The lemma of de la Valleé-Poussin

27 April 2006

Here you will find a version of the classical lemma of de la Vallée-Poussin with a proof; a similar one can be found in [1].

Proposition 1. Let μ be a positive Borel measure on $(0,+\infty)$, and $f:(0,+\infty)\to\mathbb{R}$ a nonnegative μ -integrable function. Then there is a measurable function $\Phi:[0,+\infty)\to[0,+\infty)$ which is increasing, such that $\lim_{y\to\infty}\Phi(y)=\infty$, and

$$\int_0^\infty \Phi f \mu < +\infty.$$

In addition, the function Φ can be chosen so that it is strictly increasing, $\Phi(0) = 0$, Φ is C^{∞} , concave, and such that $\Phi(y) \leq y$ for all $y \geq 0$.

If $G: [0, +\infty) \to \mathbb{R}$ is a nonnegative function such that $\lim_{y\to\infty} G(y) = +\infty$ and, for some $\epsilon > 0$ and all $y \in [0, \epsilon]$, $G(y) \ge \epsilon y$, then Φ can be also chosen to be less than G.

Proof. Define

$$F(x) := \int_{x}^{\infty} f\mu$$

which is a decreasing function and tends to zero as $x \to \infty$ (as f is integrable). Define

$$a_n := \inf\{x > 0 \mid F(x) < 1/n^2\} \in \mathbb{R}, \quad n \ge 1,$$

and consider the increasing sequence $\{x_n\}_{n\geq 0}$ given by

$$x_0 := 0$$

 $x_{n+1} := \max\{x_n + 1, a_{n+1} + 1\}.$

The point of this sequence is that $x_n \to \infty$ when $n \to \infty$ (which is not necessarily true of a_n) and that

$$F(x_n) \le \frac{1}{n^2}.$$

Finally, we can define ϕ :

$$\chi_n := \chi_{[x_n, \infty)} \quad \text{for } n \ge 0$$

$$\phi := \sum_{n=0}^{\infty} \chi_n.$$

The function ϕ is well defined because for every x > 0, $\phi(x)$ is given by a finite sum. Actually, we could define ϕ equivalently as

$$\phi(x) = n + 1$$
 for $x \in [x_n, x_{n+1}), n \ge 0$.

It is clear that $\lim_{x\to\infty} \phi(x) = \infty$, as $\phi(x) > n+1$ for $x > x_n$. Also, the integral of ϕf is finite because

$$\int_0^{\infty} \phi f \mu = \int_0^{\infty} \left(\sum_{n=0}^{\infty} \chi_n \right) f \mu = \sum_{n=0}^{\infty} \int_0^{\infty} \chi_n f \mu = \sum_{n=0}^{\infty} F(x_n) \le \sum_{n=0}^{\infty} \frac{1}{n^2} < +\infty.$$

(The monotone convergence theorem justifies the interchange of sums and integral here.)

Now, let us find a function Φ in these conditions, which is also concave and strictly increasing, with $\Phi(0) = 0$ and $\Phi(y) \leq y$ for $y \geq 0$. With the help of ϕ and the above sequence $\{x_n\}$, we will define Φ recursively as follows:

$$\begin{aligned} d_0 &:= 1; \\ \Phi(0) &= 0; \\ d_{n+1} &:= \min \left\{ d_n, \frac{n+1-\Phi(x_n)}{x_{n+1}-x_n} \right\} & \text{for } n \geq 0 \\ \Phi(x) &:= \Phi(x_n) + d_{n+1}(x-x_n) & \text{for } n \geq 0, \quad x \in [x_n, x_{n+1}]. \end{aligned}$$

First, note that Φ is continuous and $\Phi(0) = 0$ by definition. Its derivative on the interval (x_n, x_{n+1}) is d_{n+1} ; as $\{d_n\}$ is decreasing and positive, Φ is concave and strictly increasing, and as $d_0 = 1$, we have $\Phi(y) \leq y$ for $y \geq 0$.

Figure 1: Definition of Φ . The step function is ϕ , and the piecewise linear one is Φ . The scales on the axes are not the same.

Also, $\Phi(x)$ is smaller than $\phi(x)$, as for x on the interval $[x_n, x_{n+1})$ $(n \ge 0)$ one has

$$\Phi(x) = \Phi(x_n) + d_{n+1}(x - x_n)$$

$$\leq \Phi(x_n) + \frac{n + 1 - \Phi(x_n)}{x_{n+1} - x_n} (x_{n+1} - x_n) = n + 1 = \phi(x).$$

So the function Φf is still μ -integrable (as ϕf is). Note that the latter inequality, written for $x = x_{n+1}$, also proves that $\Phi(x_n) \leq n$ for $n \geq 0$. Also, $\lim_{x\to\infty} \Phi(x) = \infty$. To prove this, observe that d_n is always positive (as $\Phi(x_n) \leq n < n+1$), so Φ is strictly increasing. Consider the set of the n such that d_{n+1} is different from d_n ; if it is finite, then from some point on Φ has a constant positive slope and hence it tends to ∞ ; if it is infinite, then for all such n one has

$$\Phi(x_{n+1}) = \Phi(x_n) + d_{n+1}(x_{n+1} - x_n)$$

$$= \Phi(x_n) + \frac{n+1-\Phi(x_n)}{x_{n+1}-x_n}(x_{n+1}-x_n) = n+1.$$

(The equality holds because d_{n+1} is not d_n , so it must be the other quantity in the minimum). So $\lim_{x\to\infty} \Phi(x) = \infty$.

