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27 April 2006

Here you will find a version of the classical lemma of de la Vallée-Poussin
with a proof; a similar one can be found in [1].

Proposition 1. Let µ be a positive Borel measure on (0, +∞), and f :
(0, +∞) → R a nonnegative µ-integrable function. Then there is a mea-

surable function Φ : [0, +∞) → [0, +∞) which is increasing, such that

limy→∞ Φ(y) = ∞, and
∫ ∞

0

Φfµ < +∞.

In addition, the function Φ can be chosen so that it is strictly increasing,

Φ(0) = 0, Φ is C∞, concave, and such that Φ(y) ≤ y for all y ≥ 0.
If G : [0, +∞) → R is a nonnegative function such that limy→∞ G(y) =

+∞ and, for some ǫ > 0 and all y ∈ [0, ǫ], G(y) ≥ ǫy, then Φ can be also

chosen to be less than G.

Proof. Define

F (x) :=

∫ ∞

x

fµ

which is a decreasing function and tends to zero as x → ∞ (as f is integrable).
Define

an := inf{x > 0 | F (x) < 1/n2} ∈ R, n ≥ 1,

and consider the increasing sequence {xn}n≥0 given by

x0 := 0

xn+1 := max{xn + 1, an+1 + 1}.
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The point of this sequence is that xn → ∞ when n → ∞ (which is not
necessarily true of an) and that

F (xn) ≤
1

n2
.

Finally, we can define φ:

χn := χ[xn,∞) for n ≥ 0

φ :=

∞
∑

n=0

χn.

The function φ is well defined because for every x > 0, φ(x) is given by a
finite sum. Actually, we could define φ equivalently as

φ(x) = n + 1 for x ∈ [xn, xn+1), n ≥ 0.

It is clear that limx→∞ φ(x) = ∞, as φ(x) > n + 1 for x > xn. Also, the
integral of φf is finite because

∫ ∞

0

φfµ =

∫ ∞

0

(

∑∞

n=0 χn

)

fµ =

∞
∑

n=0

∫ ∞

0

χnfµ =

∞
∑

n=0

F (xn) ≤

∞
∑

n=0

1

n2
< +∞.

(The monotone convergence theorem justifies the interchange of sums and
integral here.)

Now, let us find a function Φ in these conditions, which is also concave
and strictly increasing, with Φ(0) = 0 and Φ(y) ≤ y for y ≥ 0. With the help
of φ and the above sequence {xn}, we will define Φ recursively as follows:

d0 := 1;

Φ(0) = 0;

dn+1 := min
{

dn,
n + 1 − Φ(xn)

xn+1 − xn

}

for n ≥ 0

Φ(x) := Φ(xn) + dn+1(x − xn) for n ≥ 0, x ∈ [xn, xn+1].

First, note that Φ is continuous and Φ(0) = 0 by definition. Its derivative
on the interval (xn, xn+1) is dn+1; as {dn} is decreasing and positive, Φ is
concave and strictly increasing, and as d0 = 1, we have Φ(y) ≤ y for y ≥ 0.
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Figure 1: Definition of Φ. The step function is φ, and the piecewise linear
one is Φ. The scales on the axes are not the same.

Also, Φ(x) is smaller than φ(x), as for x on the interval [xn, xn+1) (n ≥ 0)
one has

Φ(x) = Φ(xn) + dn+1(x − xn)

≤ Φ(xn) +
n + 1 − Φ(xn)

xn+1 − xn
(xn+1 − xn) = n + 1 = φ(x).

So the function Φf is still µ-integrable (as φf is). Note that the latter
inequality, written for x = xn+1, also proves that Φ(xn) ≤ n for n ≥ 0. Also,
limx→∞ Φ(x) = ∞. To prove this, observe that dn is always positive (as
Φ(xn) ≤ n < n + 1), so Φ is strictly increasing. Consider the set of the n
such that dn+1 is different from dn; if it is finite, then from some point on Φ
has a constant positive slope and hence it tends to ∞; if it is infinite, then
for all such n one has

Φ(xn+1) = Φ(xn) + dn+1(xn+1 − xn)

= Φ(xn) +
n + 1 − Φ(xn)

xn+1 − xn

(xn+1 − xn) = n + 1.

(The equality holds because dn+1 is not dn, so it must be the other quantity
in the minimum). So limx→∞ Φ(x) = ∞.
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Now we can find a function Ψ with the same properties as Φ, and which
is also C∞: extend Φ to all of R as

Φ(x) := d1x for x ≤ 0.

Take a “bump function” ρ : R → R which is C∞, nonnegative, with integral
1, symmetric about the x = 0 axis and with support contained in [−1/2, 1/2].
The function

Ψ(x) := (Φ ∗ ρ)(x) =

∫ ∞

−∞

Φ(x − y)ρ(y) dy =

∫ ∞

−∞

Φ(y)ρ(x − y) dy

is the one we are looking for: Ψ(0) = 0, as Φ is equal to d1y on the interval
[−1/2, 1/2] (recall that x1 ≥ 1) and ρ is symmetric, so

Ψ(0) =

∫ ∞

−∞

Φ(y)ρ(−y) dy = d1

∫ 1/2

−1/2

yρ(−y) dy = 0.

Ψ is C∞, being a regularization of Φ by a C∞ function; it is less than x, as
for 0 ≤ x ≤ 1/2 we know that Ψ(x) = d1x ≤ x, and for x ≥ 1/2 we have,
using the symmetry of ρ and the bound for Φ,

Ψ(x) =

∫ ∞

−∞

ρ(y)Φ(x − y) dy ≤

∫ ∞

−∞

ρ(y)(x− y) dy

= x

∫ ∞

−∞

ρ(y) dy −

∫ ∞

−∞

ρ(y)y dy = x.

