13. We will prove that a renormalized solution f which
is also integrable must be a weak solution (which implies the result thanks
to theorem 1.20. Equation (20) means that for all ϕ ∈ D((0, T )× Ω)

−

∫ T

0

∫

Ω

β(f(s, x))∂tϕ(s, x) dµ(x) ds =

∫ T

0

∫

Ω

β ′(f(s, x))F (s, x)ϕ(s, x) dµ(x) ds.

(21)
Take βn(s) =

∫ s

0
ρ( y

n
) dy, with ρ a C1,b function which is 1 on [−1, 1], 0

outside [−2, 2] and is always between 0 and 1. Then obviously |βn(s)| ≤ |s|.
Now, β ′

n(f) converges pointwise to the constant 1 function and is uniformly
bounded in n. By the dominated convergence theorem, this enables us to
pass to the limit in the right hand side of equation (21) written for βn instead
of β. To pass to the limit in the left hand side, note that βn(f) converges
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pointwise to f and |βn(f)| ≤ |f |, which is integrable by hypothesis. Then,
the dominated convergence theorem finishes the proof.

Remark 2.14. The condition that f is integrable is necessary. For an example
of a renormalized solution which is not a weak or mild solution, take an F

which is, say, differentiable and of compact support, and consider a mild
solution f to (1), so that f is also differentiable. Then define

f̃(t, x) := f(t, x) + h(x) for all (t, x) ∈ (0, T ) × Ω,

where h : Ω → R is any non-integrable differentiable function. Then f̃ is
not integrable (so it is not a mild solution), but it is still a renormalized
solution. It is easy to prove this, as in this case we can operate directly. For
any φ ∈ C∞

c ((0, T ) × Ω) we have:

∫ T

0

∫

Ω

β(f̃)∂tφ dµ(x) dt = −

∫ T

0

∫

Ω

∂tβ(f̃)φ dµ(x) dt

= −

∫ T

0

∫

Ω

β ′(f̃)∂t(f + h)φ dµ(x) dt = −

∫ T

0

∫

Ω

β ′(f̃)Fφ dµ(x) dt.

Nevertheless, here we do not need to care much about the fact that renor-
malized solutions may not be solutions according to the other definitions,
as the distinction is not important for our purposes. In fact, we could have
included the condition that f be integrable in the definition of renormalized
solution; it was not done this way so that the definition is simpler and does
not include any apparently unnecessary conditions.

Theorem 2.15. Let f be a solution to equation in the sense of any of the
definitions 2.2– 2.7. Then, f is also a renormalized solution to equation (1).

Proof. As we know all definitions are equivalent, it is enough to prove that
a solution to equation (1) in the sense of definition 2.2 is also a renormalized
solution. To do this we will regularize our equation and then pass to the
limit, but let us first extend f and F to R × Ω so that calculations become
easier later: extend F to R × Ω by zero and define

f(t, ·) := f(T, ·) for t ≥ T,

f(t, ·) := f(0, ·) for t ≤ 0.

14



Note that f , thus extended, is a solution to d
dt
f = F on R (not only on (0, T )).

Now take ρn to be a regularizing sequence on R (for example, ρn(t) := 1
ǫ
ρ(1

ǫ
t)

with ρ a nonnegative C∞ function with integral 1) and define for (t, x) ∈
R × Ω:

Fn(t, x) := (F ∗tρn)(t, x) =

∫

∞

−∞

F (s, x)ρn(t−s) ds =

∫

∞

−∞

F (t−s, x)ρn(s) ds,

fn(t, x) := (f ∗t ρn)(t, x) =

∫

∞

−∞

f(s, x)ρn(t− s) ds =

∫

∞

−∞

f(t− s, x)ρn(s) ds.

Then fn is a solution to equation (1) with Fn instead of F :

fn(t1, x) − fn(t2, x) =

∫

∞

−∞

(f(t1 − s, x) − f(t2 − s, x))ρn(s) ds

=

∫

∞

−∞

∫ t1−s

t2−s

F (τ, x)ρn(s) dτ ds =

∫

∞

−∞

∫ t1

t2

F (τ − s, x)ρn(s) dτ ds

=

∫ t1

t2

∫

∞

−∞

F (τ − s, x)ρn(s) ds dτ =

∫ t1

t2

Fn(τ, x) dτ.

It is easy to see that fn(t, x) is differentiable in t for almost all x ∈ Ω
(as f(·, x) is integrable for almost all x ∈ Ω). In fact, as fn is a solution to
d
dt
fn = Fn, we know that

∂tfn(t, x) = Gn(t, x) for almost all (t, x) ∈ R × Ω.

Hence, we can write the following for any β ∈ C1,b(R) and almost all x ∈ Ω
(note that we have omitted the variables (t, x) below to make the expressions
more readable):

−

∫ T

0

∫

Ω

β(fn)∂tφ dµ(x) dt =

∫ T

0

∫

Ω

∂tβ(fn)φ dµ(x) dt

=

∫ T

0

∫

Ω

β ′(fn)∂tfnφ dµ(x) dt =

∫ T

0

∫

Ω

β ′(fn)Gnφ dµ(x) dt.

