MSM3P22/MSM4P22 Further Complex Variable Theory & General Topology Solutions to Problem sheet 2

José A. Cañizo

March 2013

Unless stated otherwise, in the following exercises X is a topological space with topology \mathscr{T} , and A is a subset of X. Also, note that the closure of a set A can be denoted by cl(A) or \overline{A} , and its interior by int(A) or A° .

Exercise 2.4. Show that the boundary of a set A is empty if and only if A is both open and closed.

Solution. (Note that the definition of "boundary" given in class is $\partial A := \operatorname{cl}(A) \setminus \operatorname{int}(A)$.) If A is both open and closed then by Exercise 1.4 we have $A = \operatorname{int}(A) = \operatorname{cl}(A)$. Hence $\partial A = \operatorname{cl} A \setminus \operatorname{int}(A) = A \setminus A = \emptyset$.

Conversely, assume that $\partial A = \operatorname{cl}(A) \setminus \operatorname{int}(A) = \emptyset$. This implies that $\operatorname{cl}(A) \subseteq \operatorname{int}(A)$, and then

$$A \subseteq \operatorname{cl}(A) \subseteq \operatorname{int}(A) \subseteq A$$

Since we start and end with A in the line above, all the inclusions must be equalities, so A = cl(A) = int(A). By Exercise 1.4(2) we deduce that A is both open and closed.

Exercise 2.5. Show that a set U is open if and only if $\partial U = \overline{U} \setminus U$.

Solution. If U is open, then $\operatorname{int}(U) = U$ and obviously $\partial U = \operatorname{cl}(U) \setminus \operatorname{int}(U) = \operatorname{cl}(U) \setminus U$. Assume now $\partial U = \operatorname{cl}(U) \setminus U$. Since by definition $U = \operatorname{cl}(U) \setminus \operatorname{int}(U)$ and both U and

int(U) are subsets of cl(U) we deduce that int(U) = U. By Exercise 1.4(2), U is open.

Exercise 2.6. If U is open, is it true that U = int(cl(U))?

Solution. It is not true in general. A counterexample is given by considering \mathbb{R} with the usual Euclidean topology and $U = (1, 2) \cup (2, 3)$. Then int(cl(U)) = int([1, 3]) = (1, 3), not equal to U.

Exercise 2.7. Show that the boundary of a set A (which we defined as $\partial A = \overline{A} \setminus A^{\circ}$) is equal to $\overline{A} \cap \overline{X \setminus A}$.

Solution. First, notice that $cl(X \setminus A) = X \setminus int(A)$; this is because

$$cl(X \setminus A) = \bigcap_{\substack{C \text{ closed} \\ C \supseteq X \setminus A}} C = \bigcap_{\substack{U \text{ open} \\ U \subseteq A}} (X \setminus U) = X \setminus \bigcap_{\substack{U \text{ open} \\ U \subseteq A}} U = X \setminus int(A),$$

where we have used De Morgan's laws and the fact that the collection

 $\{C \mid C \text{ closed and } C \supseteq X \setminus A\}$

is equal to

 $\{X \setminus U \mid U \text{ open and } U \subseteq A\}.$

Hence we have

$$\operatorname{cl}(A) \cap \operatorname{cl}(X \setminus A) = \operatorname{cl}(A) \cap (X \setminus \operatorname{int}(A)) = \operatorname{cl}(A) \setminus \operatorname{int}(A) = \partial A.$$

Exercise 2.9. Show that a subspace of a Hausdorff space is Hausdorff.

Solution. Consider a Hausdorff topological space X, with topology \mathscr{T} , and a subspace $A \subseteq X$ (this is, a subset $A \subseteq X$ with the topology \mathscr{T}_A induced from X). Take two distinct points $x \neq y \in A$. Since X is Hausdorff there exist open sets $U, V \in \mathscr{T}$ such that

$$x \in U, \quad y \in V, \quad U \cap V = \emptyset.$$

Define now $\tilde{U} = U \cap A$, $\tilde{V} = V \cap A$. Then by definition of the topology of A we have $\tilde{U}, \tilde{V} \in \mathscr{T}_A$, and they satisfy

$$x \in \tilde{U}, \quad y \in \tilde{V}, \quad \tilde{U} \cap \tilde{V} = \emptyset.$$

Since x and u were arbitrary, this shows that A is Hausdorff.

Exercise 2.10. Recall that the *cofinite topology* (or *finite complement topology* in a set X is that in which a set is open if and only if it is empty, or its complement has a finite number of points. The cocountable topology is defined analogously (see Handout 1.)

- 1. Is the cofinite topology of \mathbb{N} Hausdorff? Is the cocountable topology of \mathbb{N} Hausdorff?
- 2. Is the cofinite topology of \mathbb{R} Hausdorff? Is the cocountable topology of \mathbb{R} Hausdorff?
- 3. In the cofinite topology of \mathbb{R} , which points are limits of the sequence $x_n = 1/n$?
- **Solution.** 1. In the cofinite topology of \mathbb{N} any two nonempty open sets U and V must intersect: by definition there is only a finite number of points not in U, and only a finite number of points not in V; hence, an infinite number of them must be in both. This shows that \mathbb{N} with the cofinite topology is not Hausdorff.

