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Abstract

This text contains the statement and proof of Young’s inequality
for real numbers and a generalization of it. Its generalization has a
nice graphical interpretation which is also shown.

1 Statement

The most familiar form of Young’s inequality, which is frequently used to
prove the well-known Holder inequality for LP functions, is the following:

Theorem 1.1 (Young’s inequality). For a,b > 0 and p,q > 1 such that
% + % =1 one has

1 1
ab < —aP + -b1.
p q

The next theorem is a generalization:

Theorem 1.2 (General Young’s inequality). Letc > 0 and f : [0,¢] — R
be a strictly increasing continuous function such that f(0) = 0. Let a € [0, ]

and b € [0, f(c)]. Then,

abg/oaf(a;)dx+/obf—1(x)dx (1)

Note that we obtain the previous inequality taking f(x) := xP~1.



In these conditions, if we call
Ao = [ 1)y
N@i= [ £
then another way to state the same result is to say that:
ab < A(a) + A*(b).

As A* can be obtained from A, we can rewrite theorem 1.2 as follows:

Theorem 1.3 (General Young’s inequality, second form). Take ¢ > 0
and let A : [0, ] — R be C* and strictly convexr with A(0) = A'(0) = 0. Then
for any a € [0,¢] and b € [0,A'(c)] it holds that

ab < A(a) + A*(b) (2)
where N
N@) = [ w)dy forz € A(0,e) Q
0
The following is a useful identity relating A and A*:

Lemma 1.4. Let ¢ > 0 and A : [0,c] — R be a C' and strictly convex with
A(0) = A'(0) = 0. Define A* by (3). Then,

xN (z) = A(z) + A" (N (x)). (4)

Remark 1.5. One can remove the requirement that A be strictly convex and
still have the same results, but we will not do this here, as it involves some
technical complications when defining the inverse function.

2 Proofs and explanations

For the proof of theorem 1.1 we just need the convexity of the exponential:

Proof of theorem 1.1. The function x +— e is convex. This means that for
r,ye€Rand 0 <0 <1,

exp(fx + (1 —0)y) <O exp x+ (1 —0)exp y.

2



When a or b are zero the inequality is trivial. Otherwise, the theorem is just
this inequality with

1
r:=loga, y:=logb, 6:=-.
p

O

Theorem 1.2 can be understood with a picture (see figure 1). Recall that
the inverse of a function can be drawn by reflecting its graph along the z = y
line, so the area below the inverse of a function is the area to the left of the
function (the area between its graph and the vertical axis).

]
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Figure 1: if f(a) <b

The following lemma, which we will use in the proof, can also be seen in
the picture:

Lemma 2.1. Let ¢ > 0. For a strictly increasing continuous function f :
[0,¢] = R and b € [0, f(c)] we have that

b )
bfl(b) = / S () da+ / f() dz (5)

(Note that this lemma is the identity in equation (4) when A is defined
as A(z) =[5 [~ (y) dy.)



Figure 2: if f(a) > b

Proof. 1t is enough to prove it when f is C!, as then a continuous f can be
uniformly approximated by strictly increasing C! functions while f~! is also
uniformly approximated. It is also enough to prove it when f(a) > b, as
otherwise we can just interchange both f,f~! and a, b.

To prove it in this case we can change variables in the integral fob [ Yx)dx
by putting x = f(y), and then integrate by parts:

b F7) ()
(Af @Mx=A uf'(y) dy = bf “”14 f(z) d.

Proof of theorem 1.2. Use (5) and the fact that f is increasing:
ab = bf~1(8) + bla — F71(5)

b 1)

~ [ [0 fa) e+ da - 10)
0 0
b F710) a

g/o f (a:)d:c—l—/o f(a:)d:c—i—/fl(b)f(a:)d:c

b . a
:/0 f (:E)dx+/0 f(x)dx.
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The rest is an easy consequence of these results. Theorem 1.3 is a rewrite
of 1.2 and as it was said before, the identity in equation (4) is just lemma
2.1 when A is defined as A(z) :== [ f'(y) dy.
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