In order to pass to the limit in the previous expression, first observe that
fn → f in L1((0, T ) × Ω) (which is a common result on approximation by
convolution) and so β(fn) → β(f) in the same space, as

|β(fn) − β(f)| ≤ ‖β ′‖
∞
|fn − f | .
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This allows us to pass to the limit in the first term. For the last one, as
Gn → G in L1((0, T ) × Ω), we only need that

β ′(fn) → β ′(f) weak-∗ in L∞((0, T ) × Ω).

This is true because

• fn → f almost uniformly in compact sets (as it converges in L1),

• β ′, being continuous, is uniformly continuous in compact sets,

• so β ′(fn) → β ′(f) almost uniformly in compact sets, which implies
weak-∗ convergence in L∞.

Remark 2.16. One can define a concept of renormalized solution to the ini-
tial value problem (2) by imposing that (20) must be satisfied in the sense
of distributions on [0, T ) × Ω, with the appropriate boundary term which
involves the initial condition. Though we will not prove it here, a renormal-
ized solution to the initial value problem in this sense is always a solution in
the sense of the rest of the definitions, as the condition that f be integrable
is implied if the initial condition is integrable. In this work, when we talk
about solutions of the initial value problem we mean solutions in the sense
of any of definitions 1.10– 1.16, which include o imply the condition that f
be integrable.

2.2 Some properties of renormalized solutions

In this section, f ∈ L1((0, T ) × Ω) will always be a mild solution to (1) (so
it is a solution in the sense of all other definitions, including definition 2.10
of renormalized solutions).

We want to prove that, thanks to the assumed regularity of F , these
solutions satisfy (20) in a stronger sense and for more general β than C1,b

functions. To be precise, what we want to prove is the following:

Theorem 2.17. Let f be a mild solution to the initial value problem (2)
in the space X = L1(Ω). Then for all piecewise differentiable β : R → R
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such that β ′(f)F ∈ L1((0, T ) × Ω) and β(f 0) ∈ L1(Ω) it happens that β(f) :
(0, T ) → L1(Ω) is continuous in the norm topology and

β(f(t)) = β(f 0) +

∫ t

0

β ′(f(s))F (s) ds for all t ∈ (0, T ). (22)

(This is, β(f) is a mild solution of the initial value problem d
dt
g = β ′(f)F ,

g(0) = β(f 0); note that this is stronger than (20)). As a consequence, for all
ψ ∈ L∞(Ω), we have that

∫

Ω
β(f)ψ dµ(x) is absolutely continuous on [0, T )

and
d

dt

∫

Ω

β(f)ψ dµ(x) =

∫

Ω

β ′(f)Fψ dµ(x).

As the concept of being “piecewise” something might differ slightly from
place to place, we state ours here:

Definition 2.18. Take an interval I ⊂ R. A function h : I → R is said to be
piecewise continuous if there is a finite set of points x1 < x2 < · · · < xN ∈ I

such that

• h is continuous on I \ {x1, . . . , xN},

• both limx→x+

i

h(x) and limx→x−

i

h(x) exist and are finite for every i ∈
1, . . . , N ,

• and h has a finite limit at any endpoint of I which belongs to I.

Note that the value of h at the xi or at the endpoints of the intervals
plays no role in the definition, so it makes sense to speak about piecewise
continuous functions which are defined on all of I except for a finite number
of points.

A function h : I → R is piecewise C1 if it is continuous at every point,
differentiable at all but a finite number of points, and h′ is piecewise contin-
uous.

To prove the above theorem we will need to take several steps. First, let
us prove that (20) holds, in the sense of distributions, for a function β which
is piecewise C1, bounded and with a bounded derivative. Clearly it is enough
to prove it when β ′ has only one point of discontinuity.

The first problem is to define what the product β ′(f)F means: there is
a problem because there can be a point a where β ′(a) is not defined, and it

17



might happen that f(t, x) = a for all (t, x). We will see that, even if this
happens, the product β ′(f)F is always well defined; in our example, observe
that F would be zero almost everywhere and thus there is no problem in
defining the product. This is a version of Sard’s theorem: if f is constant
on a set so big that it is a problem to define β ′(f) there, then F is almost
everywhere zero on that set and there is no problem with the definition of
the product.

So take any β : R → R which is piecewise C1, is bounded and has a
bounded derivative which only has one point of discontinuity a ∈ R (where
β ′ is undefined). Approximate β by functions βn ∈ C1,b so that

• βn → β uniformly,

• β ′

n(s) → β ′(s) for any s 6= a,

• β ′

n(a) → ω for some ω ∈ R.

