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Here you will find a version of the classical lemma of de la Vallée-Poussin
with a proof; a similar one can be found in [1].

Proposition 1. Let pu be a positive Borel measure on (0,+00), and f :
(0,4+00) — R a nonnegative p-integrable function. Then there is a mea-
surable function ® : [0,+00) — [0,400) which is increasing, such that
lim, .o ®(y) = oo, and

/ Ofu < +o0.
0

In addition, the function ® can be chosen so that it is strictly increasing,
®(0) =0, ¢ is C*, concave, and such that ®(y) <y for all y > 0.

If G : [0,400) — R is a nonnegative function such that lim, .., G(y) =
+o00 and, for some e > 0 and all y € [0,€¢], G(y) > ey, then ® can be also
chosen to be less than G.

Proof. Define .
Fa)= [ fu

which is a decreasing function and tends to zero as  — oo (as f is integrable).
Define
an :=1inf{z >0 | F(x) <1/n’} €R, n>1,

and consider the increasing sequence {z, },>o given by

) =0

Tpa1 = max{x, + 1,a,41 + 1}.



The point of this sequence is that z,, — oo when n — oo (which is not
necessarily true of a,) and that

F(z,) < —.

Finally, we can define ¢:

Xn i= X[zn,00) forn >0
¢ = ZXn
n=0

The function ¢ is well defined because for every x > 0, ¢(z) is given by a
finite sum. Actually, we could define ¢ equivalently as

¢(x) =n+1 foraz € [v,,xn41), n>0.

It is clear that lim, . ¢(z) = oo, as ¢(x) > n + 1 for > x,. Also, the
integral of ¢ f is finite because

/Ooocbfu:/ooo (Z;”oxn>fu=§%/omxnfu:§%1?(xn) gi% < too.

(The monotone convergence theorem justifies the interchange of sums and
integral here.)

Now, let us find a function ® in these conditions, which is also concave
and strictly increasing, with ®(0) = 0 and ®(y) < y for y > 0. With the help
of ¢ and the above sequence {z,}, we will define ® recursively as follows:

dy:=1;
®(0) = 0;
1—
dpyq := min {dn, H—(x")} forn >0
Tn41 — Tn

O(z) := P(x,) +dpyr1(x —x,) forn >0, z€[r,, ]

First, note that ® is continuous and ®(0) = 0 by definition. Its derivative
on the interval (z,,%,41) is d,11; as {d,} is decreasing and positive, ® is
concave and strictly increasing, and as dy = 1, we have ®(y) <y for y > 0.



Figure 1: Definition of ®. The step function is ¢, and the piecewise linear
one is ®. The scales on the axes are not the same.

Also, ®(x) is smaller than ¢(z), as for x on the interval [z,,z,11) (n > 0)
one has

P(x) = P(xp) + dpy1(z — 2p)
n+1—®(x,)
_'_ - 7

< ®(xy,) P—
n n

('Tn+1 - xn) =n+l= (b('r)
So the function ®f is still p-integrable (as ¢f is). Note that the latter
inequality, written for z = x,.1, also proves that ®(z,) < n for n > 0. Also,
lim, o, ®(z) = oco. To prove this, observe that d, is always positive (as
O(z,) < n <n+1),so P is strictly increasing. Consider the set of the n
such that d,,;, is different from d,,; if it is finite, then from some point on ¢
has a constant positive slope and hence it tends to ooj; if it is infinite, then
for all such n one has

D(znt1) = O(w) + dny1 (Tngr — )
o) + n+1—&(x,)

(Tpy1 —xp) =n+ 1.
Tpn1 — Tp

(The equality holds because d,, ;1 is not d,,, so it must be the other quantity
in the minimum). So lim, .., ®(z) = oo.
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Now we can find a function ¥ with the same properties as ®, and which
is also C™: extend @ to all of R as

O(z) :==dyx for x <O0.

Take a “bump function” p: R — R which is C*°, nonnegative, with integral
1, symmetric about the = = 0 axis and with support contained in [—1/2,1/2].
The function

U(r) = (Pxp)(z) = / (x —y)p(y) dy = / D(y)p(r —y)dy

—00 —00

e}

is the one we are looking for: ¥(0) = 0, as ® is equal to dyy on the interval
[—1/2,1/2] (recall that 1 > 1) and p is symmetric, so

00 1/2
w(0) = / S(y)p(—y) dy = dy / yp(—y) dy = 0.

oo —-1/2

U is C*°, being a regularization of ® by a C*> function; it is less than z, as
for 0 <z < 1/2 we know that ¥(z) = dyx < z, and for z > 1/2 we have,
using the symmetry of p and the bound for ®,

V(z) = /Oo p(y)®(r —y)dy < /OO p(y)(z —y)dy

—00 —00

zx/oo p(y)dy—/_oo p(y)ydy = .