(Note that Φ(x) is not less than x for x < 0, so this calculation does not
work for 0 ≤ x < 1/2). Ψ is concave and strictly increasing because Φ is, and
convolution with a positive function preserves this; Ψ(x) tends to ∞ when
x → ∞, and if we observe that for x ≥ 0

Ψ(x) =

∫ ∞

−∞

Φ(y)ρ(x−y) dy ≤ ‖ρ‖
∞

Φ(x+1/2) ≤ ‖ρ‖
∞

(Φ(x)+Φ(1/2)), (1)

(note that Ψ is sublinear, as it is concave and Ψ(0) = 0, so Ψ(x + y) ≤
Ψ(x) + Ψ(y) for x, y ≥ 0), then it is clear that Ψf is integrable on (0, +∞).

Finally, let us see that Ψ can be chosen to be less than a G in the condi-
tions of the statement. Call

bn := inf{x ∈ [0, +∞) | G(x) > n + 1} < +∞.
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In the definition at the beginning of the proof, put yn := maxxn, bn + 1, and
define φ using yn instead of xn. Then,

φ(x) ≤ G(x) + 1 for x ≥ x1.

Define Φ accordingly (so Φ(x) ≤ G(x)+1 for x ≥ x1), and choose δ > 0 such
that

δ ≤ min{1, 1/ ‖ρ‖
∞

, 1/(‖ρ‖
∞

Φ(1/2))}.

Then define Ψ as the convolution above, times δ:

Ψ := δΦ ∗ ρ.

The bound in (1) proves that Ψ(y) ≤ G(y) for y ≥ x1, and this Ψ still
satisfies all the other properties of the proposition. Now we only have to
choose another δ > 0 such that

δΨ′(0) ≤ ǫ

δΨ(x) ≤ G(x) for ǫ ≤ x ≤ x1,

and then δΨ is less than G (recall that G(x) ≥ ǫx for x ∈ [0, ǫ] and Ψ is
concave) and satisfies all the other properties.

In the rest of this section, S will be a set, A will be a σ-algebra of subsets
of S and µ be a positive measure on A.

Proposition 2. Consider the positive measure space (S,A, µ). If f : S → R

is a nonnegative µ-integrable function, then there is a continuous function

Λ : [0, +∞) → [0, +∞) which is increasing, such that limy→∞ Λ(y)/y = ∞,

and
∫ ∞

0

Λ(f(y))µ(y) < +∞.

The function Λ can be chosen so that Λ(0) = 0, Λ is C∞, and strictly convex.

If H : [0, +∞) → R is an absolutely continuous function so that G = H ′

is in the conditions of G in proposition 1, then Λ can be chosen to be less

than H.

This result is a corollary of the previous proposition if one uses the concept
of the distribution function of a given function f :
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Definition 3. If f : S → R is a nonnegative µ-integrable function, then its
distribution function is the function Ff : (0, +∞) → [0, +∞) given by

Ff(λ) := µ{y ∈ X | f(y) > λ} for λ > 0.

Note that the set {y ∈ X | f(y) > λ} is measurable, as f is. It is clear
that Ff is decreasing, so in particular it is Borel measurable. The following
lemma gives a way to calculate the integral of ϕ(f) for suitable functions φ
knowing only the distribution function Ff .

Lemma 4. Let ϕ : [0, +∞) → [0, +∞) be a nonnegative C1 function such

that ϕ(0) = 0, and f : S → R a nonnegative µ-integrable function. Then

∫

S

ϕ(f(x))µ(x) =

∫ ∞

0

Ff(λ)ϕ′(λ) dλ.

Proof. To prove this, note first that the function

G : S × [0, +∞) → R

(x, t) 7→ f(x) − t

is measurable for the product σ-algebra A⊗B, as it is a sum of two measurable
functions. Hence, the set {(x, t) ∈ S × [0, +∞) | f(x) < t} is measurable,
and therefore the function

χ : S × [0, +∞) → R

(x, t) 7→

{

1 if f(x) < t

0 if f(x) ≥ t

is measurable. Observe that

Ff (λ) =

∫

S

χ(x, λ)µ(x) for λ > 0.

Hence we can apply Fubini’s theorem and write

∫ ∞

0

Ff (λ)ϕ′(λ) dλ =

∫ ∞

0

∫

S

χ(x, λ)µ(x)ϕ′(λ) dλ

=

∫

S

∫ ∞

0

χ(x, λ)ϕ′(λ) dλµ(x) =

∫

S

∫ f(x)

0

ϕ′(λ) dλµ(x) =

∫

S

ϕ(f(x))µ(x).

This proves the lemma.
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Now we can prove proposition 2:

Proof of proposition 2. The previous lemma proves that
∫

S
fµ =

∫ ∞

0
Ff (λ) dλ,

so Ff is integrable. Proposition 1 then shows that there is a C∞ nonnega-
tive concave function on [0, +∞), which we call Λ′, such that Λ′(0) = 0,
limλ→∞ Λ′(λ) = +∞ and

∫ ∞

0

Ff(λ)Λ′(λ) dλ < +∞.

We define Λ as its primitive:

Λ(λ) :=

∫ λ

0

Λ′(y) dy.

Then Λ clearly fulfills the requirements of the proposition; in particular,
∫

S

Λ(f(x))µ(x) =

∫ ∞

0

Ff (λ)Λ′(λ) dλ < +∞,

and also, using l’Hôpital’s rule,

lim
λ→∞

Λ(λ)/λ = lim
λ→∞

Λ′(λ) = +∞.

Finally, if H is in the conditions of the proposition, we may choose Λ′ less
than H ′ and the result follows.
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