On the other hand, since \mathbb{N} is countable, the cocountable topology on \mathbb{N} is just the discrete topology (because *every set* has a countable complement), which is always Hausdorff.

- 2. By the same reasoning as above, the cofinite topology on \mathbb{R} is not Hausdorff. In this case, a similar reasoning applies to the cocountable topology and shows that it is also not Hausdorff: if U, V are any two nonempty open sets they must intersect: by definition there is only a countable number of points not in U, and only a countable number of points not in V; since \mathbb{R} is uncountable, an infinite (in fact uncountable) number of points must be in both.
- 3. Every point is a limit of $\{1/n\}_{n\geq 1}$. To see this, take any point $x \in \mathbb{R}$ and any open set U with $x \in U$. Since $\mathbb{R} \setminus U$ is at most finite, there must exist $N \in \mathbb{N}$ such that $1/n \notin \mathbb{R} \setminus U$ for all $n \geq N$. Then, $1/n \in U$ for all $n \geq N$, showing that x is a limit of the sequence $\{1/n\}_{n\geq 1}$.

Exercise 2.11. Recall that the *Sorgenfrey line*, or *left limit topology*, is the set \mathbb{R} with the topology generated by the base $\{(a, b] : a < b \in \mathbb{R}\}$. For each of the following topologies on \mathbb{R} , specify which of the others it contains (i.e., which of the others it is finer than):

- 1. The usual topology.
- 2. The cofinite topology.
- 3. The right limit topology.
- 4. The topology with base given by $\{(a, +\infty) \mid a \in \mathbb{R}\}$.

Solution. Recall that if we are given a base \mathscr{B} for a topology, then a set U is open if and only if for every $x \in U$ there exists $B \in \mathscr{B}$ with $x \in B \subseteq U$. (This is analogous to the way we defined the usual topology of \mathbb{R}^d , where the base was the set of open balls.) Using this, it is easy to check that a topology \mathscr{T} is finer than a topology $\mathscr{T}_{\mathscr{B}}$ with base \mathscr{B} if and only if $\mathscr{B} \subseteq \mathscr{T}$.

- 1. Let us show that the Sorgenfrey topology is finer than the usual topology. Take any set U open in the usual topology. Then for every $x \in U$ there exists $\epsilon > 0$ with $(x \epsilon, x + \epsilon) \subseteq U$. But then $(x \epsilon/2, x + \epsilon/2] \subseteq U$. Since x was an arbitrary point of U, we have proved that U is open in the Sorgenfrey topology.
- 2. The Sorgenfrey topology is finer than the cofinite topology. A way to see this is to notice that any set open in the cofinite topology is also open in the usual topology (\mathbb{R} minus a finite set of points is open in the usual topology), and by the previous point it is also open in the Sorgenfrey topology.
- 3. The right limit topology and the left limit topology are not comparable (neither is finer than the other): the set (1, 2] is open in the left limit one but not in the right limit one, and the set [1, 2) is open in the right limit one but not in the left limit one.
- 4. The Sorgenfrey topology is finer than the topology with base $\{(a, +\infty) \mid a \in \mathbb{R}\}$: it is easy to check that every set of the form $(a, +\infty)$ is open in the Sorgenfrey topology.

Exercise 2.12. A function $f : \mathbb{R} \to \mathbb{R}$ is said to be *left continuous* if $\lim_{x\to a^-} f(x) = f(a)$ for all $a \in \mathbb{R}$ (this is as the usual concept of continuity, but only for limits *from the left*). Show that a left continuous function is continuous as a function from \mathbb{R} with the left limit topology (see previous problem) to \mathbb{R} with the usual topology.

Solution. Take any set U which is open in the usual topology, and let us prove that $f^{-1}(U)$ is open in the left limit topology. Take $x \in f^{-1}(U)$, and let us show that there exists $\epsilon > 0$ with $(x - \epsilon, x] \subseteq f^{-1}(U)$. (This will be enough to finish the proof due to the observation at the beginning of the solution of Exercise 2.11.)

Since U is open in the usual topology, there exists $\delta > 0$ such that $(f(x) - \delta, f(x) + \delta) \subseteq U$. Using that U is left continuous, there exists $\epsilon > 0$ such that

$$(y < x \text{ and } |x - y| < \epsilon) \Longrightarrow |f(x) - f(y)| < \delta.$$

In other words, $f(y) \in (f(x) - \delta, f(x) + \delta)$. Then for this δ we have $f((x - \epsilon, x]) \subseteq (f(x) - \delta, f(x) + \delta) \subseteq U$, which means that

$$(x - \epsilon, x] \subseteq f^{-1}(U).$$

This shows that $f^{-1}(U)$ is open in the Sorgenfrey topology.