Note that we can find such an approximation for any ω we like. This means
that β ′

n → γ pointwise, where

γ(s) :=

{

β ′(s) for s 6= a

ω for s = a

For βn, we know that (20) holds: for any ϕ ∈ C∞

c ((0, T ) × Ω),

−

∫ T

0

∫

Ω

βn(f(s, x))∂tϕ(s, x) dµ(x) ds =

∫ T

0

∫

Ω

β ′

n(f(s, x))F (s, x)ϕ(s, x) dµ(x) ds.

Thanks to the convergence of βn we can pass to the limit and say that

−

∫ T

0

∫

Ω

β(f(s, x))∂tϕ(s, x) dµ(x) ds =

∫ T

0

∫

Ω

γ(f(s, x))F (s, x)ϕ(s, x) dµ(x) ds.

(23)
But we can obtain the same with a different value of ω. As this only affects
the right hand side, we deduce that its value is independent of ω, and thus

∫ T

0

∫

Ω

χf=a(s, x)F (s, x)ϕ(s, x) dµ(x) ds = 0.

(Here, χf=a represents the characteristic function of the set {(s, x) ∈ (0, T )×
Ω | f(s, x) = a}). As ϕ is arbitrary, this means that

χf=aF is zero almost everywhere. (24)
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As we can change our β, the latter affirmation must be true for any a ∈ R.
This enables us to state the following:

Lemma 2.19. Let β : R → R be a piecewise C1 function which is bounded
and has a bounded derivative. Then the product β ′(f)F is defined almost
everywhere on (0, T )× Ω and is an integrable function which is independent
of the values of β ′ at its points of discontinuity.

With this, we can substitute γ in (23) by β ′(f) (as we know the resulting
product does not depend on the value ω at the point of discontinuity) and
obtain the following:

Proposition 2.20. Let β : R → R be a piecewise C1 function which is
bounded and has a bounded derivative. Then

∂tβ(f) = β ′(f)F in D′((0, T ) × Ω). (25)

In fact, the above holds in a stronger sense:

β(f(t)) = β(f 0) +

∫ t

0

β ′(f(s))F (s) ds for all t ∈ (0, T ).

Proof. It only remains to prove that the stronger version holds. As β ′(f)F
is locally integrable, we already know that β(f) is a weak solution to the
initial value problem d

dt
g = β ′(t)F (t) (see remark 2.9); as all our definitions

are equivalent, it is also a mild solution to this initial value problem, which
proves the result.

Proof of theorem 2.17. We have to prove that the previous proposition is still
true when β : R → R is a piecewise C1 function such that both β(f 0) and
β ′(f)F are integrable (in Ω and (0, T ) × Ω, respectively; remember that we
always use the measure µ on Ω).

If β is such a function, we can approximate it by functions βn which are
piecewise C1 and of compact support such that

• |βn| ≤ |β|,

• βn is equal to β on [−n, n],

• |β ′

n| ≤ 1 on R \ [−n, n].
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We know that the proposition holds for βn:

βn(f(t)) = βn(f 0) +

∫ t

0

β ′

n(f(s))F (s) ds for all t ∈ (0, T ). (26)

By the monotone convergence theorem (as β(f 0) is integrable), the first term
in the right hand side converges to β(f 0) in L1(Ω). Let us see that the second
term also converges in L1(Ω): for an integer n, consider the set

En := {(t, x) ∈ (0, T ) × Ω | |f(t, x)| ≥ n}.

The dt⊗µ-measure of the set En tends to 0 as n→ ∞, as f is integrable on
(0, T ) × Ω. Also, we have that

∫

Ω

∫ t

0

|β ′

n(f(s)) − β ′(f(s))| |F (s)| ds dµ =

∫

En

|β ′

n(f(s)) − β ′(f(s))| |F (s)| ds dµ

≤

∫

En

|β ′

n(f(s))| |F (s)| ds dµ+

∫

En

|β ′(f(s))| |F (s)| ds dµ

≤

∫

En

|F (s)| ds dµ+

∫

En

|β ′(f(s))| |F (s)| ds dµ.

The previous expression tends to 0 as n→ ∞. Hence,

∫ t

0

β ′

n(f(s))F (s) ds→

∫ t

0

β ′(f(s))F (s) ds in L1(Ω).

Then, we deduce that the left hand side of (26) converges in L1(Ω) as n→ ∞;
as it converges pointwise a.e., we know it converges in L1(Ω) to β(f(t)).
Passing to the limit in (26) we finally obtain that

β(f(t)) = β(f 0) +

∫ t

0

β ′(f(s))F (s) ds for all t ∈ (0, T ).

This finishes the proof. Note that the second part of theorem 2.17 follows
from the first one, as we have proved that β(f) is a mild solution to the
equation d

dt
g = β ′(f)F , and hence also a solution in the sense of moments.

20



3 About this text

This document has been written by José Alfredo Cañizo, based on notes by
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The latest version should be at http://www.ugr.es/~ozarfreo/tex .

You can use this work under the terms of the Creative Commons license
which can be found at

http://creativecommons.org/licenses/by-nc-sa/1.0/.
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