— 00 [e.9]

(Note that ®(x) is not less than z for x < 0, so this calculation does not
work for 0 <z < 1/2). WU is concave and strictly increasing because ® is, and
convolution with a positive function preserves this; ¥(z) tends to oo when
xr — oo, and if we observe that for x > 0

U(r) = /_OO (y)p(r—y) dy < |pllo ©(x+1/2) < [|pll (®(2)+2(1/2)), (1)

o0

(note that U is sublinear, as it is concave and ¥(0) = 0, so ¥U(z +y) <
U(z) 4+ U(y) for x,y > 0), then it is clear that W f is integrable on (0, +00).

Finally, let us see that ¥ can be chosen to be less than a G in the condi-
tions of the statement. Call

b, == inf{z € [0,4+00) | G(x) > n+ 1} < 4o0.
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In the definition at the beginning of the proof, put y, := maxx,,b, + 1, and
define ¢ using v, instead of x,. Then,

o) <G(zx)+1 forxz>x.

Define ¢ accordingly (so ®(z) < G(x)+1 for x > z1), and choose § > 0 such
that

0 <min{L,1/]lpll, 1/(llollc 2(1/2))}-

Then define ¥ as the convolution above, times §:
U =P * p.

The bound in (1) proves that ¥(y) < G(y) for y > x;, and this ¥ still
satisfies all the other properties of the proposition. Now we only have to
choose another ¢ > 0 such that

SU'(0) <e
W(z) <G(x) fore<z<ua,

and then 0V is less than G (recall that G(x) > ex for = € [0,€¢] and V¥ is
concave) and satisfies all the other properties. O

In the rest of this section, S will be a set, A will be a o-algebra of subsets
of S and p be a positive measure on A.

Proposition 2. Consider the positive measure space (S, A, ). If f: S — R
1s a monnegative p-integrable function, then there is a continuous function
A 1 [0,400) — [0, +00) which is increasing, such that lim, .. A(y)/y = oo,
and

/0 T AU @)uly) < +oo.

The function A can be chosen so that A(0) =0, A is C*>, and strictly convex.
If H : [0,4+00) — R is an absolutely continuous function so that G = H’

s in the conditions of G in proposition 1, then A can be chosen to be less
than H.

This result is a corollary of the previous proposition if one uses the concept
of the distribution function of a given function f:



Definition 3. If f : S — R is a nonnegative u-integrable function, then its
distribution function is the function Fy : (0, 4+00) — [0, +00) given by

Fr(A) =p{ye X | f(y) > A} for A > 0.

Note that the set {y € X | f(y) > A} is measurable, as f is. It is clear
that F is decreasing, so in particular it is Borel measurable. The following
lemma gives a way to calculate the integral of ¢(f) for suitable functions ¢
knowing only the distribution function F¥.

Lemma 4. Let ¢ : [0,+00) — [0,400) be a nonnegative C' function such
that p(0) =0, and f : S — R a nonnegative p-integrable function. Then

[ etr@n = [~ Foeo i
0
Proof. To prove this, note first that the function

G:S9x[0,400) = R
(2,t) — fz) —

is measurable for the product o-algebra ARB, as it is a sum of two measurable
functions. Hence, the set {(z,t) € S x [0,+00) | f(z) < t} is measurable,
and therefore the function

xS x[0,4+00) = R

1 if f(x) <t
(1) = {0 if f(x) >t

is measurable. Observe that
Fr(\) = /X(x, Mp(z)  for A > 0.
S

Hence we can apply Fubini’s theorem and write

/Ff ) d) = // (2, V() (A) dA
= [ [ e e vt = | /M N ) = [ o )ute)

This proves the lemma. O



Now we can prove proposition 2:

Proof of proposition 2. The previous lemma proves that fs fu= fooo Fr(X) dA,
so Fy is integrable. Proposition 1 then shows that there is a C*° nonnega-

tive concave function on [0,+00), which we call A’; such that A’(0) = 0,

limy o A'(A) = +o0 and

/ T ROV () ) < 400,

We define A as its primitive:

Y
A(N) ::/0 N (y) dy.

Then A clearly fulfills the requirements of the proposition; in particular,

/5 A(f(@))u(z) = / Fr(MA' (V) dX < +o0,
0
and also, using 'Hopital’s rule,
Alim AN/ = )\lim N(N) = +oo.

Finally, if H is in the conditions of the proposition, we may choose A’ less
than H’ and the result follows. O
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