Now we can find a function Ψ with the same properties as Φ , and which is also \mathcal{C}^{∞} : extend Φ to all of \mathbb{R} as

$$\Phi(x) := d_1 x \quad \text{ for } x \le 0.$$

Take a "bump function" $\rho : \mathbb{R} \to \mathbb{R}$ which is \mathcal{C}^{∞} , nonnegative, with integral 1, symmetric about the x = 0 axis and with support contained in [-1/2, 1/2]. The function

$$\Psi(x) := (\Phi * \rho)(x) = \int_{-\infty}^{\infty} \Phi(x - y)\rho(y) \, dy = \int_{-\infty}^{\infty} \Phi(y)\rho(x - y) \, dy$$

is the one we are looking for: $\Psi(0) = 0$, as Φ is equal to d_1y on the interval [-1/2, 1/2] (recall that $x_1 \ge 1$) and ρ is symmetric, so

$$\Psi(0) = \int_{-\infty}^{\infty} \Phi(y)\rho(-y) \, dy = d_1 \int_{-1/2}^{1/2} y \rho(-y) \, dy = 0.$$

 Ψ is \mathcal{C}^{∞} , being a regularization of Φ by a \mathcal{C}^{∞} function; it is less than x, as for $0 \leq x \leq 1/2$ we know that $\Psi(x) = d_1 x \leq x$, and for $x \geq 1/2$ we have, using the symmetry of ρ and the bound for Φ ,

$$\Psi(x) = \int_{-\infty}^{\infty} \rho(y)\Phi(x-y) \, dy \le \int_{-\infty}^{\infty} \rho(y)(x-y) \, dy$$
$$= x \int_{-\infty}^{\infty} \rho(y) \, dy - \int_{-\infty}^{\infty} \rho(y)y \, dy = x.$$

(Note that $\Phi(x)$ is not less than x for x < 0, so this calculation does not work for $0 \le x < 1/2$). Ψ is concave and strictly increasing because Φ is, and convolution with a positive function preserves this; $\Psi(x)$ tends to ∞ when $x \to \infty$, and if we observe that for $x \ge 0$

$$\Psi(x) = \int_{-\infty}^{\infty} \Phi(y)\rho(x-y) \, dy \le \|\rho\|_{\infty} \, \Phi(x+1/2) \le \|\rho\|_{\infty} \, (\Phi(x) + \Phi(1/2)), \tag{1}$$

(note that Ψ is sublinear, as it is concave and $\Psi(0) = 0$, so $\Psi(x + y) \leq \Psi(x) + \Psi(y)$ for $x, y \geq 0$), then it is clear that Ψf is integrable on $(0, +\infty)$.

Finally, let us see that Ψ can be chosen to be less than a G in the conditions of the statement. Call

$$b_n := \inf\{x \in [0, +\infty) \mid G(x) > n+1\} < +\infty.$$

In the definition at the beginning of the proof, put $y_n := \max x_n, b_n + 1$, and define ϕ using y_n instead of x_n . Then,

$$\phi(x) \le G(x) + 1$$
 for $x \ge x_1$.

Define Φ accordingly (so $\Phi(x) \leq G(x) + 1$ for $x \geq x_1$), and choose $\delta > 0$ such that

$$\delta \leq \min\{1, 1/\|\rho\|_{\infty}, 1/(\|\rho\|_{\infty} \Phi(1/2))\}.$$

Then define Ψ as the convolution above, times δ :

$$\Psi := \delta \Phi * \rho.$$

The bound in (1) proves that $\Psi(y) \leq G(y)$ for $y \geq x_1$, and this Ψ still satisfies all the other properties of the proposition. Now we only have to choose another $\delta > 0$ such that

$$\delta \Psi'(0) \le \epsilon$$

 $\delta \Psi(x) \le G(x) \quad \text{for } \epsilon \le x \le x_1,$

and then $\delta \Psi$ is less than G (recall that $G(x) \geq \epsilon x$ for $x \in [0, \epsilon]$ and Ψ is concave) and satisfies all the other properties.

In the rest of this section, S will be a set, \mathcal{A} will be a σ -algebra of subsets of S and μ be a positive measure on \mathcal{A} .

Proposition 2. Consider the positive measure space (S, \mathcal{A}, μ) . If $f: S \to \mathbb{R}$ is a nonnegative μ -integrable function, then there is a continuous function $\Lambda: [0, +\infty) \to [0, +\infty)$ which is increasing, such that $\lim_{y\to\infty} \Lambda(y)/y = \infty$, and

$$\int_0^\infty \Lambda(f(y))\mu(y) < +\infty.$$

The function Λ can be chosen so that $\Lambda(0) = 0$, Λ is \mathcal{C}^{∞} , and strictly convex. If $H : [0, +\infty) \to \mathbb{R}$ is an absolutely continuous function so that G = H' is in the conditions of G in proposition 1, then Λ can be chosen to be less than H.

This result is a corollary of the previous proposition if one uses the concept of the distribution function of a given function f:

Definition 3. If $f: S \to \mathbb{R}$ is a nonnegative μ -integrable function, then its distribution function is the function $F_f: (0, +\infty) \to [0, +\infty)$ given by

$$F_f(\lambda) := \mu \{ y \in X \mid f(y) > \lambda \} \quad \text{for } \lambda > 0.$$

Note that the set $\{y \in X \mid f(y) > \lambda\}$ is measurable, as f is. It is clear that F_f is decreasing, so in particular it is Borel measurable. The following lemma gives a way to calculate the integral of $\varphi(f)$ for suitable functions ϕ knowing only the distribution function F_f .

Lemma 4. Let $\varphi : [0, +\infty) \to [0, +\infty)$ be a nonnegative C^1 function such that $\varphi(0) = 0$, and $f : S \to \mathbb{R}$ a nonnegative μ -integrable function. Then

$$\int_{S} \varphi(f(x))\mu(x) = \int_{0}^{\infty} F_{f}(\lambda)\varphi'(\lambda) d\lambda.$$

Proof. To prove this, note first that the function

$$G: S \times [0, +\infty) \to \mathbb{R}$$

 $(x, t) \mapsto f(x) - t$

is measurable for the product σ -algebra $\mathcal{A} \otimes \mathcal{B}$, as it is a sum of two measurable functions. Hence, the set $\{(x,t) \in S \times [0,+\infty) \mid f(x) < t\}$ is measurable, and therefore the function

$$\chi : S \times [0, +\infty) \to \mathbb{R}$$

$$(x, t) \mapsto \begin{cases} 1 & \text{if } f(x) < t \\ 0 & \text{if } f(x) \ge t \end{cases}$$

is measurable. Observe that

$$F_f(\lambda) = \int_S \chi(x,\lambda)\mu(x)$$
 for $\lambda > 0$.

Hence we can apply Fubini's theorem and write

$$\int_0^\infty F_f(\lambda)\varphi'(\lambda) d\lambda = \int_0^\infty \int_S \chi(x,\lambda)\mu(x)\varphi'(\lambda) d\lambda$$
$$= \int_S \int_0^\infty \chi(x,\lambda)\varphi'(\lambda) d\lambda\mu(x) = \int_S \int_0^{f(x)} \varphi'(\lambda) d\lambda\mu(x) = \int_S \varphi(f(x))\mu(x).$$

This proves the lemma.

Now we can prove proposition 2:

Proof of proposition 2. The previous lemma proves that $\int_S f\mu = \int_0^\infty F_f(\lambda) d\lambda$, so F_f is integrable. Proposition 1 then shows that there is a \mathcal{C}^∞ nonnegative concave function on $[0, +\infty)$, which we call Λ' , such that $\Lambda'(0) = 0$, $\lim_{\lambda \to \infty} \Lambda'(\lambda) = +\infty$ and

$$\int_0^\infty F_f(\lambda)\Lambda'(\lambda)\,d\lambda < +\infty.$$

We define Λ as its primitive:

$$\Lambda(\lambda) := \int_0^{\lambda} \Lambda'(y) \, dy.$$

Then Λ clearly fulfills the requirements of the proposition; in particular,

$$\int_{S} \Lambda(f(x))\mu(x) = \int_{0}^{\infty} F_{f}(\lambda)\Lambda'(\lambda) d\lambda < +\infty,$$

and also, using l'Hôpital's rule,

$$\lim_{\lambda \to \infty} \Lambda(\lambda)/\lambda = \lim_{\lambda \to \infty} \Lambda'(\lambda) = +\infty.$$

Finally, if H is in the conditions of the proposition, we may choose Λ' less than H' and the result follows.

1 About this text

This document has been written by José Alfredo Cañizo. For comments or suggestions write to ozarfreo@yahoo.com. The latest version should be at http://www.ugr.es/~ozarfreo/tex.

You can use this work under the terms of the Creative Commons license which can be found at

http://creativecommons.org/licenses/by-nc-sa/1.0/.

References

[1] C. Dellacherie and P. A. Meyer. *Probabilités et potentiel*, chapter I-IV, pages 85–115. Hermann, Paris, 1975.